JPH10163804A - Wide band dual mode piezoelectric filter - Google Patents

Wide band dual mode piezoelectric filter

Info

Publication number
JPH10163804A
JPH10163804A JP33758596A JP33758596A JPH10163804A JP H10163804 A JPH10163804 A JP H10163804A JP 33758596 A JP33758596 A JP 33758596A JP 33758596 A JP33758596 A JP 33758596A JP H10163804 A JPH10163804 A JP H10163804A
Authority
JP
Japan
Prior art keywords
electrode
mode
electrodes
ultra
spurious
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33758596A
Other languages
Japanese (ja)
Inventor
Osamu Ishii
修 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Communication Equipment Co Ltd
Original Assignee
Toyo Communication Equipment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Communication Equipment Co Ltd filed Critical Toyo Communication Equipment Co Ltd
Priority to JP33758596A priority Critical patent/JPH10163804A/en
Publication of JPH10163804A publication Critical patent/JPH10163804A/en
Pending legal-status Critical Current

Links

Landscapes

  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a piezoelectric filter which has a wide pass band range and can suppress the spurious on the higher frequency side by forming integrally a vibration part of an extra-thin plate and a thick circular surrounding part which holds the vibration part at its periphery and placing two electrodes on both vibration and surrounding parts with a prescribed space set between them together with the specific size and shape set for the vibration part. SOLUTION: A piezoelectric substrate 1 includes a vibration part 2 of a very thin plate which is formed by the photoetching and a thick circular surrounding part 3 which is formed integrally with the part 2 at its periphery. Then two electrodes 4a and 4b having width W and length L are provided on the upper surface of the substrate 1 with a space (g) set between both electrodes, and an electrode 5 is deposited on an entire rear surface of the substrate 1. The lead wires 6 are led from the electrodes 4a and 4b toward their peripheral thick end parts, and the electrode 5 serves as a lead electrode at the recess side. When the dimensions of the part 2 is set at A=(A1+A2)/2 in its electrode placing direction and at B in the vertical direction respectively, A/(2W+g) is set at 1.4 to 1.8 with B/L set at 1.3 to 1.7 respectively.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は携帯型無線機等に多
用される二重モード圧電フィルタ(以下MCFと称す
る)に関し、特に広帯域MCFの通過帯域の高周波側近
傍に生じるスプリアスを抑圧した超薄板MCFに関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a dual mode piezoelectric filter (hereinafter, referred to as MCF) frequently used in portable radio equipment and the like, and more particularly to an ultra-thin filter which suppresses spurious components generated near the high frequency side of the pass band of a wide band MCF. It relates to a plate MCF.

【0002】[0002]

【従来の技術】超薄板MCFは小型化、低損失、耐衝撃
性等の優れた特徴を備えているため携帯電話等の無線機
器に広く利用されている。図4(a)は従来の超薄板M
CF素子の平面図、同図(b)はその断面図を示す。A
Tカット水晶基板をフォト・エッチング手段を用いて超
薄板の振動部12とその周辺に該振動部12を保持する
厚肉の環状囲繞部13を一体的に形成して圧電基板11
とし、該基板の平面側に間隙gを置いて電極14a、1
4bを配置し、凹陥部側全面に電極15を蒸着等で付着
する。電極14a、14bからは周辺の厚肉端部に向け
リード電極16a、16bが延在し、凹陥部側は全面電
極15がリード電極も兼ねている。
2. Description of the Related Art Ultra-thin plate MCFs are widely used in wireless devices such as mobile phones because of their excellent features such as miniaturization, low loss and impact resistance. FIG. 4A shows a conventional ultra-thin plate M
FIG. 2B is a plan view of the CF element, and FIG. A
Using a photo-etching means, a T-cut quartz substrate is integrally formed with a vibrating portion 12 of an ultra-thin plate and a thick annular surrounding portion 13 for holding the vibrating portion 12 therearound.
And the electrodes 14a, 1a are separated by a gap g on the plane side of the substrate.
4b is disposed, and an electrode 15 is attached to the entire surface of the recessed portion by vapor deposition or the like. Lead electrodes 16a and 16b extend from the electrodes 14a and 14b toward the peripheral thick ends, and the entire surface electrode 15 also serves as a lead electrode on the concave side.

