JPH10162827A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery

Info

Publication number
JPH10162827A
JPH10162827A JP8319126A JP31912696A JPH10162827A JP H10162827 A JPH10162827 A JP H10162827A JP 8319126 A JP8319126 A JP 8319126A JP 31912696 A JP31912696 A JP 31912696A JP H10162827 A JPH10162827 A JP H10162827A
Authority
JP
Japan
Prior art keywords
carbon material
area
negative electrode
lithium
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8319126A
Other languages
Japanese (ja)
Inventor
Shinji Kasamatsu
真治 笠松
Harunari Shimamura
治成 島村
Yoshiaki Nitta
芳明 新田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP8319126A priority Critical patent/JPH10162827A/en
Publication of JPH10162827A publication Critical patent/JPH10162827A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte battery on which reciprocal capacity in a low electric potential area is increased and which has high capacity and high energy density by using a carbon material, on which an area rate of a quenching fringe area to the whole area observed by a polarization microscope under direct light nicol falls within a specific range and which has a specific fiber shape, as a negative electode. SOLUTION: Coal-tar pitch or the like is carbonized at 700 to 1500 deg.C in an inactive atmosphere, and a carbon material on which an area rate of a quenching fringe area 8 to the whole area observed by a polarization microscope under direct light nicol is 1 to 50%, is used as a negative electrode In this carbon material, since an optical isotropic area is dominant, reciprocal capacity of doping-dedoping lithium up to 0 to 0.5V is large, and strain caused in a grain boundary is also restrained, and a material having high true density is obtained. Since it is formed of a material on which a shape of the quenching fringe area 8 is a fibrous tissue and a maximum dimension of its repetitive distance is 1 to 20μm, a nonaqueous electrolyte secndary battery on which high density can be realized and which has high capacity, can be obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、非水電解液二次電
池の高性能化に関するものである。
The present invention relates to a high performance non-aqueous electrolyte secondary battery.

【0002】[0002]

【従来の技術】近年、民生用電子機器のポータブル化,
コードレス化が急激に進んでいる。現在これらの電子機
器の駆動用電源としての役割をニッケルカドミウム二次
電池、あるいは密閉型小型鉛蓄電池が担っているが、ポ
ータブル化やコードレス化が進行し定着するにしたが
い、駆動用電源となる二次電池の高エネルギー密度化,
小型軽量化の要望が強くなっている。また、近年は携帯
電話用の電源として二次電池が注目されており、急激な
市場拡大と共に通話時間の長時間化,サイクル寿命改善
への要望が大きくなっている。
2. Description of the Related Art In recent years, portable electronic devices have become portable,
Cordless use is rapidly progressing. Currently, nickel cadmium rechargeable batteries or sealed small lead-acid batteries play a role as a power supply for driving these electronic devices. High energy density of secondary battery,
The demand for smaller and lighter is increasing. In recent years, secondary batteries have been attracting attention as power supplies for mobile phones, and demands for longer talk time and improved cycle life have been increasing with rapid market expansion.

【0003】リチウムを負極とする非水電解液二次電池
は、従来のニッケルカドミウム電池や鉛蓄電池と比較し
て高エネルギー密度が期待でき、多くの研究がなされて
いる。しかし、金属状のリチウムを負極に用いると充電
時にデンドライトが発生し、短絡を起こし易く信頼性の
低い電池となってしまう。このような状況から負極活物
質として炭素材料を負極として用いることが提案されて
いる。
A non-aqueous electrolyte secondary battery using lithium as a negative electrode can be expected to have a higher energy density than conventional nickel cadmium batteries and lead storage batteries, and much research has been conducted. However, when metallic lithium is used for the negative electrode, dendrite is generated at the time of charging, and a short circuit is likely to occur, resulting in a low-reliability battery. Under such circumstances, it has been proposed to use a carbon material as a negative electrode active material as a negative electrode.

【0004】そして、炭素材料を負極に用いる一例とし
て、例えば、特開昭57−208079号公報,特開昭
58−102464号公報には黒鉛化の発達したグラフ
ァイトが提案されている。しかし、真密度が2.2kg
/cm3 の黒鉛材料を負極活物質として用いた場合は、
充電時にリチウムが可逆的に作動できるのは理論上C 6
Li(炭素原子6個に対しリチウム原子1個)で、電気
化学的容量では372mAh/gに留まる。
[0004] Then, as an example of using a carbon material for a negative electrode,
For example, Japanese Patent Application Laid-Open No. 57-208079,
JP-A-58-102464 discloses a graph in which graphitization has developed.
Eight has been proposed. However, the true density is 2.2kg
/ CmThreeWhen using the graphite material of the above as a negative electrode active material,
Theoretically lithium can operate reversibly during charging 6
Li (6 lithium atoms for 1 carbon atom)
The chemical capacity remains at 372 mAh / g.

【0005】そこで有機化合物を、不活性雰囲気下で1
500℃以下の比較的低温の条件下で熱処理することに
より得られた炭素材料は、372mAh/gを越える電
気容量のリチウムイオンが可逆的に充放電可能であるこ
とが多数報告されている(例えば第35回電池討論会
(1994年)45ページ)。これら炭素材料には光学
的異方性組織または光学的等方性組織という2種類の構
造があることが知られており、そしてそれぞれ共に高い
単位重量当たりのリチウムドープ・脱ドープ可逆容量を
得ることができる。また、リチウムイオン二次電池の高
電圧化,高エネルギー密度を得るには、負極活物質とし
ては0〜0.5Vまでの比較的低電位におけるリチウム
ドープ・脱ドープ可逆容量が大きいことが望まれる。0
〜0.5Vまでのリチウムドープ・脱ドープ可逆容量は
光学的等方性組織を持つ炭素材料では一般の炭素材料に
比べて大きく、高容量化が期待できるが、光学的異方性
組織を持つ炭素材料は0〜0.5Vでは単位重量当たり
の可逆容量は光学的等方性組織を持つ炭素材料ほど大き
いものではない。しかし、真密度は光学的等方性を示す
炭素材料は約1.7g/cm3 と低い値を示すのに対
し、逆に光学的異方性を示す炭素材料の場合は約1.9
g/cm3 であり、高い電極充填性が期待できる。
[0005] Then, the organic compound is converted to 1 under an inert atmosphere.
It has been reported that a carbon material obtained by heat treatment under a relatively low temperature condition of 500 ° C. or less is capable of reversibly charging and discharging lithium ions having an electric capacity exceeding 372 mAh / g (for example, The 35th Battery Symposium (1994), p. 45). It is known that these carbon materials have two types of structures, an optically anisotropic structure and an optically isotropic structure, each of which has a high reversible lithium-doped / undoped capacity per unit weight. Can be. Further, in order to obtain a high voltage and a high energy density of the lithium ion secondary battery, it is desired that the negative electrode active material has a large reversible lithium doping / undoping capacity at a relatively low potential of 0 to 0.5 V. . 0
Lithium-doped and undoped reversible capacity up to 0.5V is larger in carbon materials having an optically isotropic structure than general carbon materials, and higher capacity can be expected, but it has an optically anisotropic structure At 0 to 0.5 V, the reversible capacity per unit weight of a carbon material is not as large as that of a carbon material having an optically isotropic structure. However, the true density of a carbon material showing optical isotropy shows a low value of about 1.7 g / cm 3 , while the carbon material showing optical anisotropy shows about 1.9 g / cm 3.
g / cm 3 , and high electrode filling properties can be expected.

