JPH10163118A - Apparatus and method for chemical vapor deposition of compd. semiconductor - Google Patents

Apparatus and method for chemical vapor deposition of compd. semiconductor

Info

Publication number
JPH10163118A
JPH10163118A JP32395096A JP32395096A JPH10163118A JP H10163118 A JPH10163118 A JP H10163118A JP 32395096 A JP32395096 A JP 32395096A JP 32395096 A JP32395096 A JP 32395096A JP H10163118 A JPH10163118 A JP H10163118A
Authority
JP
Japan
Prior art keywords
liquid
bubbler
liquid source
raw material
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32395096A
Other languages
Japanese (ja)
Inventor
Keiichi Matsushita
景一 松下
Keitaro Shigenaka
圭太郎 重中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP32395096A priority Critical patent/JPH10163118A/en
Publication of JPH10163118A publication Critical patent/JPH10163118A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce the variation of the mixed crystal compsn. ratio, by mounting liq. material vessels through drain pipings on the top of a liq. material bubbler for bubbling a carrier gas by means of a gas feed piping and controlling the temps. of these vessels using heaters. SOLUTION: A liq. material vessel 2 is mounted through a gas discharge pipe 12 on the top of a liq. material bubbler 1 for bubbling a carrier gas by means of a gas feed pipe 9 in Hg 7 to be a liq. raw material fed in the bubbler 1, until the carrier gas is saturated with the vapor of Hg 7, and it is fed from the gas discharge pipe 12 while the bubbler 1 is heated at 230 deg.C by a heater 3. Liq. material vessel 2 is heated at 200 deg.C by heaters 4 to separately control their temps., whereby the feed rate of Hg 7 is always const., resulting in a few compsn. variation in the thickness direction of a grown layer.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、三元以上の化合物
半導体結晶の気相成長装置および気相成長方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus and a method for vapor growth of ternary or more compound semiconductor crystals.

【0002】[0002]

【従来の技術】水銀カドミウムテルル(Hg1-X CdX
Te)は、カドミウムテルルと水銀テルルとの混晶であ
り、その混晶組成比Xを変化させることによりエネルギ
ーギャップを変えることが可能である。水銀カドミウム
テルルの組成は、わずかにずれてもエネルギーギャップ
が変化する。このため、水銀カドミウムテルル結晶を光
検出部として構成した複合型赤外線検出装置において
は、組成のずれは応答波長に影響するため、組成の正確
な制御が要求される。従って、気相成長法により基板上
に水銀カドミウムテルルを形成するには、それぞれの原
料の供給量の正確な制御が必要となる。
2. Description of the Related Art Mercury cadmium telluride (Hg 1-X Cd X
Te) is a mixed crystal of cadmium tellurium and mercury tellurium, and the energy gap can be changed by changing the composition ratio X of the mixed crystal. Even if the composition of mercury cadmium tellurium is slightly shifted, the energy gap changes. For this reason, in a composite type infrared detector in which a mercury cadmium tellurium crystal is configured as a photodetector, accurate control of the composition is required because the composition shift affects the response wavelength. Therefore, in order to form mercury cadmium tellurium on a substrate by the vapor phase growth method, it is necessary to precisely control the supply amounts of the respective raw materials.

【0003】このような正確な組成制御が望まれる半導
体気相エピタキシャル成長装置において、原料を安定し
て供給するためには、原料、特に液体原料の温度を一定
にすることが必要である。
In a semiconductor vapor phase epitaxial growth apparatus in which such precise composition control is desired, it is necessary to keep the temperature of the raw material, especially the liquid raw material constant, in order to stably supply the raw material.

【0004】一例として、MOCVD(Metalor
ganic Chemical Vapor Depo
sition)法による水銀カドミウムテルルの成長に
おいて、液体原料である水銀を供給する装置および方法
を図4に示す。
As an example, MOCVD (Metalor)
ganic Chemical Vapor Depo
FIG. 4 shows an apparatus and a method for supplying mercury, which is a liquid raw material, in the growth of mercury cadmium tellurium by the position method.