【0003】2対の電極14a、15と14b、15間
の音響結合の結果生ずる1次モードと2次モードの2つ
のモードを利用して超薄板MCFを構成している。 超
薄板MCFの通過帯域幅は周知のとおり前記1次モード
と2次モードの共振周波数の差のほぼ2倍となる。前記
2つのモードの結合度、即ち2つのモードの共振周波数
の差は圧電基板11の弾性定数、電極形状、電極の膜厚
および2対の電極の間隙gに依存し、結合度を大きくす
るほどフィルタの通過帯域幅が広くなる。
[0003] An ultra-thin MCF is constructed using two modes, a first mode and a second mode, resulting from acoustic coupling between two pairs of electrodes 14a, 15 and 14b, 15. As is well known, the pass band width of the ultra-thin plate MCF is almost twice the difference between the resonance frequencies of the primary mode and the secondary mode. The degree of coupling between the two modes, that is, the difference between the resonance frequencies of the two modes, depends on the elastic constant of the piezoelectric substrate 11, the electrode shape, the electrode thickness, and the gap g between the two pairs of electrodes. The pass bandwidth of the filter is widened.

【0004】一般に、ATカット水晶基板を用いた超薄
板MCFにおいては、該フィルタの所望の温度特性から
水晶基板11の切断角度が決まり、その結果前記水晶基
板11の弾性定数は必然的に決まる。また、所望の終端
条件から超薄板MCFの電極の形状が決まるため、2つ
のモードの結合度を左右するパラメータとしては電極の
膜厚と2対の電極の間隙gのみとなる。超薄板MCFの
帯域幅を広げる方法として電極の膜厚を薄くする手段で
は、膜厚が薄すぎると前記2つの振動モードが電極部に
十分に閉じ込もらずに、振動エネルギーの一部が周辺部
へ漏洩するため該2つモードのQ値が劣化し、フィルタ
の挿入損失を増大させることになる。従って電極の膜厚
はフィルタの挿入損失を最小に保ち、且つ通過域近傍の
スプリアスを抑圧する膜厚とする必要があるため、電極
の膜厚は制限を受ける。このため超薄板MCFの通過帯
域幅を決める手段としては電極間隙gを調整するのが一
般的である。
In general, in an ultra-thin MCF using an AT-cut quartz substrate, the cutting angle of the quartz substrate 11 is determined from desired temperature characteristics of the filter, and as a result, the elastic constant of the quartz substrate 11 is necessarily determined. . Further, since the shape of the electrode of the ultra-thin plate MCF is determined from the desired termination condition, only the film thickness of the electrode and the gap g between the two pairs of electrodes are the parameters that influence the degree of coupling between the two modes. In the means for reducing the film thickness of the electrode as a method of expanding the bandwidth of the ultra-thin MCF, if the film thickness is too small, the two vibration modes do not sufficiently confine to the electrode portion, and a part of the vibration energy is reduced. Leakage to the periphery degrades the Q value of the two modes, increasing the insertion loss of the filter. Therefore, the thickness of the electrode needs to be a thickness that keeps the insertion loss of the filter to a minimum and suppresses spurious near the passband, and thus the thickness of the electrode is limited. Therefore, as a means for determining the pass band width of the ultra-thin plate MCF, it is general to adjust the electrode gap g.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、超薄板
MCFで広帯域化を図ろうとするとスプリアスが生じ、
所望の減衰域特性が得られないという欠陥がある。ここ
で、図4(a)の座標軸を同図左下隅に示すようにと
り、水晶基板11の振動部12において該振動部12の
図中上方端のZ’軸方向の寸法をA1、図中下方端の
Z’軸方向の寸法をA2とすると、基板11の中央の
Z’軸方向寸法AはA=(A1+A2)/2となる。ま
た、振動部12のX軸方向の寸法をBとする。前記振動
部12に配置する電極14a、14bおよび間隙gの
Z’軸方向寸法W’はW’=(2W+g)、電極14
a、14bのX軸方向の寸法をLとする。例えば、図5
はGSM等に用いる中心周波数71MHz、3dBの通
過帯域幅±80kHzの条件で試作した超薄板MCFの
濾波特性例である。ここで振動領域寸法A=1.3m
m,B=1.0mm、電極寸法W’=0.684mm
(W=0.32mm、g=0.044mm)、L=0.
54mm、電極膜厚は1000Å(オングストローム)
であり、電極部の幅W’と振動部12の幅Aとの寸法比
はA/W’=1.9、X軸方向の電極部の長さLと振動
部2の長さBとの寸法比はB/L=1.85、である。
GSMの用途ではスプリアス抑制の要望はf0+400k
Hz〜+600kHzの周波数範囲において20dB、
0+600kHz〜+800kHzの周波数範囲にお
いて30dBであるのに対し、上記試作例の超薄板MC
Fでは図5に示すようにスプリアスS1、S2、S3等
が発生し、スプリアス抑圧は上記のそれぞれ周波数の範
囲において10dB、20dBと要求を満足することが
できない。
However, when an attempt is made to widen the band by using an ultra-thin MCF, spurs occur,
There is a defect that desired attenuation region characteristics cannot be obtained. Here, the coordinate axis of FIG. 4A is taken as shown in the lower left corner of the figure, and in the vibrating section 12 of the quartz substrate 11, the dimension of the upper end of the vibrating section 12 in the Z′-axis direction in the figure is A1, and the lower side in the figure is A1. Assuming that the size of the end in the Z′-axis direction is A2, the size A of the center of the substrate 11 in the Z′-axis direction is A = (A1 + A2) / 2. Further, the dimension of the vibrating part 12 in the X-axis direction is B. The dimension W ′ in the Z′-axis direction of the electrodes 14 a and 14 b and the gap g arranged in the vibrating section 12 is W ′ = (2W + g),
Let L be the dimension of the a and b in the X-axis direction. For example, FIG.
7 shows an example of the filtering characteristics of an ultra-thin plate MCF prototyped under the conditions of a center frequency of 71 MHz, a pass band width of 3 dB ± 80 kHz used for GSM and the like. Here, the vibration area dimension A = 1.3 m
m, B = 1.0 mm, electrode dimension W '= 0.684 mm
(W = 0.32 mm, g = 0.044 mm), L = 0.
54 mm, electrode thickness 1000 Å (angstrom)
And the dimensional ratio of the width W ′ of the electrode part to the width A of the vibration part 12 is A / W ′ = 1.9, and the length L of the electrode part in the X-axis direction and the length B of the vibration part 2 are The dimensional ratio is B / L = 1.85.
In GSM applications, the need for spurious suppression is f 0 + 400k
20 dB in the frequency range from Hz to +600 kHz,
f 0 is 30 dB in the frequency range of +600 kHz to +800 kHz, whereas the ultra-thin MC
In F, spurious components S1, S2, S3, etc. are generated as shown in FIG. 5, and the spurious components cannot be satisfied at the above-mentioned respective frequency ranges of 10 dB and 20 dB.