【0006】[0006]

【発明が解決しようとする課題】前記したように、光学
的異方性,光学的等方性を示すそれぞれの炭素材料共、
0〜0.5Vまでのリチウムドープ・脱ドープ可逆容
量,真密度という観点においてトレードオフの関係を持
つ。一般の炭素材料はこの両方の性質を兼ね備えている
ため、単位体積当たりの可逆容量は必ずしも高くならな
いという問題があった。本発明は従来の課題を解決する
ものであり、真密度が高く単位体積当たりの低電位領域
作動の可逆容量が大きい炭素材料を用いることにより、
優れた非水電解液二次電池を提供することを目的とする
ものである。
As described above, each of the carbon materials exhibiting optical anisotropy and optical isotropy,
There is a trade-off relationship in terms of lithium doping / undoping reversible capacity from 0 to 0.5 V and true density. Since a general carbon material has both of these properties, there is a problem that the reversible capacity per unit volume is not always high. The present invention is to solve the conventional problem, by using a carbon material having a high true density and a large reversible capacity of operation in a low potential region per unit volume,
An object of the present invention is to provide an excellent non-aqueous electrolyte secondary battery.

【0007】[0007]

【課題を解決するための手段】前記する問題を解消する
ために、本発明の非水電解液二次電池は、電解液に非水
電解液を、正極にリチウム含有酸化物を、負極に直光ニ
コル下での偏光顕微鏡によって観察される全面積に対す
る消光縞領域の面積率が1〜50%である炭素材料を用
いたものである。
In order to solve the above-mentioned problems, a non-aqueous electrolyte secondary battery of the present invention comprises a non-aqueous electrolyte as an electrolyte, a lithium-containing oxide as a positive electrode, and a non-aqueous electrolyte as a negative electrode. A carbon material having an area ratio of an extinction fringe region of 1 to 50% with respect to the entire area observed by a polarizing microscope under optical Nicols is used.

【0008】そして、上記手段により、高容量で高エネ
ルギー密度を持つ非水電解液電池を実現するものであ
る。
The above means realizes a non-aqueous electrolyte battery having a high capacity and a high energy density.

【0009】また、消光縞領域の形状は繊維状組織であ
って、繰り返し距離の最大寸法を1〜20μmとし、ま
た、炭素材料はコールタールピッチ,石油ピッチ,縮合
多環芳香族炭化水素化合物の重縮合で得られる有機合成
ピッチ,ヘテロ原子含有縮合多環芳香族炭化水素化合物
の重縮合で得られる有機合成ピッチまたは石炭コークス
のいずれかを出発材料とし、不活性雰囲気下で700〜
1500℃で炭素化したものが好ましいものであること
としたものである。
The quenching fringe region has a fibrous structure with a maximum repetition distance of 1 to 20 μm. The carbon material is made of coal tar pitch, petroleum pitch, or a condensed polycyclic aromatic hydrocarbon compound. Either organic synthetic pitch obtained by polycondensation, organic synthetic pitch obtained by polycondensation of a heteroatom-containing condensed polycyclic aromatic hydrocarbon compound, or coal coke is used as a starting material.
Carbonized at 1500 ° C. is preferred.

【0010】[0010]

【発明の実施の形態】光学的異方性領域の組織構造は偏
光顕微鏡で観察される消光縞で示される領域であり、ま
たその規模と大きさで“炭素材料入門”(炭素材料学会
編集:1984年)の22ページ,第3表によって以下
のような分類がなされている。
BEST MODE FOR CARRYING OUT THE INVENTION The tissue structure of an optically anisotropic region is a region indicated by an extinction fringe observed by a polarizing microscope, and its scale and size are “Introduction to Carbon Materials” (edited by the Society of Carbon Materials: 1984), page 22, Table 3, the following classifications are made.

【0011】1.等方性 2.微細なモザイク:消光縞模様の繰り返し単位が10
μm以下のモザイク模様 3.粗いモザイク:消光縞模様の繰り返し単位が10μ
m以上のモザイク模様 4.粗い繊維状:繊維状組織の垂直方向の消光縞模様の
繰り返しが10μm以上繊維方向に配向 5.微細な繊維状:大変形を受けた繊維状組織が見ら
れ、消光縞模様の大きさは10μm以下 6.グロブラー状:合体する前に固化したメソフェーズ
球体の集団 これにより光学的異方性組織,光学的等方性組織の制御
を偏光顕微鏡による消光縞領域観察から行うことが可能
となる。そこで、これらの炭素構造の内、全面積に対す
る消光縞領域の面積率が1〜50%である構造を持った
炭素材料は、0〜0.5Vまでのリチウムドープ・脱ド
ープ可逆容量を維持したまま、光学的異方性領域と光学
的等方性領域とが効果的に混在させ、密に充填された高
密度構造の可能性を見出し、また消光縞領域が繰り返し
距離の最大寸法が1〜20μmである繊維状組織の場合
には、光学的異方性組織と光学的等方性組織の混合状態
がさらに緻密に存在できるため、飛躍的な高密度が可能
であることを明らかにした。
1. Isotropic 2. Fine mosaic: 10 units of extinction stripe pattern
2. Mosaic pattern of μm or less Coarse mosaic: extinction stripe pattern repeat unit is 10μ
m mosaic pattern 4. Coarse fibrous: Repetition of vertical quenching fringe pattern of fibrous structure is oriented to fiber direction by 10 μm or more 5. Fine fibrous: A fibrous structure that has undergone large deformation is seen, and the size of the extinction fringe pattern is 10 μm or less. Globular: A group of mesophase spheres solidified before coalescence This makes it possible to control the optically anisotropic structure and the optically isotropic structure by observing the extinction fringe region with a polarizing microscope. Therefore, among these carbon structures, the carbon material having a structure in which the area ratio of the extinction fringe region to the entire area is 1 to 50% maintains the lithium-doped / dedoped reversible capacity of 0 to 0.5 V. As it is, the optically anisotropic region and the optically isotropic region are effectively mixed, and the possibility of a densely packed high-density structure has been found. In the case of a fibrous structure having a thickness of 20 μm, it has been clarified that since a mixed state of an optically anisotropic structure and an optically isotropic structure can be present more densely, a remarkable high density is possible.

