JPH10160573A - Color measuring device - Google Patents

Color measuring device

Info

Publication number
JPH10160573A
JPH10160573A JP33499796A JP33499796A JPH10160573A JP H10160573 A JPH10160573 A JP H10160573A JP 33499796 A JP33499796 A JP 33499796A JP 33499796 A JP33499796 A JP 33499796A JP H10160573 A JPH10160573 A JP H10160573A
Authority
JP
Japan
Prior art keywords
sample
color
dimensional
unit
color distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33499796A
Other languages
Japanese (ja)
Inventor
Osamu Ando
修 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP33499796A priority Critical patent/JPH10160573A/en
Publication of JPH10160573A publication Critical patent/JPH10160573A/en
Pending legal-status Critical Current

Links

Landscapes

  • Spectrometry And Color Measurement (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain color distribution on a sample surface with irregularity. SOLUTION: By intermittently moving a sample table 21 in X-axis direction and simultaneously repeating spectrometry of the range in Y-axis direction with a light measuring component 10, color distribution on two-dimensional region on the upper surface of a sample 20 is provided. Next, by moving the sample table 21 under a distance measuring component 30, and by intermittently moving it in the X-axis or Y-axis direction during measuring distance, Z- coordinate of the surface of the sample 20 is provided. By comparing position data of the (X, Y, Z) coordinates with color distribution data, three-dimensional color distribution is calculated.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、分光測光を利用し
て試料の測色を行なう色彩測定装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a color measuring apparatus for measuring the color of a sample using spectrophotometry.

【0002】[0002]

【従来の技術】図4は、試料表面の測色を行なうための
従来の色彩測定装置の一例の構成図である。この色彩測
定装置は測光部10、試料台21、試料台駆動部22、
A/D変換部23、演算処理部24、制御部25等から
成り、測光部10は光源11、スリット12、レンズ1
3、16、回折格子14、二次光除去フィルタ15、光
検出器17から構成されている。
2. Description of the Related Art FIG. 4 is a block diagram showing an example of a conventional color measuring apparatus for measuring the color of a sample surface. The color measuring device includes a photometric unit 10, a sample stage 21, a sample stage driving unit 22,
The photometric unit 10 includes an A / D conversion unit 23, an arithmetic processing unit 24, a control unit 25, and the like.
3, 16, a diffraction grating 14, a secondary light removal filter 15, and a photodetector 17.

【0003】光源11から出射した光は、試料台21上
に載置されている試料20のY軸方向に伸びる一次元領
域で反射してスリット12に向かう。スリット12を通
過した光はレンズ13でコリメートされ、回折格子14
で分光された後に二次光除去フィルタ15及びレンズ1
6を介して光検出器17上に投影される。光検出器17
は多数の微小な受光素子が二次元的に配置されたもの
で、そのy軸方向に試料20の一次元領域像における位
置情報が、y軸に直交するλ軸方向にはその一次元領域
像の各位置における波長の広がりの情報が得られる。す
なわち、光検出器17上には、試料20のY軸方向の一
次元領域像に対応する分光強度分布を示す分光画像が得
られる。この分光画像信号はA/D変換部23でディジ
タルデータに変換され、演算処理部24に入力される。
The light emitted from the light source 11 is reflected by a one-dimensional region extending in the Y-axis direction of a sample 20 placed on a sample stage 21 and travels toward the slit 12. The light that has passed through the slit 12 is collimated by the lens 13 and
Secondary light removal filter 15 and lens 1
6 is projected onto a photodetector 17. Photodetector 17
Is a two-dimensional arrangement of a number of minute light receiving elements, and the position information in the one-dimensional region image of the sample 20 in the y-axis direction and the one-dimensional region image in the λ-axis direction orthogonal to the y-axis. The information on the spread of the wavelength at each position is obtained. That is, a spectral image indicating a spectral intensity distribution corresponding to a one-dimensional region image of the sample 20 in the Y-axis direction is obtained on the photodetector 17. This spectral image signal is converted into digital data by the A / D converter 23 and input to the arithmetic processor 24.

【0004】試料台21は制御部25の制御の下に試料
台駆動部22によりX軸方向に間欠的に移動され、上述
のように試料20の一次元領域像の分光画像が順次繰り
返し測定される。これにより、試料20表面の二次元領
域に対する分光強度分布データが得られる。演算処理部
24では、この分光強度分布データを演算処理すること
により各微小領域毎に色を表現する指標値(例えば色
度)が算出され、二次元色彩分布データとして出力され
る。なお、試料台21をX軸方向に移動する代わりに、
試料台21を固定して測光部10をX軸方向に移動する
ように構成しても同様な測定が行なえる。
The sample stage 21 is intermittently moved in the X-axis direction by the sample stage driving unit 22 under the control of the control unit 25, and the spectral image of the one-dimensional area image of the sample 20 is sequentially and repeatedly measured as described above. You. Thus, spectral intensity distribution data for a two-dimensional region on the surface of the sample 20 is obtained. The arithmetic processing unit 24 calculates an index value (for example, chromaticity) for expressing a color for each minute area by performing arithmetic processing on the spectral intensity distribution data, and outputs the index value as two-dimensional color distribution data. Note that instead of moving the sample table 21 in the X-axis direction,
The same measurement can be performed even if the photometric unit 10 is configured to move in the X-axis direction with the sample stage 21 fixed.