【0006】スプリアスを抑圧(スプリアスの減衰量を
大きくする)するためには、一般にMCFの電極面積を
大きくし該フィルタのインピーダンスを下げ、終端イン
ピーダンスとインハーモニックモードのインピーダンス
比を大きくしてスプリスの減衰量を大きくする方法や、
電極膜厚を薄くしてインハーモニックモードを電極下に
閉じ込めなくする手段があるが前者では小型化の点で不
利あり、後者ではパッケージとの接続にAlボンディン
グを行うためAl電極膜厚が500〜600Å(オング
ストローム)以下ではボンディング強度に問題があり、
実用化するには問題がある。
In order to suppress spurious (increase the amount of spurious attenuation), generally, the electrode area of the MCF is increased, the impedance of the filter is reduced, and the impedance ratio of the termination impedance to the inharmonic mode is increased to increase the spurious. How to increase the amount of attenuation,
There is a means for reducing the thickness of the electrode to prevent the inharmonic mode from being confined under the electrode. However, the former is disadvantageous in terms of miniaturization, and the latter has an Al electrode thickness of 500 to 500 because Al bonding is performed for connection with a package. If the angle is less than 600Å (angstrom), there is a problem in the bonding strength.
There is a problem to put it to practical use.

【0007】しかしながら、超薄板MCFの終端インピ
ーダンスは帯域幅に比例するため、比帯域幅が0.1%
以上へと広帯域化を図る場合、入出力終端インピーダン
スは数kΩと大きくなる。一方、インハーモニックモー
ドによるスプリアスの減衰量はおおよそ終端インピーダ
ンスとインハーモニックモードのインピーダンスの比で
決まる。超薄板MCFではインハーモニックモードのイ
ンピーダンスはほぼ電極形状とその膜厚で決まるためそ
の条件を変えないとほぼ同じ大きさとなり、従って超薄
板MCFを高インピーダンスで終端した場合にはスプリ
アスの減衰量が小さくなる。このように高インピーダン
ス終端の超薄板MCFの場合にはスプリアス抑圧手段が
無く大きな問題となっていた。本発明は上述した如き従
来の多重モード圧電フィルタの欠点を除去する為になさ
れたものであって、広い通過帯域幅を有すると共に高周
波数側に生ずるスプリアスを抑制した超薄板MCFを提
供することを目的とする。
However, since the terminal impedance of the ultra-thin plate MCF is proportional to the bandwidth, the specific bandwidth is 0.1%.
In order to increase the bandwidth as described above, the input / output terminal impedance becomes as large as several kΩ. On the other hand, the amount of spurious attenuation due to the inharmonic mode is approximately determined by the ratio between the terminal impedance and the impedance in the inharmonic mode. In the ultra-thin MCF, the impedance of the inharmonic mode is almost determined by the shape of the electrode and its film thickness. Therefore, unless the conditions are changed, the impedance becomes almost the same. Therefore, when the ultra-thin MCF is terminated with high impedance, the spurious attenuation is reduced. The amount is smaller. As described above, in the case of the ultra-thin plate MCF having a high impedance termination, there is no spurious suppression means, which is a big problem. SUMMARY OF THE INVENTION The present invention has been made in order to eliminate the above-mentioned drawbacks of the conventional multi-mode piezoelectric filter, and provides an ultra-thin plate MCF having a wide pass bandwidth and suppressing spurious components generated on a high frequency side. With the goal.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に本発明の請求項1記載の発明は、超薄板の振動部とそ
の周辺部に該振動部を保持する厚肉の環状囲繞部を一体
的に形成した圧電基板の上面に幅W、長さLの2個の電
極を間隙gをおいて配置し、裏面に全面電極を付着して
構成した二重モード圧電フィルタにおいて、前記振動部
の中央で電極配置方向の寸法をA、それと垂直方向の寸
法をBとした場合、A/(2W+g)を1.4から1.
8、B/Lを1.3から1.7の範囲に選び、スプリア
スを抑圧することを特徴とする広帯域二重モード圧電フ
ィルタである。請求項2記載の発明は請求項1記載の二
重モード圧電フィルタを多段縦続接続したことを特徴と
する二重モード圧電フィルタである。
According to a first aspect of the present invention, there is provided a vibrating portion of an ultra-thin plate and a thick annular surrounding portion for holding the vibrating portion around the vibrating portion. In a dual-mode piezoelectric filter in which two electrodes having a width W and a length L are arranged on the upper surface of a piezoelectric substrate integrally formed with a gap g and all electrodes are attached to the back surface, When the dimension in the electrode arrangement direction is A at the center of the portion and the dimension in the vertical direction is B, A / (2W + g) is from 1.4 to 1.
