JPH10163513A - Solar battery - Google Patents

Solar battery

Info

Publication number
JPH10163513A
JPH10163513A JP8332828A JP33282896A JPH10163513A JP H10163513 A JPH10163513 A JP H10163513A JP 8332828 A JP8332828 A JP 8332828A JP 33282896 A JP33282896 A JP 33282896A JP H10163513 A JPH10163513 A JP H10163513A
Authority
JP
Japan
Prior art keywords
plane
solar cell
light
incident
etching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8332828A
Other languages
Japanese (ja)
Inventor
Takeshi Yamada
武 山田
Takashi Nishioka
孝 西岡
Goji Kawakami
剛司 川上
Takumi Yamada
巧 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP8332828A priority Critical patent/JPH10163513A/en
Publication of JPH10163513A publication Critical patent/JPH10163513A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To make light once made incident to a solar battery difficult to come out of the battery by constituting the texture structure of the battery so that its main surface can be formed of a specific orientation plane and at least part of the main surface can be formed of another specific orientation plane. SOLUTION: This so-called texture structure composed of (100)-plane is formed by using (111)-plane as a main surface. Therefore, the textural structure is formed in a three-fold rotational symmetry. Since the textural structure is constituted in three-fold rotation symmetry, no plane corresponding to the incidence (100)-plane exists or, even if it exists, the plane only has a very small area. Namely, etching is performed from the position '9' by using a (111)-Si substrate. An etchant containing, for example, 63.3wt.% H2 O, 23.4wt.% KOH, and 13.3wt.% isopropanol is used as the etchant for the etching. Therefore, no surface which faced the incident surface of incident light 4 does not exist, and the light which is once made incident to a solar battery does not emerge from the battery. According to this etchant, the (100)-plane can be selectively exposed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はシリコンよりなる太
陽電池に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solar cell made of silicon.

【0002】[0002]

【従来の技術】近年のエネルギー需要の増加と石油や石
炭などの化石エネルギーの埋蔵量の減少により、従来十
分に活用されていなかった太陽光エネルギーを有効利用
する太陽電池の重要性が増している。なかでも原料が豊
富で毒性物質を含有しないシリコンを用いた太陽電池は
重要である。シリコンを原料に用いた太陽電池におい
て、その高効率化の手段の一つとして基板表面をテクス
チャ化する方法がある。例えば第13回ヨーロピアンフ
ォトボルタイックソーラエネルギコンファレンス(13th
Europian Photovoltaic Solar Energy Conference:199
5 年)13頁にあるがごとく、(100)面を主面と
し、(111)面からなる逆ピラミッド構造の凹部いわ
ゆるテクスチャ構造を形成し、(111)面から入射し
た光の太陽電池内の通過距離を長くする構造としてい
た。これを図5を用いて説明する。1はシリコン太陽電
池、2は逆ピラミッドを構造する(111)面、3は略
(100)面である基板裏面、4は入射光、5は出射光
である。入射光4は(111)面より入射する際に屈折
し、太陽電池内を通過する距離が伸びる。また、入射光
の一部は(111)面で反射されるが、その反射光は対
向する(111)面に再度入射する部分があり、入射方
向に反射される光量は減少、即ち太陽電池1に入射する
部分が増加する。
2. Description of the Related Art With the recent increase in energy demand and the decrease in reserves of fossil energy such as oil and coal, the importance of solar cells that effectively utilize solar energy, which has not been fully utilized in the past, has been increasing. . Among them, solar cells using silicon, which is rich in raw materials and does not contain toxic substances, are important. In a solar cell using silicon as a raw material, there is a method of texturing a substrate surface as one of means for increasing the efficiency. For example, the 13th European Photovoltaic Solar Energy Conference (13th
Europian Photovoltaic Solar Energy Conference: 199
(5 years) As shown on page 13, the (100) plane is the main surface, a concave part of an inverted pyramid structure composed of the (111) plane, a so-called texture structure is formed, and light incident from the (111) plane is generated in the solar cell. It was designed to extend the passing distance. This will be described with reference to FIG. 1 is a silicon solar cell, 2 is a (111) surface forming an inverted pyramid, 3 is a back surface of the substrate which is a substantially (100) surface, 4 is incident light, and 5 is outgoing light. The incident light 4 is refracted when entering from the (111) plane, and the distance passing through the solar cell is extended. In addition, although a part of the incident light is reflected by the (111) plane, there is a portion where the reflected light is incident again on the opposing (111) plane, and the amount of light reflected in the incident direction decreases, that is, the solar cell 1 The part which is incident on the surface increases.