【0012】このような炭素材料を合成するために用い
る出発材料はコールタールピッチ,石油ピッチ,縮合多
環芳香族炭化水素化合物の重縮合で得られる有機合成ピ
ッチ,ヘテロ原子含有縮合多環芳香族炭化水素化合物の
重縮合で得られる有機合成ピッチまたは石炭コークスを
200〜600℃で揮発成分を除去し不溶不融体とした
後、不活性雰囲気下で700〜1500℃で炭素化する
ことにより製造することができる。200〜600℃で
の焼成の際、溶融により流れ構造等、構造変化が起きる
場合、硝酸,硝酸アセチル,硫黄等を加えて熱処理また
は酸化剤の添加による酸化反応等を適宜行っても良い。
Starting materials used for synthesizing such a carbon material include coal tar pitch, petroleum pitch, an organic synthetic pitch obtained by polycondensation of a condensed polycyclic aromatic hydrocarbon compound, and a heteroatom-containing condensed polycyclic aromatic. Production of organic synthetic pitch or coal coke obtained by polycondensation of hydrocarbon compounds by removing volatile components at 200 to 600 ° C to make it insoluble and infusible, and then carbonizing at 700 to 1500 ° C under an inert atmosphere. can do. In the case of calcination at 200 to 600 ° C., if a structural change such as a flow structure occurs due to melting, nitric acid, acetyl nitrate, sulfur, or the like may be added, and a heat treatment or an oxidation reaction by adding an oxidizing agent may be appropriately performed.

【0013】これら炭素材料の構造を適切に制御するこ
とで真密度が大きく、高エネルギー密度の二次電池が可
能となる。
By properly controlling the structure of these carbon materials, a secondary battery having a high true density and a high energy density can be obtained.

【0014】本発明は、請求項1に記載の発明のよう
に、負極に直光ニコル下での偏光顕微鏡によって観察さ
れる全面積に対する消光縞領域の面積率が1〜50%で
ある炭素材料を用いることにより、実施し得るものであ
る。消光縞領域の面積率が1〜50%である炭素材料は
光学的等方性領域が支配的であるため、0〜0.5Vま
でのリチウムドープ・脱ドープ可逆容量が大きい炭素材
料を得ることが可能である。さらに光学的等方性組織に
光学的異方性組織が分散した混在状態となるため、光学
的等方性領域の粒界で生じる歪みが低く抑制され、その
ために密に詰まることができる。その結果、0〜0.5
Vまでの可逆容量が大きく真密度が高い炭素材料が得ら
れる。全面積に対する消光縞領域の面積率が50%を越
えるような構造を持った炭素材料は光学的異方性組織が
支配的となるため、0〜0.5Vまでのリチウムドープ
・脱ドープ可逆容量が小さくなり好ましくない。また消
光縞領域の面積率が0%である構造を持った炭素材料は
光学的等方性組織構造のみとなって真密度が低くなり好
ましくない。好ましくは面積率が1〜50%、さらに好
ましくは5〜30%である。
According to the present invention, there is provided a carbon material in which the area ratio of the extinction fringe region to the entire area observed by a polarizing microscope under direct light Nicols is 1 to 50%. This can be implemented by using. Since the carbon material having the area ratio of the extinction fringe region of 1 to 50% is dominated by the optically isotropic region, it is necessary to obtain a carbon material having a large lithium-doped / de-doped reversible capacity from 0 to 0.5 V. Is possible. Furthermore, since the optically anisotropic structure is mixed with the optically anisotropic structure dispersed therein, distortion generated at the grain boundary in the optically isotropic region is suppressed to a low level, so that the optically isotropic region can be densely packed. As a result, 0-0.5
A carbon material having a large reversible capacity up to V and a high true density can be obtained. In a carbon material having a structure in which the area ratio of the extinction fringe region to the entire area exceeds 50%, the optically anisotropic structure is dominant. Is undesirably small. Further, a carbon material having a structure in which the area ratio of the extinction fringe region is 0% is not preferable because it has only an optically isotropic structure and the true density is low. Preferably, the area ratio is 1 to 50%, more preferably 5 to 30%.

【0015】また、請求項2に記載の発明のように、消
光縞領域の形状が繊維状組織であり、その繰り返し距離
の最大寸法が1〜20μmである炭素材料を用いるのが
好ましい。消光縞構造が繊維状構造となる際、光学的等
方性組織と光学的異方性組織とが混在した状態が可能で
あり、また繊維状の光学的異方性組織同士が積み重なっ
て、それらの接触面が増大するため、お互いが密に詰ま
ることができ、高密度化が可能となるからである。これ
に反し、消光縞構造がモザイク状になると光学的異方性
組織が広範囲に分散し、接触することなく存在すること
になり、お互いに密に詰まることができないため、真密
度が高くならず好ましくない。また、グロブラー状にな
ると光学的等方性と光学的異方性の組織が分離された状
態になり易く、二つの領域の混在による粒界の歪みを低
く抑制する効果が薄まり好ましくない。また繊維状の繰
り返し単位は1〜20μmで真密度が高くなる傾向を示
した。繰り返し単位が20μm以上になると、グロブラ
ー状に近い構造になり、上記同様二つの領域が分離され
た状態になり易くなるためである。繊維状の繰り返し単
位は、好ましくは1〜20μm、さらに好ましくは5〜
15μmである。
Further, as in the second aspect of the present invention, it is preferable to use a carbon material in which the shape of the extinction fringe region is a fibrous structure and the maximum dimension of the repetition distance is 1 to 20 μm. When the extinction fringe structure becomes a fibrous structure, a state in which an optically isotropic structure and an optically anisotropic structure are mixed is possible, and the fibrous optically anisotropic structures are stacked one on another. This is because, since the contact surface increases, they can be densely packed with each other, and the density can be increased. On the other hand, when the extinction fringe structure becomes mosaic, the optically anisotropic structure is widely dispersed and exists without being in contact with each other. Not preferred. In addition, when the film has a globular shape, the optically isotropic and optically anisotropic structures are likely to be separated from each other, and the effect of suppressing the distortion of the grain boundary due to the mixture of the two regions is weakened, which is not preferable. The true density of the fibrous repeating unit tended to be higher at 1 to 20 μm. This is because, when the repeating unit is 20 μm or more, the structure becomes almost globular, and the two regions are easily separated from each other as described above. The fibrous repeating unit is preferably 1 to 20 μm, more preferably 5 to 20 μm.
15 μm.