8, a broadband double mode piezoelectric filter characterized by selecting B / L in the range of 1.3 to 1.7 to suppress spurious. According to a second aspect of the present invention, there is provided a double mode piezoelectric filter in which the double mode piezoelectric filter according to the first aspect is cascaded in multiple stages.

【0009】[0009]

【発明の実施の形態】以下本発明を図面に示した実施の
形態に基づいて詳細に説明する。図1(a)は本発明に
係る広帯域の超薄板MCFの一実施例を示す模式的平面
図であって、水晶基板1をフォト・エッチング手段を用
いて超薄板の振動部2とその周辺に該振動部を保持する
厚肉の環状囲繞部3を一体的に形成し、該基板の平面側
に間隙gを置いて電極4a、4bを配置し、凹陥部側全
面に電極5を蒸着等で付着する。電極4a、4bからは
周辺の厚肉端部に向けリード電極6、6が延在し、凹陥
部側は全面電極5がリード電極も兼ねている。また、図
1(b)は図1(a)のZ−Z’における断面図であ
り、平面側と電極4a、4bおよび凹陥部側と全面電極
5の構造を示している。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail based on an embodiment shown in the drawings. FIG. 1 (a) is a schematic plan view showing an embodiment of a wide band ultra-thin sheet MCF according to the present invention. A thick annular surrounding portion 3 for holding the vibrating portion is integrally formed in the periphery, the electrodes 4a and 4b are arranged with a gap g on the plane side of the substrate, and the electrode 5 is deposited on the entire surface of the concave portion. Adhere with etc. Lead electrodes 6, 6 extend from the electrodes 4a, 4b toward the peripheral thick ends, and the entire surface electrode 5 also serves as a lead electrode on the concave side. FIG. 1B is a cross-sectional view taken along the line ZZ ′ of FIG. 1A, and shows the structure of the plane side, the electrodes 4a and 4b, the concave side, and the entire surface electrode 5.

【0010】図1(a)において圧電基板1の振動部2
上に設けた2個の電極4a、4bと電極5によりZ’軸
方向(電極配置方向)に沿ってほぼ正弦波状あるいはは
余弦状の変位強度分布を有する1次モード,2次モー
ド,3次モード等の定在波が励起される。また、X軸方
向に沿ってもほぼ正弦波状あるいは余弦波状の変位強度
分布を有する1次共振モード,3次モード,5次モード
等の奇数次モードの定在波が生じる。なお、X軸方向に
偶数次モードが励起されないのはX軸方向の電極配置に
より偶数次共振モードの発生電荷が相殺されるためであ
る。超薄板MCFではこれら定在波モードの中からZ’
軸方向の変位がそれぞれ1次と2次で、X軸方向の変位
がそれぞれ1次である2個の共振モードを用いて構成し
ているため、これ以外の高次モードはインハーモニック
・モードと総称される不要モードであり、これが前記ス
プリアスS1、S2、S3等が出現する原因となってい
る。
In FIG. 1A, a vibrating part 2 of a piezoelectric substrate 1 is shown.
Primary mode, secondary mode, and tertiary mode having a substantially sinusoidal or cosine-shaped displacement intensity distribution along the Z'-axis direction (electrode arrangement direction) by the two electrodes 4a, 4b and the electrode 5 provided above. A standing wave such as a mode is excited. In addition, even in the X-axis direction, standing waves of odd-numbered modes such as a first-order resonance mode, a third-order mode, and a fifth-order mode having a substantially sinusoidal or cosine-wave displacement intensity distribution are generated. The reason that the even-order mode is not excited in the X-axis direction is that the generated charges in the even-order resonance mode are offset by the electrode arrangement in the X-axis direction. For ultra-thin MCF, Z '
Since it is configured using two resonance modes in which the displacement in the axial direction is primary and secondary, respectively, and the displacement in the X-axis direction is primary, the other higher-order modes are the inharmonic mode. These are collectively referred to as unnecessary modes, which cause the appearance of the spurs S1, S2, S3, and the like.