【0005】水銀カドミウムテルルは、カドミウムおよ
びテルルの原料としてジメチルカドミウム、ジイソプロ
ピルテルルなどの有機金属原料を使用し、水銀の原料と
しては金属水銀を使用する。
[0005] Mercury cadmium tellurium uses organic metal materials such as dimethyl cadmium and diisopropyl tellurium as raw materials for cadmium and tellurium, and metal mercury as a raw material for mercury.

【0006】図4は従来の水銀供給装置の概略断面図で
ある。1は液体原料用バブラであり、ガス導入管9とガ
ス排出管12を備え、バブラ1中に入れた水銀7中をガ
ス導入管9からキャリアガス例えば水素をバブリング
し、キャリアガスを水銀7の蒸気で飽和させガス排出管
12から次の配管系に送る。金属水銀は常温では蒸気圧
が非常に低いため、加熱用ヒータ3で約200℃に加熱
保温する。水銀蒸気で飽和したキャリアガスは反応管内
で他の原料と混合し、加熱されたエピタキシャル成長用
基板上で熱分解して水銀カドミウムテルル結晶が形成さ
れる。
FIG. 4 is a schematic sectional view of a conventional mercury supply device. Reference numeral 1 denotes a bubbler for a liquid raw material, which is provided with a gas introduction pipe 9 and a gas discharge pipe 12, and bubbling a carrier gas, for example, hydrogen from the gas introduction pipe 9 in the mercury 7 put in the bubbler 1, and It is saturated with steam and sent from the gas discharge pipe 12 to the next piping system. Since metallic mercury has a very low vapor pressure at room temperature, the heater 3 is heated and kept at about 200 ° C. by the heater 3. The carrier gas saturated with the mercury vapor is mixed with other raw materials in the reaction tube and thermally decomposed on the heated substrate for epitaxial growth to form mercury cadmium tellurium crystal.

【0007】[0007]

【発明が解決しようとする課題】このように水銀用バブ
ラは約200℃に加熱保温する必要がある。これには容
器全体をオイルなどの保温液に入れて温度を均一にする
方法があるが、高温に加熱された保温液がこぼれた場合
に危険である。一方、ヒータなどで直接加熱する場合に
は容器全体の温度を均一に保つことは困難であり、容器
内部に温度差が生じる。そのため水銀残量の減少により
水銀の液面が低下し水銀温度が変動した場合、水銀蒸気
圧が変動する。また、水銀の熱伝導率は低く、周囲温度
の変動にも追従しにくい。その結果、図5に示すように
エピタキシャル成長結晶の組成が成長の度毎に変動する
という問題があった。
As described above, the mercury bubbler needs to be heated and kept at about 200 ° C. For this, there is a method in which the entire container is put in a heat retaining liquid such as oil to make the temperature uniform, but it is dangerous if the heat retaining liquid heated to a high temperature spills. On the other hand, when directly heating with a heater or the like, it is difficult to keep the temperature of the entire container uniform, and a temperature difference occurs inside the container. Therefore, when the mercury level decreases due to a decrease in the remaining amount of mercury and the mercury temperature fluctuates, the mercury vapor pressure fluctuates. Moreover, the thermal conductivity of mercury is low, and it is difficult to follow the fluctuation of the ambient temperature. As a result, as shown in FIG. 5, there is a problem that the composition of the epitaxially grown crystal changes every time the crystal is grown.

【0008】図5は横軸に成長回数(回)、縦軸に混晶
組成比(X)をとったものである。また、成長層の厚さ
方向で混晶組成比(X)が変動することがある。
FIG. 5 shows the number of times of growth (times) on the horizontal axis and the mixed crystal composition ratio (X) on the vertical axis. Further, the mixed crystal composition ratio (X) may vary in the thickness direction of the growth layer.