【0016】また、請求項3に記載の発明において、縮
合多環芳香族炭化水素化合物としては、ナフタレン,ア
ントラセン,インデン,テトラリン,フェナントレンも
しくはこれらの縮合多環芳香族炭化水素化合物にCn
2n+1 もしくはCn2n-1 (nは2〜4)で示される側
鎖が付加した有機化合物であり、またヘテロ原子含有縮
合多環芳香族炭化水素化合物としてはキノリン,ピロー
ルもしくはこれらのヘテロ原子含有縮合多環芳香族炭化
水素化合物にCn2n+1 もしくはCn2n-1 (nは1〜
4)で示される側鎖が付加した有機化合物を用いると良
い。
In the third aspect of the present invention, the condensed polycyclic aromatic hydrocarbon compound may be naphthalene, anthracene, indene, tetralin, phenanthrene or a condensed polycyclic aromatic hydrocarbon compound containing C n H.
2n + 1 or C n H 2n-1 (n is 2-4) is an organic compound side chain is added as indicated by, and as the hetero atom-containing condensed polycyclic aromatic hydrocarbon compounds quinoline, pyrrole or of C n H 2n + 1 or C n H 2n-1 (where n is 1 to 5)
It is preferable to use an organic compound to which the side chain shown in 4) is added.

【0017】また、請求項3に記載の発明により、70
0〜1500℃の範囲で炭素化することにより、リチウ
ムドープ・脱ドープ可逆容量が大きい炭素材料を得られ
る。さらに好ましくは900〜1300℃である。
Further, according to the third aspect of the present invention, 70
By carbonizing in the range of 0 to 1500 ° C., a carbon material having a large reversible lithium-doped / undoped capacity can be obtained. More preferably, it is 900 to 1300 ° C.

【0018】本発明の非水電解液二次電池は、負極とし
て請求項1から3に記載の炭素材料、正極にリチウム含
有金属酸化物を用い、正極と負極を剥離するセパレータ
と非水電解液により構成されるものである。正極材料と
しては、リチウムを吸蔵,放出可能なものであればどの
ようなリチウム含有金属酸化物を用いても良く、例えば
LiCoO2 ,LiNiO2 ,LiMnO2 等である。
A non-aqueous electrolyte secondary battery according to the present invention uses a carbon material according to claim 1 as a negative electrode, a lithium-containing metal oxide for a positive electrode, a separator for separating the positive electrode and the negative electrode, and a non-aqueous electrolyte. It consists of. As the positive electrode material, any lithium-containing metal oxide may be used as long as it can occlude and release lithium, such as LiCoO 2 , LiNiO 2 , and LiMnO 2 .

【0019】[0019]

【実施例】以下、図面と共に本発明の実施例を説明す
る。
Embodiments of the present invention will be described below with reference to the drawings.

【0020】図1に本発明の負極を評価するための評価
用電池の縦断面図を示す。図1において、1は耐有機電
解液性のステンレス鋼板を加工した電池ケース、2は同
材料の封口板、3は同材料の集電体で、電池ケース1の
内面にスポット溶接されている。4は金属リチウムで、
封口板2の内部に圧着されている。5は負極であり、6
は微孔性のポリプロピレン製のセパレータ、7はポリプ
ロピレン製のガスケットである。この評価用電池の寸法
は直径20mm,電池総高1.6mmである。
FIG. 1 shows a longitudinal sectional view of an evaluation battery for evaluating the negative electrode of the present invention. In FIG. 1, reference numeral 1 denotes a battery case made of a stainless steel sheet having resistance to organic electrolytic solution, reference numeral 2 denotes a sealing plate of the same material, and reference numeral 3 denotes a current collector of the same material, which is spot-welded to the inner surface of the battery case 1. 4 is metallic lithium,
It is crimped inside the sealing plate 2. 5 is a negative electrode, 6
Is a separator made of microporous polypropylene, and 7 is a gasket made of polypropylene. The dimensions of the battery for evaluation are 20 mm in diameter and 1.6 mm in total battery height.

【0021】負極活物質として、炭素材料90重量部に
対し、結着剤としてポリフッ化ビニリデン10重量部を
混合して得られる合剤の所定量を集電体3の上に成形し
て電極とし、これを150℃で減圧乾燥した後、負極と
して電池に組み立てた。電解液は炭酸エチレンと1,3
−ジメトキシエタンの等体積混合溶媒に溶質として過塩
素酸リチウムを1モル/リットルの濃度で溶解して用い
た。上記負極は電池の組み立て後、充電することにより
電気化学的にリチウムイオンが挿入される。
A predetermined amount of a mixture obtained by mixing 10 parts by weight of polyvinylidene fluoride as a binder with 90 parts by weight of a carbon material as a negative electrode active material is formed on a current collector 3 to form an electrode. This was dried at 150 ° C. under reduced pressure, and then assembled into a battery as a negative electrode. The electrolyte is ethylene carbonate and 1,3
Lithium perchlorate was dissolved at a concentration of 1 mol / l as a solute in a mixed solvent of equal volume of dimethoxyethane and used. After the battery is assembled, the negative electrode is charged to electrochemically insert lithium ions.

【0022】上記の評価用電池は、負極の充放電特性を
評価するために構成したものであるため、金属リチウム
4が放電する方向に電流を通じると、リチウムの溶解と
共に本発明の負極5にリチウムイオンが吸蔵されて充電
される。また、負極5が放電する方向に電流を通じた場
合にはリチウムイオンが放出されて金属リチウム4の表
面にリチウムが電析する。この電池は電気容量的に金属
リチウム4が大過剰の状態で構成されており、実質的に
は評価用電池の特性は負極5の特性を示すものとして評
価できる。これらの評価用電池を常温(20℃)で、
0.5mA/cm 2 として、電圧2.0〜0Vの範囲で
充放電試験を行い、0〜2.0Vまでと0〜0.5Vま
での可逆容量について検討した。
The above-described battery for evaluation has a negative charge / discharge characteristic.
Metallic lithium because it was configured for evaluation
When current is passed in the direction in which 4 discharges, lithium dissolves and
In both cases, lithium ions are occluded in the negative electrode 5 of the present invention and charged.
Is done. In addition, when a current flows in a direction in which the negative electrode 5 discharges,
In this case, lithium ions are released and the lithium metal 4
Lithium deposits on the surface. This battery is metal
Lithium 4 is composed of a large excess, and is substantially
Indicates that the characteristics of the battery for evaluation indicate the characteristics of the negative electrode 5.
Worth it. At room temperature (20 ° C.)
0.5mA / cm TwoIn the range of voltage 2.0 to 0V
Perform a charge / discharge test, and measure from 0 to 2.0V and 0 to 0.5V.
The reversible capacity was examined.