【0011】図5において中心周波数に最も近接したス
プリアスS1はZ’軸方向に沿って励起される3次モー
ドであって、X軸方向については1次の共振モードであ
り、スプリアスS2、S3はそれぞれZ’軸方向に沿っ
て励起される1次、2次モードであり、X軸方向ににつ
いてはいずれも3次の共振モードであると仮定してX軸
方向に沿って励起される高次インハーモニックモードに
基づくスプリアスS2、S3を抑圧するために振動部2
のX軸方向の寸法Bをパラメータとして種々実験を行っ
た。この理由はX軸方向に沿って励起される3次のイン
ハーモニックモードの変位分布は、超薄板MCFに用い
る2つの主振動(X軸方向には1次)の変位に比べX軸
方向に沿ってより外側まで変位が分布するため、主振動
には影響せず前記3次のインハーモニックモードの振動
変位分布の裾野部分のみに実質的な影響を及ぼしその共
振インピーダンスが大きくなるような振動部2の構造と
する。 言い換えると2つの主振動モードのみをエネル
ギー閉じ込めモードとし、3次インハーモニックモード
は閉じ込めモードとせずに、これらのモードの振動エネ
ルギーを周辺部へ漏洩させて該インハーモニック・モー
ドのインピーダンスを大きくするこにより、スプリアス
を抑圧する手段である。
In FIG. 5, a spurious component S1 closest to the center frequency is a tertiary mode excited along the Z'-axis direction, a primary resonance mode in the X-axis direction, and spurious components S2 and S3 are Higher-order modes excited along the X-axis direction are assumed to be primary and secondary modes excited along the Z′-axis direction, respectively, and are assumed to be tertiary resonance modes in the X-axis direction. The vibrating unit 2 for suppressing spurious S2 and S3 based on the inharmonic mode
Various experiments were performed using the dimension B in the X-axis direction as a parameter. The reason is that the displacement distribution of the third-order inharmonic mode excited along the X-axis direction is smaller in the X-axis direction than the displacement of the two main vibrations (primary in the X-axis direction) used for the ultra-thin MCF. Since the displacement is distributed further along the outer side, the vibrating portion does not affect the main vibration, substantially affects only the foot portion of the vibration displacement distribution of the third-order inharmonic mode, and has a large resonance impedance. 2 structure. In other words, only the two main vibration modes are set to the energy confinement mode, and the tertiary inharmonic mode is not set to the confinement mode, but the vibration energy of these modes is leaked to the periphery to increase the impedance of the inharmonic mode. Is a means for suppressing spurious.

【0012】図3(a)は種々の条件で行った実験の一
例の結果を示すグラフであって、Z’軸方向の基準化寸
法A/W’を一定値1.9とし、振動部2のX軸方向の
寸法BをX軸方向の電極寸法Lで基準化してB/L と
し、該B/Lを変化させたとき、スプリアスS1、S2
及び挿入損失の変化を図示したものである。X軸方向に
3次モードであるスプリアスS2はX方向の寸法の影響
を受け、B/Lを小さくするとスプリアスの減衰量が大
きくなることが分かる。図3(a)よりB/Lが1.3
〜1.7の範囲にある場合、2つの主振動は閉じ込めモ
ードとなるため挿入損失は小さくなるが、X軸方向の3
次モードは十分には閉じ込めモードとならず、振動エネ
ルギーの一部が周辺部へ漏洩する。従って、該モードの
共振インピーダンスは増大するため、スプリアスS2を
抑圧することが可能となる。尚、X軸方向の寸法を小さ
くし過ぎると、2つの主振動モードも閉じ込もらずにQ
値が劣化し、挿入損失値を大幅に増大させることにな
る。従ってB/Lは1.3以上とすることが望ましい。
FIG. 3A is a graph showing the results of an example of an experiment conducted under various conditions. The standardized dimension A / W ′ in the Z′-axis direction is set to a constant value of 1.9, and Is standardized by the electrode dimension L in the X-axis direction to be B / L, and when the B / L is changed, the spurs S1, S2
And changes in insertion loss. It can be seen that the spurious S2, which is the tertiary mode in the X-axis direction, is affected by the dimension in the X-direction, and that the smaller the B / L, the greater the spurious attenuation. FIG. 3A shows that B / L is 1.3.
In the range of ~ 1.7, the two main vibrations are in the confinement mode, so that the insertion loss is small.
The next mode does not become the confinement mode sufficiently, and a part of the vibration energy leaks to the peripheral part. Therefore, since the resonance impedance of the mode increases, the spurious S2 can be suppressed. If the dimension in the X-axis direction is too small, the two main vibration modes are not confined and Q
Values will degrade, which will significantly increase the insertion loss value. Therefore, it is desirable that B / L be 1.3 or more.