【0009】水銀の供給量はキャリアガス流量により制
御することができるが、この場合、水銀温度が一定であ
ることを前提としている。しかしながら、容器温度を2
00℃付近まで上昇させているため、容器のわずかな温
度の変動や液面の低下によっても水銀蒸気圧が変動し、
水銀カドミウムテルル成長層の組成に影響を及ぼす。本
発明は、上記事情を考慮してなされたもので、化合物半
導体層を基板上に気相エピタキシャル成長する場合に、
混晶組成比の変動の少ない成長装置および成長方法を提
供することを目的とする。
The supply amount of mercury can be controlled by the flow rate of the carrier gas. In this case, it is assumed that the mercury temperature is constant. However, if the vessel temperature is 2
Since the temperature has risen to around 00 ° C, the mercury vapor pressure also fluctuates due to slight fluctuations in the temperature of the container and a drop in the liquid level.
Affects the composition of the mercury cadmium tellurium growth layer. The present invention has been made in consideration of the above circumstances, and when a compound semiconductor layer is vapor-phase epitaxially grown on a substrate,
It is an object of the present invention to provide a growth apparatus and a growth method in which the mixed crystal composition ratio is small.

【0010】[0010]

【課題を解決するための手段】本発明は化合物半導体の
気相エピタキシャル成長装置および成長方法に係り、ガ
ス導入配管9によりキャリアガスでバブリングする液体
原料バブラ1の上部に排出配管12を介して液体原料容
器2を設け、各容器はそれぞれ加熱用ヒータにより温度
制御することを特徴とする。
The present invention relates to an apparatus and a method for vapor-phase epitaxial growth of a compound semiconductor. The present invention relates to a liquid source bubbler 1 which is bubbled with a carrier gas by a gas introduction pipe 9 and a liquid source bubbler 1 via a discharge pipe 12. Containers 2 are provided, and the temperature of each container is controlled by a heater for heating.

【0011】また、液体原料バブラ1から反応管に至る
配管系の中で、液体原料容器2の温度を最も低くするこ
とを特徴とする。
Further, the temperature of the liquid source container 2 is set to be the lowest in the piping system from the liquid source bubbler 1 to the reaction tube.

【0012】また、液体原料バブラ1の容積よりも液体
原料容器2の容積を小さくしたことを特徴とする。
Further, the volume of the liquid raw material container 2 is smaller than the volume of the liquid raw material bubbler 1.

【0013】また、一定量を超える液体原料をオーバー
フローさせ、液体原料容器2内の液体原料量を一定とす
ることを特徴とする。
Further, the liquid raw material exceeding a certain amount is caused to overflow, so that the amount of the liquid raw material in the liquid raw material container 2 is made constant.

【0014】また、液体原料容器2内にバッフル板を設
けてた液体原料蒸気を液化させることを特徴とする。
Further, the present invention is characterized in that a liquid source vapor provided with a baffle plate in the liquid source container 2 is liquefied.

【0015】また、液体原料容器2の温度を制御する冷
却用配管を設けたことを特徴とする。
Further, a cooling pipe for controlling the temperature of the liquid material container 2 is provided.

【0016】本発明による化合物半導体の気相エピタキ
シャル成長装置および成長方法によれば、液体原料バブ
ラーの周囲温度の変動および容器内温度差がもたらす液
面の低下による蒸気圧変動にかかわらず、原料を反応管
内に変動なく供給できる。これにより、成長中の混晶組
成比の変動が少なく、成長毎の混晶組成比の再現性のよ
い化合物半導体のエピタキシャル気相成長層を提供でき
る。
According to the apparatus and method for vapor-phase epitaxial growth of a compound semiconductor according to the present invention, the raw material reacts irrespective of fluctuations in the ambient temperature of the liquid raw material bubbler and fluctuations in the vapor pressure caused by a decrease in the liquid level caused by the temperature difference in the container. Can be supplied without change in the pipe. Thus, it is possible to provide an epitaxial vapor-phase grown layer of a compound semiconductor having a small variation in the mixed crystal composition ratio during the growth and good reproducibility of the mixed crystal composition ratio for each growth.

【0017】[0017]

【発明の実施の形態】本発明の実施の形態について、液
体原料として水銀を使用した場合について、図面を参照
して説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described with reference to the drawings, in which mercury is used as a liquid material.