【0003】[0003]

【発明が解決しようとする課題】しかし、図5の構造で
は光の太陽電池内への閉じこめは不十分である。これを
図6を用いて説明する。6a,6bは基板からの反射
光、7は逆ピラミッド構造の谷、8は逆ピラミッド構造
の峰である。例えば入射光4は図5に示すように太陽電
池内で逆ピラミッド部に裏面より反射されてくる。図6
において、その光束が6aであるならばピラミッド部で
再度反射し、太陽電池1内にとどまることができる。し
かし、6bであるならば、図5の出射光5と等価の配置
であり太陽電池1外に出てしまう。反射光を6aとする
ためには基板の厚さと屈折率より逆ピラミッドのピッチ
を計算し所定の配置とする必要があり、厚さを精密に制
御する必要があり、再現性を維持することは困難であっ
た。
However, in the structure shown in FIG. 5, the light is not sufficiently confined in the solar cell. This will be described with reference to FIG. 6a and 6b are reflected light from the substrate, 7 is a valley of the inverted pyramid structure, and 8 is a peak of the inverted pyramid structure. For example, the incident light 4 is reflected from the back surface to the inverted pyramid portion in the solar cell as shown in FIG. FIG.
In this case, if the luminous flux is 6a, the light is reflected again by the pyramid portion and can remain in the solar cell 1. However, if it is 6b, the arrangement is equivalent to the outgoing light 5 in FIG. In order to make the reflected light 6a, it is necessary to calculate the pitch of the inverted pyramid based on the thickness and the refractive index of the substrate and to arrange the inverted pyramid in a predetermined arrangement, it is necessary to precisely control the thickness, and to maintain reproducibility It was difficult.

【0004】[0004]

【課題を解決するための手段】上記の目的を達成するた
め本発明はシリコンを主成分とする太陽電池において、
略(111)面を主面とし、該主面の少なくとも一部が
(100)面により形成されたことを特徴とする太陽電
池を発明の特徴とするものである。換言すれば本発明に
おいてはシリコン太陽電池中に入射した光が太陽電池の
外に出射しないようにするために次の方法をとってい
る。すなわち、シリコンを主成分とする太陽電池におい
て、略(111)面を主面とし、その主面の少なくとも
一部が(100)面により形成されたテクスチャ構造と
している。更にその(100)面により形成された凹部
が三角形をなすように配置されている。もしくは、その
(100)面により形成された凹部が四角形をなすよう
に配置されている。もしくは、その(100)面により
形成された凹部が六角形をなすように配置されている。
To achieve the above object, the present invention relates to a solar cell containing silicon as a main component.
A feature of the present invention is a solar cell characterized in that a substantially (111) plane is a main surface and at least a part of the main surface is formed by a (100) plane. In other words, in the present invention, the following method is employed in order to prevent light incident on the silicon solar cell from exiting the solar cell. That is, the solar cell mainly composed of silicon has a texture structure in which a substantially (111) plane is a main surface and at least a part of the main surface is formed by a (100) plane. Further, the recess formed by the (100) plane is arranged so as to form a triangle. Alternatively, the recess formed by the (100) plane is arranged so as to form a square. Alternatively, the recess formed by the (100) plane is arranged so as to form a hexagon.