【0013】次にZ’軸方向の3次インハーモニックモ
ードによって出現するスプリアスS1は振動部2のZ’
方向の中央寸法Aを減少することにより、上記と同様の
理由に抑圧することが可能である。即ち、2つの主振動
のみをエネルギー閉じ込め状態とし、Z’軸方向に沿っ
て励起される3次のインハーモニックモードは閉じ込め
モードとせず、その振動エネルギーを周辺部へ漏洩させ
ることにより、該モードの共振インピーダンスを大きく
して、スプリアスS1を抑圧する。図3(b)は種々条
件で行ったの実験一例の結果を示すグラフであり、B/
Lを一定値1.48とした場合、振動部2のZ’軸方向
の寸法Aを電極部寸法W’=(2W+g)で基準化し
て、A/ W’とし、該A/ W’を変化させた時のスプ
リアスS1、S2及び挿入損失を図示したものである。
同図から明らかなように、A/ W’の値が1.4〜
1.8の範囲の場合、2つの主振動は十分に閉じ込めモ
ードとなるが上記スプリアスS1は前記振動部2では閉
じ込めモードとならず、振動エネルギーが周辺部へ漏洩
することになり該スプリアスS1を抑圧することが可能
となる。
Next, the spurious S1 appearing in the tertiary inharmonic mode in the Z 'axis direction is
By reducing the central dimension A in the direction, it is possible to suppress for the same reason as described above. That is, only the two main vibrations are in the energy confined state, and the third-order inharmonic mode excited along the Z′-axis direction is not the confined mode, but the vibration energy is leaked to the peripheral portion, so that The spurious S1 is suppressed by increasing the resonance impedance. FIG. 3B is a graph showing the results of an example of an experiment performed under various conditions.
When L is a constant value of 1.48, the dimension A in the Z′-axis direction of the vibrating part 2 is standardized by the electrode part dimension W ′ = (2W + g) to be A / W ′, and the A / W ′ is changed. FIG. 5 illustrates spurs S1 and S2 and insertion loss when the operation is performed.
As is clear from the figure, the value of A / W 'is 1.4 to
In the case of the range of 1.8, the two main vibrations are sufficiently in the confinement mode, but the spurious S1 is not in the confinement mode in the vibrating part 2, and the vibration energy leaks to the peripheral portion, and the spurious S1 is removed. It becomes possible to suppress.

【0014】図2は本発明に基づいて構成した中心周波
数71MHz、3dBの通過帯域幅±80kHzの超薄
板MCFの濾波特性例である。振動部2のZ’軸方向の
中央寸法をA=1.1mm、同振動部2のX軸方向の寸
法をB=0.80mmとすると、電極部対振動部の基準
化寸法はA/W’=1.61、X軸方向の電極寸法対振
動部比はB/L=1.48となり、それぞれ本発明の範
囲の値となる。電極膜厚、電極寸法は前記図5の場合の
パラメータと同一である。図2より明らかなようにf0+
400kHz〜+600kHzの周波数範囲で20d
B, f0+600kHz〜+800kHzの周波数範囲
で30dBの要望をそれぞれ満たしている。
FIG. 2 shows an example of the filtering characteristics of an ultra-thin MCF having a center frequency of 71 MHz, a 3 dB pass band width of ± 80 kHz, and constructed according to the present invention. Assuming that the center dimension of the vibrating part 2 in the Z′-axis direction is A = 1.1 mm and the dimension of the vibrating part 2 in the X-axis direction is B = 0.80 mm, the standardized dimension of the electrode part versus the vibrating part is A / W. '= 1.61, and the ratio of the electrode dimension to the vibrating portion in the X-axis direction is B / L = 1.48, which are values within the range of the present invention. The electrode film thickness and electrode dimensions are the same as the parameters in the case of FIG. As apparent from FIG. 2 f 0 +
20d in the frequency range of 400kHz to + 600kHz
B, f 0 The requirement of 30 dB is satisfied in the frequency range of +600 kHz to +800 kHz.