【0023】電気化学的特性以外の評価方法について以
下に説明する。消光縞領域の測定は直光ニコル下で10
00倍の偏光顕微鏡観察を行うことにより求めることが
できる。偏光顕微鏡により観察されるモデル図を図2に
示す。図2において、8は消光縞領域であり、9は消光
縞以外の領域である。消光縞領域8の存在率は、観察領
域を数カ所選び出し、それぞれの消光縞領域をポイント
カウント法によって算出した面積%の平均値である。ま
た消光縞領域の繰り返し距離は、観察された消光縞領域
の最大寸法を測定したものである。
Evaluation methods other than the electrochemical characteristics will be described below. The extinction fringe area was measured under direct light Nicols.
It can be determined by observing with a polarizing microscope at 00 times. FIG. 2 shows a model diagram observed by a polarizing microscope. In FIG. 2, reference numeral 8 denotes an extinction fringe area, and reference numeral 9 denotes an area other than the extinction fringe. The existence ratio of the extinction fringe region 8 is an average value of the area% calculated by the point counting method for each observation extinction fringe region selected from several observation regions. The repetition distance of the extinction stripe region is obtained by measuring the maximum dimension of the observed extinction stripe region.

【0024】真密度の測定には、JIS R7212に
記載の方法にしたがい、ブタノール法により測定した。
The true density was measured by the butanol method according to the method described in JIS R7212.

【0025】炭素質物質を得る方法の概要は、次のよう
である。コールタールピッチ,石油ピッチ,縮合多環芳
香族炭化水素化合物の重縮合で得られる有機合成ピッ
チ,ヘテロ原子含有縮合多環芳香族炭化水素化合物の重
縮合で得られる有機合成ピッチまたは石炭コークス等の
いずれかを所定量秤量し、これをアルゴンガスの不活性
雰囲気下で200〜600℃の焼成を行い、揮発成分を
除去し、不溶不融体とする。この際、溶融して流れ構造
となる場合は適宜、硝酸,硝酸アセチル,硫黄等を加え
て熱処理または酸化剤の添加による酸化反応等を適宜行
っても良い。その後、700〜1500℃の温度で所定
時間炭化焼成を経た後、自然冷却し、これを粉砕するこ
とで炭素質物質が得られる。次いで、これによる炭素材
料を電気化学評価用試料とした。
The outline of the method for obtaining the carbonaceous material is as follows. Coal tar pitch, petroleum pitch, organic synthetic pitch obtained by polycondensation of condensed polycyclic aromatic hydrocarbon compounds, organic synthetic pitch obtained by polycondensation of heteroatom-containing condensed polycyclic aromatic hydrocarbon compounds or coal coke Either of them is weighed in a predetermined amount, and the resultant is baked at 200 to 600 ° C. in an inert atmosphere of argon gas to remove volatile components to obtain an insoluble infusible material. At this time, when the material is melted to form a flow structure, nitric acid, acetyl nitrate, sulfur, or the like may be appropriately added to perform a heat treatment or an oxidation reaction by adding an oxidizing agent. Thereafter, after carbonization and firing at a temperature of 700 to 1500 ° C. for a predetermined time, the mixture is naturally cooled and crushed to obtain a carbonaceous substance. Next, the resulting carbon material was used as a sample for electrochemical evaluation.

【0026】以下、実施例,比較例により、本発明をさ
らに詳細に説明する。 (実施例1)燃料比(固定炭素/揮発成分)1.8の瀝
青炭を300℃で加熱し、揮発成分を除去して不溶不融
体とする。得られた石炭コークス50gをアルゴンガス
の不活性雰囲気下で1000℃の温度で炭化焼成した。
その後、炭化焼成を2.5時間経た後、自然冷却し、こ
れを粉砕することで炭素質物質を得た。得られた炭素質
物質の偏光顕微鏡観察を行ったところ消光縞領域は粗い
繊維状組織を示した。また上記の方法によって真密度の
測定および電気化学評価を行った。
Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples. (Example 1) Bituminous coal having a fuel ratio (fixed carbon / volatile component) of 1.8 is heated at 300 ° C to remove volatile components to form an insoluble infusible material. 50 g of the obtained coal coke was carbonized and fired at a temperature of 1000 ° C. in an inert atmosphere of argon gas.
After 2.5 hours of carbonization and firing, the mixture was naturally cooled and pulverized to obtain a carbonaceous substance. When the obtained carbonaceous material was observed with a polarizing microscope, the quenching fringe region showed a coarse fibrous structure. In addition, the true density was measured and the electrochemical evaluation was performed by the above method.

【0027】(実施例2)燃料比12の無煙炭を250
℃で加熱し、揮発成分を除去して不溶不融体とする。得
られた石炭コークス50gをアルゴンガスの不活性雰囲
気下で1000℃の温度で炭化焼成した。その後、炭化
焼成を2.5時間経た後、自然冷却し、これを粉砕する
ことで炭素質物質を得た。得られた炭素質物質の偏光顕
微鏡観察を行ったところ消光縞領域は微細な繊維状組織
を示した。また上記の方法によって真密度の測定および
電気化学評価を行った。
Example 2 250 anthracites with a fuel ratio of 12
Heat at ℃ to remove volatile components to form an insoluble infusible. 50 g of the obtained coal coke was carbonized and fired at a temperature of 1000 ° C. in an inert atmosphere of argon gas. After 2.5 hours of carbonization and firing, the mixture was naturally cooled and pulverized to obtain a carbonaceous substance. When the obtained carbonaceous material was observed with a polarizing microscope, the quenching fringe region showed a fine fibrous structure. In addition, the true density was measured and the electrochemical evaluation was performed by the above method.

【0028】(実施例3)軟化点90℃の石油ピッチに
200℃で空気酸化による架橋処理を行い不溶不融体と
する。得られた石油ピッチ50gをアルゴンガスの不活
性雰囲気下で1000℃の温度で炭化焼成した。その
後、炭化焼成を2.5時間経た後、自然冷却し、これを
粉砕することで炭素質物質を得た。得られた炭素質物質
の偏光顕微鏡観察を行ったところ消光縞領域は粗い繊維
状組織を示した。また上記の方法によって真密度の測定
および電気化学評価を行った。
Example 3 A petroleum pitch having a softening point of 90 ° C. is subjected to a crosslinking treatment at 200 ° C. by air oxidation to obtain an insoluble infusible material. 50 g of the obtained petroleum pitch was carbonized and fired at a temperature of 1000 ° C. in an inert atmosphere of argon gas. After 2.5 hours of carbonization and firing, the mixture was naturally cooled and pulverized to obtain a carbonaceous substance. When the obtained carbonaceous material was observed with a polarizing microscope, the quenching fringe region showed a coarse fibrous structure. In addition, the true density was measured and the electrochemical evaluation was performed by the above method.