【0018】図1は本発明の液体原料供給装置の概略断
面図である。1は液体原料用バブラであり、ガス導入管
9とガス排出管12を備え、バブラ1中に入れた液体原
料(水銀)7中をガス導入管9からキャリアガス例えば
水素をバブリングし、キャリアガスを水銀7の蒸気で飽
和させ、ガス排出管12から次の液体原料容器2に送
る。1は直径10cm程度、高さ10cm程度の円柱状
の容器であり、その上部にガス排出管12を介して液体
原料容器2が配置されている。液体原料容器2は直径5
cm程度、高さ3cm程度である。ガス排出管12は鉛
直で液体原料用バブラ1と、この上部の液体原料容器2
とを連結する。
FIG. 1 is a schematic sectional view of a liquid material supply apparatus according to the present invention. Reference numeral 1 denotes a liquid source bubbler, which includes a gas introduction pipe 9 and a gas discharge pipe 12. The carrier gas, for example, hydrogen is bubbled from the gas introduction pipe 9 through the liquid source (mercury) 7 put in the bubbler 1. Is saturated with the vapor of mercury 7 and sent from the gas discharge pipe 12 to the next liquid source container 2. Reference numeral 1 denotes a cylindrical container having a diameter of about 10 cm and a height of about 10 cm, and a liquid raw material container 2 is disposed above the liquid container 2 via a gas discharge pipe 12. The liquid material container 2 has a diameter of 5
cm and a height of about 3 cm. The gas discharge pipe 12 is a vertical bubbler 1 for liquid raw material, and a liquid raw material container 2
And concatenate.

【0019】ガス排出管12の下流側開口端は液体原料
容器2の底面から1cm〜2cmの高さの位置にあり、
この下流側開口端を含むガス排出管12と液体原料容器
2の底面、内周面で液体原料(水銀)溜まり8を形成す
る。液体原料容器2内で底面から下流側開口端までの深
さ以上に溜まった水銀は下流側開口端からオーバーフロ
ーしてバブラ1に戻る。このため、液体原料容器2内の
液体原料(水銀)の量は一定となる。
The downstream open end of the gas discharge pipe 12 is located at a height of 1 cm to 2 cm from the bottom of the liquid raw material container 2.
A liquid material (mercury) reservoir 8 is formed on the gas discharge pipe 12 including the downstream opening end and the bottom surface and the inner peripheral surface of the liquid material container 2. Mercury that has accumulated in the liquid source container 2 at a depth equal to or greater than the depth from the bottom surface to the downstream opening end overflows from the downstream opening end and returns to the bubbler 1. For this reason, the amount of the liquid material (mercury) in the liquid material container 2 is constant.

【0020】バブラ1はヒータ3により230℃に加熱
し、液体原料容器2はヒータ4により200℃にそれぞ
れ個別に温度制御した。5、6は温度検出用の熱電対で
ある。また、液体原料容器2の周囲を空気など熱輸送で
きる冷却用ガスを配管10、11中に通すことにより、
さらに温度制御性を向上させることができる。
The bubbler 1 was heated to 230 ° C. by the heater 3, and the temperature of the liquid raw material container 2 was individually controlled to 200 ° C. by the heater 4. Numerals 5 and 6 are thermocouples for detecting temperature. In addition, by passing a cooling gas capable of transporting heat such as air around the liquid material container 2 through the pipes 10 and 11,
Further, the temperature controllability can be improved.

【0021】また、液体原料容器2内のガス排出管12
の下流側開口端と液体原料容器2からの排出口の間に
は、バッフル板13を配置し、キャリアガスが液体原料
容器2内壁と十分温度交換し、キャリアガス中の水銀蒸
気圧が液体原料容器2内壁の温度で規定されるようにす
る。
The gas discharge pipe 12 in the liquid raw material container 2
A baffle plate 13 is arranged between the downstream open end of the container and the outlet from the liquid source container 2 so that the carrier gas can sufficiently exchange the temperature with the inner wall of the liquid source container 2 and the vapor pressure of the mercury in the carrier gas decreases. The temperature is regulated by the temperature of the inner wall of the container 2.