【0005】[0005]

【発明の実施の形態】本発明においては略(111)面
を主面として、(100)面によりいわゆるテクスチャ
構造を形成している。そのため、テクスチャ構造は3回
回転対称となっている。従来例のように、略(100)
面に(111)面よりなるテクスチャ構造を形成した場
合は4回回転対称であり、必ず、光が入射した(11
1)面に対応する光学的に等価な面が存在し、ここから
太陽電池外に光が出射できる。しかるに、本発明の構造
においては、3回回転対称であるため、入射した(10
0)面に対応した面が存在せず、もしくは存在したとし
ても従来例の数分の一の面積しか存在しない。そのた
め、いったん太陽電池内に入射した光は太陽電池外に出
ることが無く、太陽電池の効率を大きくすることができ
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In the present invention, a so-called texture structure is formed by a (100) plane with a substantially (111) plane as a main plane. Therefore, the texture structure is three-fold rotationally symmetric. As in the conventional example, approximately (100)
In the case where the texture structure composed of the (111) plane is formed on the plane, the plane is rotationally symmetric four times, and the light always enters (11).
1) There is an optically equivalent surface corresponding to the surface, from which light can be emitted out of the solar cell. However, in the structure of the present invention, the incident light (10
0) There is no surface corresponding to the surface, or even if there is, there is only a fraction of the area of the conventional example. Therefore, the light once entering the solar cell does not go out of the solar cell, and the efficiency of the solar cell can be increased.

【0006】[0006]

【実施例】以下で説明する図1から図4の構造は次の手
順で作製している。シリコン基板上にSiO2 を堆積さ
せる。ここでは約200nmの厚さでスパッタにより堆
積した。次に3ミクロンの径のパターンが10ミクロン
の間隔で並んだマスクを用意し、通常のフォトリソグラ
フにより3ミクロンの穴をレジストに開けた。これをマ
スクとしてバッファードふっ酸を用いてSiO2 に穴を
開けた。この穴からエッチングを開始し、以下ではエッ
チングの開始点と呼ぶことにする。穴の径および穴の間
隔は一例であり、これに限定したものではない。穴の間
隔20ミクロンでも同様な結果が得られている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The structure shown in FIGS. 1 to 4 described below is manufactured by the following procedure. SiO 2 is deposited on a silicon substrate. Here, it was deposited by sputtering with a thickness of about 200 nm. Next, a mask in which patterns having a diameter of 3 μm were arranged at intervals of 10 μm was prepared, and a hole of 3 μm was formed in the resist by ordinary photolithography. Using this as a mask, holes were made in SiO 2 using buffered hydrofluoric acid. Etching is started from this hole and will be referred to as an etching start point below. The diameter of the holes and the interval between the holes are examples, and are not limited thereto. Similar results have been obtained with a hole spacing of 20 microns.

【0007】図7の写真は本発明により作製した太陽電
池の一実施例を光入射面からみたものである。表面が粗
であるシリコン略(111)面基板をエッチングしたも
のである。(100)面により形成された3回回転対称
の三角形の凸部が得られた。一方、平滑な略(111)
面の裏面は平滑なままであった。
FIG. 7 is a photograph of an embodiment of a solar cell manufactured according to the present invention as viewed from the light incident surface. This is obtained by etching a silicon (111) plane substrate having a rough surface. A three-fold rotationally symmetric triangular projection formed by the (100) plane was obtained. On the other hand, smooth (111)
The back side of the surface remained smooth.

【0008】図1は本発明により作製した太陽電池の一
実施例を光入射面から見た図である。9は本実施例を作
製するに当たりエッチングを行った。エッチングの開始
点であり三角形に配置されている。図1には結晶方位と
エッチングの開始点との位置関係も示してある。Si
(111)基板を用い図1の9の位置からエッチングを
行った。エッチング液としては63.3重量%H2 O、
23.4重量%KOH、13.3重量%イソプロパノー
ルを用い、図のような構造が得られた。入射光4の入射
面に対向する面は無く、いったん太陽電池内に入射した
光が太陽電池外に出ることはない。上記エッチング液に
よれば、(100)面を選択的に出現させる事が可能で
ある。これは、超LSIプロセスデータハンドブック4
51頁:発行所サイエンスフォーラム(発行日昭和57
年4月15日)に開示されており、周知事項である。
FIG. 1 is a view of one embodiment of a solar cell manufactured according to the present invention as viewed from a light incident surface. No. 9 was etched when producing this example. It is the starting point of the etching and is arranged in a triangle. FIG. 1 also shows the positional relationship between the crystal orientation and the starting point of the etching. Si
Using a (111) substrate, etching was performed from the position 9 in FIG. 63.3% by weight of H 2 O as an etching solution;
Using 23.4 wt% KOH and 13.3 wt% isopropanol, the structure shown in the figure was obtained. There is no surface facing the incident surface of the incident light 4, and light once entering the solar cell does not go out of the solar cell. According to the above-mentioned etching solution, it is possible to make the (100) plane appear selectively. This is VLSI Process Data Handbook 4
Page 51: Science Forum (Issue 57)
This is a well-known matter.