【0029】(実施例4)縮合多環芳香族炭化水素化合
物としてナフタレンを用いて重縮合を行い得られた軟化
点170℃の光学的等方性な有機合成ピッチ50gをア
ルゴンガスの不活性雰囲気下で1000℃の温度で炭化
焼成した。その後、炭化焼成を2.5時間経た後、自然
冷却し、これを粉砕することで炭素質物質を得た。得ら
れた炭素質物質の偏光顕微鏡観察を行ったところ消光縞
領域は粗い繊維状組織を示した。また上記の方法によっ
て真密度の測定および電気化学評価を行った。
(Example 4) 50 g of an optically isotropic organic synthetic pitch having a softening point of 170 ° C. obtained by performing polycondensation using naphthalene as a condensed polycyclic aromatic hydrocarbon compound was mixed with an inert atmosphere of argon gas. It was calcined and calcined at a temperature of 1000 ° C. below. After 2.5 hours of carbonization and firing, the mixture was naturally cooled and pulverized to obtain a carbonaceous substance. When the obtained carbonaceous material was observed with a polarizing microscope, the quenching fringe region showed a coarse fibrous structure. In addition, the true density was measured and the electrochemical evaluation was performed by the above method.

【0030】(実施例5)ヘテロ原子含有縮合多環芳香
族炭化水素化合物としてピロールを用いて重縮合を行い
得られた軟化点250℃の光学的等方性な有機合成ピッ
チ50gをアルゴンガスの不活性雰囲気下で1100℃
の温度で炭化焼成した。その後、炭化焼成を2.5時間
経た後、自然冷却し、これを粉砕することで炭素質物質
を得た。得られた炭素質物質の偏光顕微鏡観察を行った
ところ消光縞領域は繊維状組織を示した。また上記の方
法によって真密度の測定および電気化学評価を行った。
Example 5 Polycondensation was carried out using pyrrole as a heteroatom-containing condensed polycyclic aromatic hydrocarbon compound, and 50 g of an optically isotropic organic synthetic pitch having a softening point of 250 ° C. was obtained. 1100 ° C under inert atmosphere
At a temperature of. After 2.5 hours of carbonization and firing, the mixture was naturally cooled and pulverized to obtain a carbonaceous substance. When the obtained carbonaceous material was observed with a polarizing microscope, the quenching fringe region showed a fibrous structure. In addition, the true density was measured and the electrochemical evaluation was performed by the above method.

【0031】(比較例1)燃料比1.0の褐炭を200
℃で揮発成分を除去し不溶不融体とする。得られた石炭
コークス50gをアルゴンガスの不活性雰囲気下で10
00℃の温度で炭化焼成した。その後、炭化焼成を2.
5時間経た後、自然冷却し、これを粉砕することで炭素
質物質を得た。得られた炭素質物質の偏光顕微鏡観察を
行ったところ消光縞領域は繰り返し距離が18μmの繊
維状組織を示したが、消光縞領域の面積率は75%とな
った。また上記の方法によって真密度の測定および電気
化学評価を行った。
Comparative Example 1 Lignite with a fuel ratio of 1.0 was added to 200
Remove volatile components at ℃ to make insoluble infusible. 50 g of the obtained coal coke was placed under an inert atmosphere of argon gas for 10 g.
It was carbonized and fired at a temperature of 00 ° C. Then, carbonization firing is performed.
After 5 hours, the mixture was naturally cooled and pulverized to obtain a carbonaceous substance. When the obtained carbonaceous material was observed with a polarizing microscope, the quenching fringe region showed a fibrous structure with a repeating distance of 18 μm, but the area ratio of the quenching fringe region was 75%. In addition, the true density was measured and the electrochemical evaluation was performed by the above method.

【0032】(比較例2)燃料比15の無煙炭を350
℃で加熱し、揮発成分を除去して不溶不融体とする。得
られた石炭コークス50gをアルゴンガスの不活性雰囲
気下で1000℃の温度で炭化焼成した。その後、炭化
焼成を2.5時間経た後、自然冷却し、これを粉砕する
ことで炭素質物質を得た。得られた炭素質物質の偏光顕
微鏡観察を行ったところ消光縞領域は観察されず、光学
的等方性を示した。また上記の方法によって真密度の測
定および電気化学評価を行った。
Comparative Example 2 350 anthracite with a fuel ratio of 15
Heat at ℃ to remove volatile components to form an insoluble infusible. 50 g of the obtained coal coke was carbonized and fired at a temperature of 1000 ° C. in an inert atmosphere of argon gas. After 2.5 hours of carbonization and firing, the mixture was naturally cooled and pulverized to obtain a carbonaceous substance. When the obtained carbonaceous material was observed with a polarizing microscope, no quenching fringe region was observed, and the carbonaceous material showed optical isotropy. In addition, the true density was measured and the electrochemical evaluation was performed by the above method.

【0033】(比較例3)軟化点60℃のコールタール
ピッチ90重量部に対して、濃硝酸10重量部を添加
し、200℃まで加熱により架橋処理し不溶不融体とす
る。得られたピッチ50gをアルゴンガスの不活性雰囲
気下で1000℃の温度で炭化焼成した。その後、炭化
焼成を2.5時間経た後、自然冷却し、これを粉砕する
ことで炭素質物質を得た。得られた炭素質物質の偏光顕
微鏡観察を行ったところ消光縞領域の面積率は35%で
あったが、形状は繰り返し距離が5μmの微細なモザイ
ク構造を示した。また上記の方法によって真密度の測定
および電気化学評価を行った。
Comparative Example 3 10 parts by weight of concentrated nitric acid was added to 90 parts by weight of coal tar pitch having a softening point of 60 ° C., and the mixture was crosslinked by heating to 200 ° C. to form an insoluble infusible body. 50 g of the obtained pitch was carbonized and fired at a temperature of 1000 ° C. in an inert atmosphere of argon gas. After 2.5 hours of carbonization and firing, the mixture was naturally cooled and pulverized to obtain a carbonaceous substance. When the obtained carbonaceous material was observed with a polarizing microscope, the area ratio of the quenching fringe region was 35%, but the shape showed a fine mosaic structure with a repeating distance of 5 μm. In addition, the true density was measured and the electrochemical evaluation was performed by the above method.