【0022】なお、バブラ1と液体原料容器2の間の経
路、液体原料容器2から反応管(図示せず)までの経路
も水銀の付着を防ぐために加熱手段を設け、230℃に
加熱した。すなわち液体原料容器2は反応管までの経路
の中で最も温度が低くなるように制御し、液体原料容器
2の温度で水銀蒸気圧が規定されるようにした。
The path between the bubbler 1 and the liquid source container 2 and the path from the liquid source container 2 to the reaction tube (not shown) were also provided with a heating means for preventing the adhesion of mercury, and were heated to 230 ° C. That is, the temperature of the liquid source container 2 was controlled to be the lowest in the path to the reaction tube, and the mercury vapor pressure was regulated by the temperature of the liquid source container 2.

【0023】図2には、バブラ1から液体原料容器2を
経由してその先までの経路の温度分布を示す。図2の左
側にはバブラ1から液体原料容器2を経由してその先ま
での経路の概略断面図を示し、右側にはその位置に対応
する温度(℃)を横軸に示す。
FIG. 2 shows the temperature distribution in the path from the bubbler 1 to the liquid source container 2 and beyond. The left side of FIG. 2 shows a schematic cross-sectional view of the path from the bubbler 1 through the liquid raw material container 2 to the end, and the right side shows the temperature (° C.) corresponding to the position on the horizontal axis.

【0024】図2でわかるように、液体原料容器2を設
けない場合にはバブラ1の温度分布はバブラの上下で約
20℃の差がある。このため水銀残量すなわち液面の高
さにより液面の温度が変わるため蒸気圧が変動し、水銀
原料を時間的に一定しては供給できない。また、周囲温
度が変動すると容量の大きなバブラ1では熱伝導度の悪
い水銀の温度が均一化するのに時間がかかる。一方、液
体原料容器2内の温度差は非常に小さく、温度制御は容
易で温度が一定に保たれる。さらに液面もオーバーフロ
ー機構により一定に保たれるため、残量および周囲温度
変動による水銀蒸気圧の変化は殆どない。
As can be seen from FIG. 2, when the liquid material container 2 is not provided, the temperature distribution of the bubbler 1 has a difference of about 20 ° C. between the upper and lower sides of the bubbler. Therefore, the temperature of the liquid surface changes depending on the remaining amount of mercury, that is, the height of the liquid surface, so that the vapor pressure fluctuates, and the mercury raw material cannot be supplied at a constant time. Further, when the ambient temperature fluctuates, it takes time for the bubbler 1 having a large capacity to equalize the temperature of mercury having poor thermal conductivity. On the other hand, the temperature difference in the liquid raw material container 2 is very small, the temperature control is easy, and the temperature is kept constant. Further, since the liquid level is also kept constant by the overflow mechanism, there is almost no change in the mercury vapor pressure due to fluctuations in the remaining amount and the ambient temperature.

【0025】このバブラ1から液体原料容器2を経由し
た経路に、毎分500ccの水素キャリアガスを水銀中
をバブリングさせ、反応管内に導入した。同時にジメチ
ルカドミウム、ジイソプロピルテルルをも水素キャリア
ガスで反応管に輸送し、約400℃に加熱したカドミウ
ム亜鉛テルル基板上に水銀カドミウムテルルを厚さ10
μm成長させた。
A hydrogen carrier gas at a rate of 500 cc / min was bubbled through the mercury from the bubbler 1 through the liquid material container 2 and introduced into the reaction tube. Simultaneously, dimethyl cadmium and diisopropyl tellurium were also transported to the reaction tube with a hydrogen carrier gas, and mercury cadmium tellurium was deposited on a cadmium zinc tellurium substrate heated to about 400 ° C. to a thickness of 10 mm.
μm was grown.