【0009】図2は本発明により作製した太陽電池の一
実施例を光入射面から見た図である。9は本実施例を作
製するに当たりエッチングを行った、エッチングの開始
点であり三角形に配置されている。図2には結晶方位と
エッチングの開始点との位置関係も示してある。Si
(111)基板を用い図2の9の位置からエッチングを
を行った。エッチング液としては63.3重量%H
2 O、23.4重量%KOH、13.3重量%イソプロ
パノールを用い、図のような構造が得られた。入射光4
の入射面に対向する面は存在し、出射光5が存在する
が、この面の全体に対する面積の割合は従来例に比べ小
さく、いったん太陽電池内に入射した光が太陽電池外に
出る割合は小さい。
FIG. 2 is a diagram showing one embodiment of a solar cell manufactured according to the present invention as viewed from a light incident surface. Reference numeral 9 denotes a starting point of the etching, which is performed in producing the present embodiment, and is arranged in a triangle. FIG. 2 also shows the positional relationship between the crystal orientation and the etching start point. Si
Using the (111) substrate, etching was performed from the position 9 in FIG. 63.3% by weight H as an etchant
Using 2 O, 23.4% by weight KOH and 13.3% by weight isopropanol, the structure shown in the figure was obtained. Incident light 4
There is a surface opposite to the incident surface of, and the outgoing light 5 exists, but the ratio of the area to the entire surface is smaller than that of the conventional example, and the ratio of the light once entering the solar cell to exit the solar cell is small.

【0010】図3は本発明により作製した太陽電池の一
実施例を光入射面から見た図である。図において7は
谷、8は峰、9は本実施例を作製するに当たりエッチン
グを行った。エッチングの開始点であり四角形に配置さ
れている。図3には結晶方位とエッチングの開始点との
位置関係も示してある。Si(111)基板を用い図3
の9の位置からエッチングを行った。エッチング液とし
ては63.3重量%H2O、23.4重量%KOH、1
3.3重量%イソプロパノールを用い、図のような構造
が得られた。入射光4の入射面に対向する面は無く、い
ったん太陽電池内に入射した光が太陽電池外に出ること
はない。
FIG. 3 is a diagram showing one embodiment of a solar cell manufactured according to the present invention as viewed from a light incident surface. In the figure, 7 is a valley, 8 is a peak, and 9 is an etching for producing this embodiment. It is the starting point of the etching and is arranged in a square. FIG. 3 also shows the positional relationship between the crystal orientation and the starting point of the etching. Figure 3 using Si (111) substrate
Etching was performed from the position of No. 9. As an etching solution, 63.3% by weight of H 2 O, 23.4% by weight of KOH,
Using 3.3% by weight isopropanol, a structure as shown in the figure was obtained. There is no surface facing the incident surface of the incident light 4, and light once entering the solar cell does not go out of the solar cell.

【0011】図4は本発明により作製した太陽電池の一
実施例を光入射面から見た図である。図において4は入
射光、7は谷、8は峰を示す。9は本実施例を作製する
に当たりエッチングを行った。エッチングの開始点であ
り六角形に配置されている。図4には結晶方位とエッチ
ングの開始点との位置関係も示してある。Si(11
1)基板を用い図4の9の位置からエッチングを行っ
た。エッチング液としては63.3重量%H2 O、2
3.4重量%KOH、13.3重量%イソプロパノール
を用い、エッチングのある段階で止めることにより図の
ような構造が得られた。一部(111)面が残っている
が、入射光4の入射面に対向する面は無い。
FIG. 4 is a view of one embodiment of a solar cell manufactured according to the present invention as viewed from a light incident surface. In the figure, 4 indicates incident light, 7 indicates a valley, and 8 indicates a peak. No. 9 was etched when producing this example. It is the starting point of the etching and is arranged in a hexagon. FIG. 4 also shows the positional relationship between the crystal orientation and the starting point of the etching. Si (11
1) Using a substrate, etching was performed from the position 9 in FIG. As an etching solution, 63.3% by weight of H 2 O, 2
The structure as shown in the figure was obtained by using 3.4 wt% KOH and 13.3 wt% isopropanol and stopping at a certain stage of the etching. Although a part (111) surface remains, there is no surface facing the incident surface of the incident light 4.