【0034】(比較例4)軟化点90℃の石油ピッチ5
0gをアルゴンガスの不活性雰囲気下で1000℃の温
度で炭化焼成した。その後、炭化焼成を2.5時間経た
後、自然冷却し、これを粉砕することで炭素質物質を得
た。得られた炭素質物質の偏光顕微鏡観察を行ったとこ
ろ消光縞領域の面積率は48%であったが、形状は繰り
返し距離が50μmのグロブラー状の構造を示した。ま
た上記の方法によって真密度の測定および電気化学評価
を行った。
Comparative Example 4 Petroleum pitch 5 having a softening point of 90 ° C.
0 g was carbonized and fired at a temperature of 1000 ° C. in an inert atmosphere of argon gas. After 2.5 hours of carbonization and firing, the mixture was naturally cooled and pulverized to obtain a carbonaceous substance. When the obtained carbonaceous material was observed with a polarizing microscope, the area ratio of the extinction fringe region was 48%, but the shape showed a globular structure with a repetition distance of 50 μm. In addition, the true density was measured and the electrochemical evaluation was performed by the above method.

【0035】以上より実施例1〜4,比較例1〜4の炭
素質物質の偏光顕微鏡観察により表1に示す結果が得ら
れた。
From the above, the results shown in Table 1 were obtained by observing the carbonaceous materials of Examples 1 to 4 and Comparative Examples 1 to 4 with a polarizing microscope.

【0036】[0036]

【表1】 [Table 1]

【0037】また実施例1〜4,比較例1〜4の炭素質
物質の真密度,リチウムドープ・脱ドープ可逆容量(0
〜0.5Vまたは0〜2.0V)の測定により表2に示
す結果が得られた。
In addition, the true densities, lithium-doped and undoped reversible capacities of carbonaceous materials of Examples 1 to 4 and Comparative Examples 1 to 4 (0
-0.5 V or 0-2.0 V) yielded the results shown in Table 2.

【0038】[0038]

【表2】 [Table 2]

【0039】表1,表2の結果から、消光縞領域の面積
率が1〜50%、繰り返し距離が1〜20μmの繊維状
組織を持つ炭素材料は真密度が大きく、0〜0.5Vま
でのリチウムドープ・脱ドープ可逆容量も大きくなるこ
とが判った。
From the results shown in Tables 1 and 2, the carbon material having a fibrous structure having an area ratio of the extinction fringe region of 1 to 50% and a repetition distance of 1 to 20 μm has a large true density. It was also found that the reversible capacity of lithium-doping / de-doping became large.

【0040】(実施例6)実施例1の炭素材料を負極と
して用い、正極としてコバルト酸リチウムを使用したこ
と以外は上記実施例と同様にして、非水電解液二次電池
を作製し実施例6とした。これを2.5〜4.2Vの範
囲で充放電試験(0.5mA/cm2 )を行った。ま
た、それにより可逆容量と平均放電電圧を求めた。その
結果を表3に示す。すなわち電池容量は3.0mAh、
平均放電電圧は3.6Vが得られた。
Example 6 A non-aqueous electrolyte secondary battery was prepared in the same manner as in Example 1 except that the carbon material of Example 1 was used as a negative electrode and lithium cobalt oxide was used as a positive electrode. 6. This was subjected to a charge / discharge test (0.5 mA / cm 2 ) in the range of 2.5 to 4.2 V. In addition, the reversible capacity and the average discharge voltage were determined. Table 3 shows the results. That is, the battery capacity is 3.0 mAh,
An average discharge voltage of 3.6 V was obtained.

【0041】(比較例5)比較例1の炭素材料を負極と
して用い、正極としてコバルト酸リチウムを使用して、
非水電解液二次電池を作製し比較例5とした。これを
2.5〜4.2Vの範囲で充放電試験(0.5mA/c
2 )を行った。また、それにより可逆容量と平均放電
電圧を求めた。その結果を表3に示す。すなわち電池容
量は1.0mAh、平均放電電圧は3.2Vが得られ
た。
Comparative Example 5 The carbon material of Comparative Example 1 was used as a negative electrode, and lithium cobalt oxide was used as a positive electrode.
A non-aqueous electrolyte secondary battery was manufactured to be Comparative Example 5. The charge-discharge test (0.5 mA / c) was performed in the range of 2.5 to 4.2 V.
m 2 ). In addition, the reversible capacity and the average discharge voltage were determined. Table 3 shows the results. That is, the battery capacity was 1.0 mAh, and the average discharge voltage was 3.2 V.

【0042】[0042]

【表3】 [Table 3]

【0043】表3の結果から、実施例6が比較例5に較
べて電池容量,平均放電電圧、共に優れていることが判
る。
From the results shown in Table 3, it can be seen that Example 6 is superior to Comparative Example 5 in both battery capacity and average discharge voltage.

【0044】このような炭素材料を用いた評価用電池に
よる結果は、円筒型等のリチウムイオン電池においても
同様の効果が得られる。また、他の実施例2から実施例
5記載の炭素負極とLiCoO2 を活物質とする正極を
組み合わせた場合においても、平均放電電圧が3.1〜
3.7Vの非水電解液二次電池を構成できる。
According to the result of the evaluation battery using such a carbon material, the same effect can be obtained in a cylindrical lithium ion battery or the like. In addition, when the carbon negative electrode described in the other Examples 2 to 5 and the positive electrode using LiCoO 2 as an active material were combined, the average discharge voltage was 3.1 to 1.0.
A 3.7 V non-aqueous electrolyte secondary battery can be configured.

【0045】なお、本発明における実施例では、負極活
物質評価用の電池または正極をLiCoO2 とした電池
を用いたが、実際の非水電解液二次電池を構成するに
は、LiCoO2 やLiNiO2 ,LiMnO2 ,Li
Mn24 等のリチウムを吸蔵,放出可能な正極活物質
を用いた、いわゆるロッキングチェアタイプの非水電解
液二次電池等に広く応用でき、これらの電池の高性能化
に極めて効果的である。
In the examples of the present invention, a battery for evaluating a negative electrode active material or a battery having a positive electrode of LiCoO 2 was used. However, in order to construct an actual nonaqueous electrolyte secondary battery, LiCoO 2 or LiCoO 2 was used. LiNiO 2 , LiMnO 2 , Li
It can be widely applied to so-called rocking chair type non-aqueous electrolyte secondary batteries using a positive electrode active material capable of inserting and extracting lithium such as Mn 2 O 4 , and is extremely effective in improving the performance of these batteries. is there.