【0026】水銀カドミウムテルル(Hg1-X CdX
e)のカドミウム組成の値(X値)は、赤外線透過特性
を測定し、そのバンドギャップを求めて組成を算出し
た。その結果を図3に示す。図3は横軸に成長回数、縦
軸にカドミウム組成の値(X値)をとったものである。
図3で見るように、X値は成長毎にX=0.230±
0.005の範囲内におさめることができ、成長毎の組
成の再現性が大幅に改善された。
Mercury cadmium telluride (Hg 1 -X Cd X T
The value (X value) of the cadmium composition in e) was calculated by measuring the infrared transmission characteristics and determining the band gap thereof. The result is shown in FIG. FIG. 3 shows the number of growth times on the horizontal axis and the value (X value) of the cadmium composition on the vertical axis.
As can be seen in FIG. 3, the X value is X = 0.230 ±
The content can be kept within the range of 0.005, and the reproducibility of the composition for each growth is greatly improved.

【0027】本実施の形態では、水銀カドミウムテルル
のエピタキシャル気相成長について説明した。しかし、
本発明は、これに限られるものではなく、液体原料を使
用する他の化合物半導体のエピタキシャル気相成長にも
適用可能である。
In this embodiment, the epitaxial vapor phase growth of mercury cadmium tellurium has been described. But,
The present invention is not limited to this, but is also applicable to epitaxial vapor deposition of other compound semiconductors using a liquid source.

【0028】[0028]

【発明の効果】本発明により、液体原料の供給量を常に
一定に制御することができる。
According to the present invention, the supply amount of the liquid raw material can be constantly controlled.

【0029】この結果、成長層の厚さ方向の組成変動が
少なく、成長毎の組成の再現性に優れた半導体成長層の
成長装置とその成長方法を提供できる。
As a result, it is possible to provide an apparatus and a method for growing a semiconductor growth layer in which the composition variation in the thickness direction of the growth layer is small and the composition reproducibility is excellent for each growth.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明を説明する概略断面図である。FIG. 1 is a schematic sectional view illustrating the present invention.

【図2】本発明の装置の温度分布を示すグラフである。FIG. 2 is a graph showing a temperature distribution of the device of the present invention.

【図3】本発明を説明するグラフである。FIG. 3 is a graph illustrating the present invention.

【図4】従来例を説明する概略断面図である。FIG. 4 is a schematic sectional view illustrating a conventional example.

【図5】従来例を説明するグラフである。FIG. 5 is a graph illustrating a conventional example.

【符号の説明】[Explanation of symbols]

1…液体原料用バブラ 2…液体原料容器 3…ヒータ 4…ヒータ 5…熱電対 6…熱電対 7…液体原料(水銀) 8…液体原料溜まり 9…ガス導入配管 10…冷却ガス導入配管 11…冷却ガス排出配管 12…ガス排出配管 13…バッフル板 DESCRIPTION OF SYMBOLS 1 ... Bubbler for liquid raw materials 2 ... Liquid raw material container 3 ... Heater 4 ... Heater 5 ... Thermocouple 6 ... Thermocouple 7 ... Liquid raw material (mercury) 8 ... Liquid raw material pool 9 ... Gas introduction piping 10 ... Cooling gas introduction piping 11 ... Cooling gas discharge pipe 12 ... Gas discharge pipe 13 ... Baffle plate