【0012】[0012]

【発明の効果】以上説明したように、本発明の構造の太
陽電池を用いれば、より多くの光を太陽電池内に入射さ
せることができ、いったん入射した光が外部に出にくい
構造であるので太陽電池効率の増大が可能である。
As described above, if the solar cell having the structure of the present invention is used, more light can be made to enter the inside of the solar cell, and the light once incident is hard to be emitted to the outside. Solar cell efficiency can be increased.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による太陽電池の実施例を示す。FIG. 1 shows an embodiment of a solar cell according to the present invention.

【図2】本発明による太陽電池の実施例を示す。FIG. 2 shows an embodiment of a solar cell according to the present invention.

【図3】本発明による太陽電池の実施例を示す。FIG. 3 shows an embodiment of a solar cell according to the present invention.

【図4】本発明による太陽電池の実施例を示す。FIG. 4 shows an embodiment of a solar cell according to the present invention.

【図5】本発明による太陽電池の従来例を示す。FIG. 5 shows a conventional example of a solar cell according to the present invention.

【図6】光束の反射の状態を示す。FIG. 6 shows a state of reflection of a light beam.

【図7】本発明により作製した太陽電池の一実施例を光
入射面からみたものを示す。
FIG. 7 shows an embodiment of a solar cell manufactured according to the present invention as viewed from a light incident surface.

【符号の説明】[Explanation of symbols]

1 シリコン太陽電池 2 (111)面 3 基板裏面 4 入射光 5 出射光 6a,6b 反射光 7 谷 8 峰 9 エッチングの開始点 DESCRIPTION OF SYMBOLS 1 Silicon solar cell 2 (111) surface 3 Substrate back surface 4 Incident light 5 Outgoing light 6a, 6b Reflected light 7 Valley 8 Peak 9 Etching start point

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山田 巧 東京都新宿区西新宿三丁目19番2号 日本 電信電話株式会社内 ──────────────────────────────────────────────────の Continued on the front page (72) Inventor Takumi Yamada 3-19-2 Nishi-Shinjuku, Shinjuku-ku, Tokyo Nippon Telegraph and Telephone Corporation

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 シリコンを主成分とする太陽電池におい
て、略(111)面を主面とし、該主面の少なくとも一
部が(100)面により形成されたことを特徴とする太
陽電池。
1. A solar cell comprising silicon as a main component, wherein the (111) plane is a principal plane, and at least a part of the principal plane is formed by a (100) plane.
【請求項2】 特許請求の範囲第一項において、(10
0)面により形成された凹部が三角形をなすように配置
されたことを特徴とする太陽電池。
2. The method according to claim 1, wherein (10)
0) A solar cell, wherein the concave portions formed by the plane are arranged so as to form a triangle.
【請求項3】 特許請求の範囲第一項において、(10
0)面により形成された凹部が四角形をなすように配置
されたことを特徴とする太陽電池。
3. The method according to claim 1, wherein (10)
0) A solar cell, wherein the concave portion formed by the plane is arranged so as to form a square.
【請求項4】 特許請求の範囲第一項において、(10
0)面により形成された凹部が六角形をなすように配置
されたことを特徴とする太陽電池。
4. The method according to claim 1, wherein (10)
0) A solar cell, wherein the recess formed by the plane is arranged so as to form a hexagon.
JP8332828A 1996-11-27 1996-11-27 Solar battery Pending JPH10163513A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8332828A JPH10163513A (en) 1996-11-27 1996-11-27 Solar battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8332828A JPH10163513A (en) 1996-11-27 1996-11-27 Solar battery