【0046】[0046]

【発明の効果】以上説明したように、本発明により得ら
れる炭素材料を負極とすると、高容量を有し、さらに優
れた高エネルギー密度を持つ非水電解液二次電池が提供
できる。
As described above, when the carbon material obtained by the present invention is used as a negative electrode, a non-aqueous electrolyte secondary battery having a high capacity and an excellent high energy density can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による評価用電池の縦断面図FIG. 1 is a longitudinal sectional view of an evaluation battery according to the present invention.

【図2】本発明における炭素材料の偏光顕微鏡観察(1
000倍)のモデル図
FIG. 2 is a polarizing microscope observation (1) of the carbon material in the present invention.
000 times) model diagram

【符号の説明】[Explanation of symbols]

1 電池ケース 2 封口板 3 集電体 4 金属リチウム 5 負極 6 セパレータ 7 ガスケット 8 消光縞領域 9 消光縞以外の領域 DESCRIPTION OF SYMBOLS 1 Battery case 2 Sealing plate 3 Current collector 4 Metal lithium 5 Negative electrode 6 Separator 7 Gasket 8 Extinction stripe area 9 Area other than extinction stripe

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 電解液に非水電解液を、正極にリチウム
含有酸化物を、負極に直光ニコル下での偏光顕微鏡によ
って観察される全面積に対する消光縞領域の面積率が1
〜50%である炭素材料を用いた非水電解液二次電池。
A non-aqueous electrolyte is used as the electrolyte, a lithium-containing oxide is used as the positive electrode, and the area ratio of the extinction fringe region to the entire area observed with a polarizing microscope under direct light Nicols is 1 as the negative electrode.
A non-aqueous electrolyte secondary battery using a carbon material of about 50%.
【請求項2】 負極に用いる炭素材料は偏光顕微鏡観察
で得られる消光縞領域の形状が繊維状組織であり、その
繰り返し距離の最大寸法が1〜20μmである炭素材料
であることを特徴とする請求項1記載の非水電解液二次
電池。
2. The carbon material used for the negative electrode is characterized in that the shape of the extinction fringe region obtained by observation with a polarizing microscope is a fibrous structure, and the maximum length of the repetition distance is 1 to 20 μm. The non-aqueous electrolyte secondary battery according to claim 1.
【請求項3】 炭素材料は、コールタールピッチ,石油
ピッチ,縮合多環芳香族炭化水素化合物の重縮合で得ら
れる有機合成ピッチ,ヘテロ原子含有縮合多環芳香族炭
化水素化合物の重縮合で得られる有機合成ピッチまたは
石炭コークスのいずれかを出発材料とし、不活性雰囲気
下で700〜1500℃で炭素化したものであることを
特徴とする請求項1または2記載の非水電解液二次電
池。
3. The carbon material is obtained by the polycondensation of coal tar pitch, petroleum pitch, an organic synthetic pitch obtained by polycondensation of a condensed polycyclic aromatic hydrocarbon compound, and a heteroatom-containing condensed polycyclic aromatic hydrocarbon compound. The non-aqueous electrolyte secondary battery according to claim 1, wherein any one of the organic synthetic pitch and coal coke obtained as a starting material is carbonized at 700 to 1500 ° C. in an inert atmosphere. .
JP8319126A 1996-11-29 1996-11-29 Nonaqueous electrolyte secondary battery Pending JPH10162827A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8319126A JPH10162827A (en) 1996-11-29 1996-11-29 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8319126A JPH10162827A (en) 1996-11-29 1996-11-29 Nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JPH10162827A true JPH10162827A (en) 1998-06-19

Family

ID=18106761

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8319126A Pending JPH10162827A (en) 1996-11-29 1996-11-29 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JPH10162827A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101058080B1 (en) 2007-05-21 2011-08-24 파나소닉 주식회사 Lithium Ion Secondary Battery and Manufacturing Method Thereof
US10651472B2 (en) 2015-10-27 2020-05-12 Institute Of Physics, The Chinese Academy Of Sciences Sodium ion secondary battery anode material and preparing method and application thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101058080B1 (en) 2007-05-21 2011-08-24 파나소닉 주식회사 Lithium Ion Secondary Battery and Manufacturing Method Thereof
US10651472B2 (en) 2015-10-27 2020-05-12 Institute Of Physics, The Chinese Academy Of Sciences Sodium ion secondary battery anode material and preparing method and application thereof

Similar Documents

Publication Publication Date Title
US6106976A (en) Secondary battery or cell with a non-aqueous electrolyte
JP4161376B2 (en) Non-aqueous electrolyte secondary battery
EP2731179A1 (en) Anode comprising silicon-based material and carbon material, and lithium secondary battery comprising same
JP3276983B2 (en) Anode material for lithium secondary battery and method for producing the same
JP3430614B2 (en) Non-aqueous electrolyte secondary battery
JPH10189044A (en) Nonaqueous electrolytic secondary battery
JPH10236809A (en) Graphite grain, its production, graphite paste using graphite grain, negative electrode for lithium secondary battery, its production and lithium secondary battery
JP4818498B2 (en) Nonaqueous electrolyte secondary battery
JPH11219704A (en) Lithium secondary battery, its negative electrode and its manufacture
JP2000053408A (en) Expanded graphite particle, its production, lithium secondary cell, its negative pole and negative pole material
JP2943287B2 (en) Manufacturing method of non-aqueous electrolyte secondary battery
JP2004299944A (en) Graphite particle, its producing method, lithium ion secondary battery and negative electrode material for it
JPH10241683A (en) Negative electrode active material for lithium secondary battery
JP3367060B2 (en) Negative electrode for lithium secondary battery
JPH07302594A (en) Carbonaceous particle and negative electrode for nonaqueous lithium ion secondary battery using this carbonaceous particle
JP5636786B2 (en) A negative electrode material for a lithium secondary battery, a negative electrode for a lithium secondary battery using the same, and a lithium secondary battery.
JPH05266880A (en) Manufacture of negative electrode for nonaqueous electrolyte secondary battery
JP3475530B2 (en) Non-aqueous electrolyte secondary battery
JP2000012017A (en) Graphite particle and manufacture therefor, negative electrode carbon material for lithium secondary battery, negative electrode for the lithium secondary battery, and lithium secondary battery
JPH10162827A (en) Nonaqueous electrolyte secondary battery
JP3863514B2 (en) Lithium secondary battery
JP3430706B2 (en) Carbon material for negative electrode and non-aqueous electrolyte secondary battery
JPH08306359A (en) Anode material for lithium secondary battery and its manufacture
JP3344081B2 (en) Carbonaceous negative electrode material for lithium secondary battery and method for producing the same
JPH1027612A (en) Negative electrode material for lithiumion secondary battery