【0015】更に、本発明を用いて構成した超薄板MC
Fを複数個多段縦続接続することによってより急峻な減
衰特性を有する超薄板MCFが構成できることは云うま
でもない。また、本発明は水晶基板以外の圧電基板、例
えばLITaO3、LiNbO3、LBO、ランガサイ
ト等の圧電基板に適用できることは自明である。
Further, an ultra-thin sheet MC constructed using the present invention
Needless to say, an ultra-thin plate MCF having a steeper attenuation characteristic can be formed by cascade-connecting a plurality of Fs. Further, it is obvious that the present invention can be applied to a piezoelectric substrate other than a quartz substrate, for example, a piezoelectric substrate such as LITaO3, LiNbO3, LBO, and langasite.

【0016】[0016]

【発明の効果】本発明は以上説明したように構成したの
で、従来の手段では通過帯域幅0.1%以上の超薄板M
CFを製作する場合、高周波側のスプリアスを抑圧する
ことができなかったが、本発明により水晶超薄基板の振
動部寸法を適切の設定することにより、不要のインハー
モニック・モードの共振インピーダンスを増大させるこ
とにより、通過域近傍の高次インハーモニックモードに
よるスプリアスを抑圧することが可能であり、従来方式
の超薄板MCFに較べ5〜10dB以上改善した超薄板
MCFを実現することができ、携帯無線機に利用する上
で著しい効果を発揮する。
As described above, the present invention is constructed as described above, so that the conventional means can reduce the thickness of the ultrathin plate M having a pass band width of 0.1% or more.
When manufacturing CF, spurious on the high frequency side could not be suppressed. However, by appropriately setting the vibration part dimensions of the ultra-thin quartz substrate according to the present invention, the resonance impedance of unnecessary inharmonic mode was increased. By doing so, it is possible to suppress spurious due to higher-order inharmonic modes near the passband, and to realize an ultra-thin sheet MCF improved by 5 to 10 dB or more compared to the conventional ultra-thin sheet MCF, It has a remarkable effect when used in portable radios.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(a)は本発明の一実施例を示す超薄板MCF
の圧電基板と電極の構成を示す模式図、(b)は図
(a)のC−C’における断面図である。
FIG. 1 (a) is an ultra-thin MCF showing one embodiment of the present invention.
FIG. 2B is a schematic view showing the configuration of the piezoelectric substrate and the electrodes, and FIG. 2B is a cross-sectional view taken along the line CC ′ in FIG.

【図2】本発明に係る一実施例の濾波特性である。FIG. 2 shows a filtering characteristic of an embodiment according to the present invention.

【図3】(a)はX軸方向の寸法をパラメータとした場
合のスプリアスS1、S2及び挿入損失の減衰量を示す
図、(b)はZ’軸方向の寸法をパラメータとした場合
のスプリアスS1、S2及び挿入損失の減衰量を示す図
である。
3A is a diagram showing spurious emissions S1 and S2 when the dimension in the X-axis direction is used as a parameter and the amount of attenuation of insertion loss. FIG. 3B is a diagram showing spurious noise when the dimension in the Z′-axis direction is used as a parameter. It is a figure which shows S1, S2, and the attenuation of insertion loss.

【図4】(a)は従来の超薄板MCFの平面図、(b)
は同(a)のC−C’における断面図である。
FIG. 4A is a plan view of a conventional ultra-thin sheet MCF, and FIG.
FIG. 4 is a cross-sectional view taken along the line CC ′ in FIG.

【図5】従来の超薄板MCFの濾波特性図である。FIG. 5 is a diagram showing the filtering characteristics of a conventional ultra-thin plate MCF.

【符号の説明】[Explanation of symbols]

1・・圧電基板 2・・振動部 3・・環状囲繞部 4a、4b・・電極 5・・全面電極 6・・リード電極 7・・ボンディングパット用電極 A1、A2、B・・振動部寸法 W・・電極幅 L・・電極長さ g・・間隙 Z、Z’・・切断線 1. Piezoelectric substrate 2. Vibrating part 3. Annular surrounding part 4a, 4b. Electrode 5. Full-surface electrode 6. Lead electrode 7. Electrode for bonding pad A1, A2, B. Vibrating part dimensions W ..Electrode width L..Electrode length g..Gap Z, Z '.. Cutting line