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 三元以上の混晶半導体結晶を製造する化
合物半導体の気相成長装置において、液体原料バブラ1
と、前記液体原料バブラ1中の液体原料を加熱するため
の加熱用ヒータ3と、前記液体原料バブラ1の液体原料
中にキャリアガスを導入するためのガス導入配管9と、
前記液体原料バブラ1の上部に前記液体原料バブラ1か
らの排出配管12を介して連結された液体原料容器2
と、前記液体原料容器2を加熱するための加熱用ヒータ
4と、を含む液体原料蒸発容器を具備することを特徴と
する化合物半導体の気相成長装置。
In a compound semiconductor vapor phase growth apparatus for producing a ternary or more mixed crystal semiconductor crystal, a liquid raw material bubbler is provided.
A heating heater 3 for heating the liquid raw material in the liquid raw material bubbler 1, a gas introducing pipe 9 for introducing a carrier gas into the liquid raw material of the liquid raw material bubbler 1,
A liquid material container 2 connected to the upper portion of the liquid material bubbler 1 via a discharge pipe 12 from the liquid material bubbler 1
And a heating source 4 for heating the liquid source container 2.
【請求項2】 液体原料バブラ1から反応管に至る配管
系の中で、ヒータ4により制御された液体原料容器2の
温度を最も低くすることを特徴とする請求項1記載の化
合物半導体の気相成長装置。
2. The compound semiconductor gas according to claim 1, wherein the temperature of the liquid source container 2 controlled by the heater 4 is minimized in a piping system from the liquid source bubbler 1 to the reaction tube. Phase growth equipment.
【請求項3】 液体原料バブラ1の容積よりも液体原料
容器2の容積を小さくしたことを特徴とする請求項1記
載の化合物半導体の気相成長装置。
3. The compound semiconductor vapor phase growth apparatus according to claim 1, wherein the volume of the liquid source container is smaller than the volume of the liquid source bubbler.
【請求項4】 一定量を超える液体原料をオーバーフロ
ーさせ、液体原料容器2内の液体原料量を一定とするこ
とを特徴とする請求項1記載の化合物半導体の気相成長
装置。
4. The apparatus for vapor-phase growth of a compound semiconductor according to claim 1, wherein a liquid source exceeding a certain amount overflows, and the amount of the liquid source in the liquid source container 2 is kept constant.
【請求項5】 液体原料容器2内にバッフル板を設けた
ことを特徴とする請求項1記載の化合物半導体の気相成
長装置。
5. The compound semiconductor vapor phase growth apparatus according to claim 1, wherein a baffle plate is provided in the liquid source container 2.
【請求項6】 液体原料容器2の温度を制御する冷却用
配管を設けたことを特徴とする請求項2記載の化合物半
導体の気相成長装置。
6. An apparatus according to claim 2, further comprising a cooling pipe for controlling a temperature of the liquid source container.
【請求項7】 三元以上の混晶半導体結晶を製造する化
合物半導体の気相成長方法において、加熱用ヒータ3に
より加熱された液体原料バブラ1に入れた液体原料中を
ガス導入配管9からキャリアガスをバブリングし、キャ
リアガスを液体原料の蒸気で飽和させ排出配管12から
送る工程と、前記排出配管12により送られた飽和ガス
を前記液体原料バブラ1の上部に排出配管12を介して
連結された液体原料容器2に送り、前記液体原料容器2
に液体原料を溜め加熱用ヒータ4により加熱する工程を
含むことを特徴とする化合物半導体の気相成長方法。
7. In a method for producing a compound semiconductor vapor phase in which a mixed crystal of three or more elements is produced, a liquid source charged in a liquid source bubbler 1 heated by a heater 3 is supplied from a gas introduction pipe 9 to a carrier. A step of bubbling the gas, saturating the carrier gas with the vapor of the liquid raw material and sending it from the discharge pipe 12, and connecting the saturated gas sent by the discharge pipe 12 to the upper portion of the liquid raw material bubbler 1 via the discharge pipe 12. Sent to the liquid material container 2
A step of storing a liquid source and heating it with a heater 4.
【請求項8】 液体原料バブラ1から反応管に至る配管
系の中で、ヒータ4により制御された液体原料容器2の
温度を最も低くすることを特徴とする請求項7記載の化
合物半導体の気相成長方法。
8. The compound semiconductor gas according to claim 7, wherein the temperature of the liquid source container 2 controlled by the heater 4 is the lowest in the piping system from the liquid source bubbler 1 to the reaction tube. Phase growth method.
【請求項9】 液体原料バブラ1の容積よりも液体原料
容器2の容積を小さくしたことを特徴とする請求項2記
載の化合物半導体の気相成長方法。
9. The method according to claim 2, wherein the volume of the liquid source container is smaller than the volume of the liquid source bubbler.
【請求項10】 一定量を超える液体原料をオーバーフ
ローさせ、液体原料容器2内の液体原料量を一定とする
ことを特徴とする請求項7記載の化合物半導体の気相成
長方法。
10. The method according to claim 7, wherein a liquid raw material exceeding a certain amount overflows, and the amount of the liquid raw material in the liquid raw material container 2 is kept constant.
【請求項11】 液体原料容器2内にバッフル板を設け
て液体原料蒸気を液化させることを特徴とする請求項7
記載の化合物半導体の気相成長方法。
11. A liquid source vapor is liquefied by providing a baffle plate in the liquid source container 2.
The vapor phase growth method of the compound semiconductor according to the above.
【請求項12】 液体原料容器2の温度を制御する冷却
用配管を設けたことを特徴とする請求項8記載の化合物
半導体の気相成長方法。
12. The method according to claim 8, wherein a cooling pipe for controlling the temperature of the liquid source container 2 is provided.
JP32395096A 1996-12-04 1996-12-04 Apparatus and method for chemical vapor deposition of compd. semiconductor Pending JPH10163118A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32395096A JPH10163118A (en) 1996-12-04 1996-12-04 Apparatus and method for chemical vapor deposition of compd. semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32395096A JPH10163118A (en) 1996-12-04 1996-12-04 Apparatus and method for chemical vapor deposition of compd. semiconductor