Publications (1)

Publication Number Publication Date
JPH10163513A true JPH10163513A (en) 1998-06-19

Family

ID=18259262

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8332828A Pending JPH10163513A (en) 1996-11-27 1996-11-27 Solar battery

Country Status (1)

Country Link
JP (1) JPH10163513A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009112406A1 (en) * 2008-03-10 2009-09-17 Photon B.V. Light trapping photovoltaic device
US8283560B2 (en) 2007-11-05 2012-10-09 SolarExcel B.V. Photovoltaic device
WO2013088671A1 (en) * 2011-12-15 2013-06-20 パナソニック株式会社 Silicon substrate having textured surface, and method for manufacturing same
JP2013219164A (en) * 2012-04-09 2013-10-24 Panasonic Corp Silicon substrate with texture formation surface and manufacturing method therefor
JP2014192370A (en) * 2013-03-27 2014-10-06 Kaneka Corp Crystal silicon solar cell, process of manufacturing the same, and solar cell module
US11400430B2 (en) 2012-05-22 2022-08-02 Covestro (Netherlands) B.V. Hybrid organic-inorganic nano-particles

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8283560B2 (en) 2007-11-05 2012-10-09 SolarExcel B.V. Photovoltaic device
WO2009112406A1 (en) * 2008-03-10 2009-09-17 Photon B.V. Light trapping photovoltaic device
JP2011514003A (en) * 2008-03-10 2011-04-28 フォトン ベスローテン フェノーツハップ Photovoltaic device and method for producing photovoltaic device
US8080730B2 (en) 2008-03-10 2011-12-20 SolarExcel B.V. Photovoltaic device
WO2013088671A1 (en) * 2011-12-15 2013-06-20 パナソニック株式会社 Silicon substrate having textured surface, and method for manufacturing same
JP5281217B1 (en) * 2011-12-15 2013-09-04 パナソニック株式会社 Method for manufacturing a silicon substrate having a textured surface
JP2013219164A (en) * 2012-04-09 2013-10-24 Panasonic Corp Silicon substrate with texture formation surface and manufacturing method therefor
US11400430B2 (en) 2012-05-22 2022-08-02 Covestro (Netherlands) B.V. Hybrid organic-inorganic nano-particles
JP2014192370A (en) * 2013-03-27 2014-10-06 Kaneka Corp Crystal silicon solar cell, process of manufacturing the same, and solar cell module

Similar Documents

Publication Publication Date Title
US5024953A (en) Method for producing opto-electric transducing element
US5135605A (en) Methods for making mirrors
JP2004505434A (en) Micro light-emitting diode array with improved light extraction
JPH02237172A (en) Multilayer structure solar cell
JPH06244444A (en) Light confining structure and photodetector using structure thereof
KR100471383B1 (en) Spot size converter, Method for manufacturing the same and spot size converter intergrated photodetector
EP0102204A1 (en) An optically enhanced photovoltaic device
US20030029496A1 (en) Back reflector of solar cells
JP2002164556A (en) Back electrode type solar battery element
JPH10163513A (en) Solar battery
US20040195641A1 (en) Semiconductor chip for optoelectronics
DE19638999B4 (en) Waveguide photodetector combination and method of making the same
CN108258093A (en) A kind of LED chip for improving external quantum efficiency and preparation method thereof
KR101561455B1 (en) Producing method of solar cell
JP3079870B2 (en) Method of forming inverted pyramid texture
JP5220237B2 (en) Substrate roughening method
KR102509612B1 (en) Transparent semiconductor substrate for improving double-sided light transmittance and manufacturing method thereof
JP2997538B2 (en) Polycrystalline silicon solar cell element
US6064782A (en) Edge receptive photodetector devices
CN111584692B (en) Large-luminous-angle flip Mini-LED chip and preparation method thereof
JP2003124504A (en) Semiconductor light emitting device and method for manufacturing semiconductor light emitting device
JPH11307803A (en) Converging apparatus
JPS6244865B2 (en)
JPH05315629A (en) Manufacture of solar cell
JP2002169010A (en) Diffraction optical element