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 超薄板の振動部とその周辺部に該振動部
を保持する厚肉の環状囲繞部を一体的に形成した圧電基
板の上面に幅W、長さLの2個の電極を間隙gをおいて
配置し、裏面に全面電極を付着して構成した二重モード
圧電フィルタにおいて、前記振動部の中央で電極配置方
向の寸法をA、それと垂直方向の寸法をBとした場合、
A/(2W+g)を1.4から1.8、B/Lを1.3
から1.7の範囲に選び、スプリアスを抑圧したことを
特徴とする広帯域二重モード圧電フィルタ。
1. An electrode having a width W and a length L on an upper surface of a piezoelectric substrate integrally formed with a vibrating portion of an ultra-thin plate and a thick annular surrounding portion for holding the vibrating portion around the vibrating portion. Are arranged with a gap g, and the entire surface of the electrode is attached to the back surface. In a dual mode piezoelectric filter, the dimension in the electrode arrangement direction at the center of the vibrating portion is A, and the dimension in the vertical direction is B. ,
A / (2W + g) is 1.4 to 1.8, and B / L is 1.3.
A broadband dual-mode piezoelectric filter selected from the range of 1.7 to 1.7 to suppress spurious.
【請求項2】 請求項1記載の二重モード圧電フィルタ
を多段縦続接続したことを特徴とする広帯域二重モード
圧電フィルタ。
2. A wide-band double-mode piezoelectric filter comprising the double-mode piezoelectric filter according to claim 1 connected in multiple stages.
JP33758596A 1996-12-02 1996-12-02 Wide band dual mode piezoelectric filter Pending JPH10163804A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33758596A JPH10163804A (en) 1996-12-02 1996-12-02 Wide band dual mode piezoelectric filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33758596A JPH10163804A (en) 1996-12-02 1996-12-02 Wide band dual mode piezoelectric filter

Publications (1)

Publication Number Publication Date
JPH10163804A true JPH10163804A (en) 1998-06-19

Family

ID=18310041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33758596A Pending JPH10163804A (en) 1996-12-02 1996-12-02 Wide band dual mode piezoelectric filter

Country Status (1)

Country Link
JP (1) JPH10163804A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7408429B2 (en) 2005-06-17 2008-08-05 Matsushita Electric Industrial Co., Ltd. Coupled FBAR filter
US7719390B2 (en) 2007-01-25 2010-05-18 Panasonic Corporation Dual mode piezoelectric filter, method of manufacturing the same, high frequency circuit component and communication device using the same
CN111557076A (en) * 2018-02-02 2020-08-18 株式会社大真空 Piezoelectric filter

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7408429B2 (en) 2005-06-17 2008-08-05 Matsushita Electric Industrial Co., Ltd. Coupled FBAR filter
US7719390B2 (en) 2007-01-25 2010-05-18 Panasonic Corporation Dual mode piezoelectric filter, method of manufacturing the same, high frequency circuit component and communication device using the same
CN111557076A (en) * 2018-02-02 2020-08-18 株式会社大真空 Piezoelectric filter
CN111557076B (en) * 2018-02-02 2024-04-16 株式会社大真空 Piezoelectric filter

Similar Documents

Publication Publication Date Title
CN111010138A (en) High Q bulk acoustic wave resonator
TWI222784B (en) Surface acoustic wave filter
EP2091146B1 (en) Surface acoustic wave resonator
US4894577A (en) Piezoelectric vibrator wherein the relative vibration level of unnecessary vibrations is damped, and method of damping the relative vibration level of unnecessary vibrations of the piezoelectric vibrator
JP2003273707A (en) Surface acoustic wave device and communication equipment loaded with the device
US6492759B1 (en) Piezoelectric resonator and a filter
KR100371857B1 (en) Surface acoustic wave filter, duplexer and communication apparatus
JP2000059176A (en) Surface acoustic wave element
JPH10163804A (en) Wide band dual mode piezoelectric filter
JP2004007094A (en) Surface acoustic wave device
JPH05335881A (en) Longitudinal dual mode surface acoustic wave filter
US7719390B2 (en) Dual mode piezoelectric filter, method of manufacturing the same, high frequency circuit component and communication device using the same
JP2000040938A (en) Ultra high frequency piezoelectric device
KR100496405B1 (en) Piezoelectric vibrator and filter using the same
JP3107392B2 (en) Vertically coupled dual mode leaky SAW filter
JP2009188599A (en) Multiple mode piezoelectric filter, and frequency adjustment method thereof
JPH07154200A (en) Resonator surface acoustic wave filter
JP2001326554A (en) Piezoelectric vibrator
JP3835872B2 (en) Surface acoustic wave resonator
JP3331733B2 (en) Surface acoustic wave resonator filter
JP3912102B2 (en) Crystal filter
JPH09116372A (en) Surface acoustic wave device
JP2001339272A (en) Piezoelectric resonator
JP2002198776A (en) Dual mode piezoelectric filter
JPH088690A (en) Surface acoustic wave filter