Publications (1)

Publication Number Publication Date
JPH10163118A true JPH10163118A (en) 1998-06-19

Family

ID=18160446

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32395096A Pending JPH10163118A (en) 1996-12-04 1996-12-04 Apparatus and method for chemical vapor deposition of compd. semiconductor

Country Status (1)

Country Link
JP (1) JPH10163118A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012504703A (en) * 2008-10-01 2012-02-23 株式会社テラセミコン Source gas supply device
CN103137525A (en) * 2011-11-28 2013-06-05 东京毅力科创株式会社 Vaporized material supply apparatus, substrate processing apparatus and vaporized material supply method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012504703A (en) * 2008-10-01 2012-02-23 株式会社テラセミコン Source gas supply device
CN103137525A (en) * 2011-11-28 2013-06-05 东京毅力科创株式会社 Vaporized material supply apparatus, substrate processing apparatus and vaporized material supply method
JP2013115208A (en) * 2011-11-28 2013-06-10 Tokyo Electron Ltd Vaporization material supply device, substrate processing apparatus including the same, and vaporization material supply method

Similar Documents

Publication Publication Date Title
US10060030B2 (en) Evaporation vessel apparatus and method
TWI568882B (en) Vapor delivery device, methods of manufacture and methods of use thereof
US6296956B1 (en) Bulk single crystals of aluminum nitride
US7201942B2 (en) Coating method
US6045612A (en) Growth of bulk single crystals of aluminum nitride
CN102162092B (en) Method for constant concentration evaporation and device using same
JP2722833B2 (en) Vapor phase epitaxial growth apparatus and vapor phase epitaxial growth method
KR20080098448A (en) Vaporizer delivery ampoule
WO1997013013A1 (en) A method for epitaxially growing objects and a device for such a growth
KR20210011061A (en) Apparatus and methods for controlling the flow of process material into the deposition chamber
JP4688090B2 (en) Apparatus and method for crystal growth
US4985281A (en) Elemental mercury source for metal-organic chemical vapor deposition
US20080289575A1 (en) Methods and apparatus for depositing a group iii-v film using a hydride vapor phase epitaxy process
JPH10163118A (en) Apparatus and method for chemical vapor deposition of compd. semiconductor
GB2156857A (en) Method of manufacturing a semiconductor device
US4901670A (en) Elemental mercury source for metal-organic chemical vapor deposition
GB2156231A (en) Evaporation cell for a liquid compound suitable for epitaxy by molecular jets
US3997377A (en) Method of making a liquid phase epitaxial-layers of gallium phosphide on multiple wafers
JP2004327534A (en) Organic metal material vapor phase epitaxy device
TWI854058B (en) Application of CVD reactors in the deposition of two-dimensional layers
JPS6379786A (en) Reaction vessel for growth of ii-vi compound semiconductor single crystal
JPH01152734A (en) Evaporator
JPH0439922A (en) Evaporator for vapor phase growth
JPH069191B2 (en) Semiconductor manufacturing equipment by vapor phase growth method
JPH04219393A (en) Method and device for gas-phase epitaxial growth