【0005】[0005]

【発明が解決しようとする課題】上記構成の装置によれ
ば、試料20面上の二次元領域内の各微小領域において
色を表現する指標値が計算されるので、試料20の二次
元領域像に対する色彩分布を測定することができる。し
かしながら、三次元的に奥行きのある試料表面の色彩分
布を測定することはできない。仮に上記装置の試料台2
1に凹凸を有する試料を載置して測色を行なうと、得ら
れる色彩分布はその試料上面の二次元投影像に対する平
面的な分布にすぎない。周知のように、人間の視覚は物
体の三次元的な情報と色彩情報とを同時に認識可能であ
るから、対象物表面の色彩分布を正確に表現するには三
次元色彩分布を測定できることが望ましい。特に、対象
物の自動認識・自動評価の技術分野では、対象物の把握
の精度を高めるために三次元色彩分布の測定が要望され
ている。
According to the apparatus having the above-described structure, an index value representing a color is calculated in each minute area in the two-dimensional area on the surface of the sample 20, so that the two-dimensional image of the sample 20 is obtained. Can be measured. However, it is not possible to measure the color distribution of a sample surface that is three-dimensionally deep. Suppose the sample stage 2 of the above device
When a sample having irregularities is placed on the sample and colorimetry is performed, the obtained color distribution is only a planar distribution with respect to a two-dimensional projected image of the upper surface of the sample. As is well known, human vision is capable of simultaneously recognizing three-dimensional information and color information of an object. Therefore, it is desirable to be able to measure the three-dimensional color distribution in order to accurately represent the color distribution on the surface of an object. . In particular, in the technical field of automatic recognition and evaluation of an object, measurement of a three-dimensional color distribution has been demanded in order to increase the accuracy of grasping the object.

【0006】本発明は上記課題を解決するために成され
たものであり、その目的とするところは、三次元領域に
広がりを有する面の色彩分布の測定を行なうことができ
る色彩測定装置を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide a color measuring apparatus capable of measuring a color distribution of a surface having a three-dimensional area. Is to do.

【0007】[0007]

【課題を解決するための手段】上記課題を解決するため
に成された本発明に係る色彩測定装置は、 a)分光測定により、試料全体又は一部領域の平面投影画
像に対応した色彩分布情報を測定する色彩測定手段と、 b)該平面投影画像に対応した試料の空間位置情報を測定
する位置測定手段と、 c)色彩分布情報及び空間位置情報を基に、三次元領域の
広がりを有する試料表面の色彩分布を算出する処理手段
と、を備えることを特徴としている。
Means for Solving the Problems The color measuring apparatus according to the present invention, which has been made to solve the above-mentioned problems, comprises: a) color distribution information corresponding to a plane projection image of the entire sample or a partial region by spectroscopic measurement. B) position measuring means for measuring the spatial position information of the sample corresponding to the planar projection image, and c) having a three-dimensional area spread based on the color distribution information and the spatial position information. Processing means for calculating a color distribution on the surface of the sample.

【0008】[0008]

【発明の実施の形態】本発明に係る色彩測定装置におい
て、色彩測定手段は試料台に載置された試料上面の投影
画像に対応した二次元領域の色彩分布を測定する。色彩
測定手段は、例えば、試料の一次元領域からの反射光を
分光手段により二次元(波長)方向に分散させて二次元
分光画像を測定する。そして、試料台と測光部とを一次
元領域像に直交する方向に相対移動させつつ上記のよう
な分光画像を繰り返し得ることにより、試料の二次元領
域像に対応する分光画像データを得る。この分光画像デ
ータを解析処理し、二次元領域像の各点(微小領域)に
対応した色彩情報を求め二次元色彩分布データを得るよ
うにする。また、試料の二次元領域像に対応する分光画
像データを得る他の方法としては、波長切替式フィルタ
等の波長切替手段を介してCCDカメラ等の撮像手段に
より試料上面の投影画像を色毎に得るようにしてもよ
い。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS In a color measuring apparatus according to the present invention, a color measuring means measures a color distribution of a two-dimensional area corresponding to a projected image on the upper surface of a sample placed on a sample stage. The color measuring unit measures, for example, a two-dimensional spectral image by dispersing light reflected from a one-dimensional region of the sample in a two-dimensional (wavelength) direction by a spectral unit. The spectral image as described above is repeatedly obtained while relatively moving the sample stage and the photometry unit in a direction orthogonal to the one-dimensional region image, thereby obtaining spectral image data corresponding to the two-dimensional region image of the sample. The spectral image data is analyzed to obtain color information corresponding to each point (minute area) of the two-dimensional area image so as to obtain two-dimensional color distribution data. Another method for obtaining spectral image data corresponding to a two-dimensional region image of a sample is to project a projected image of the sample upper surface for each color by imaging means such as a CCD camera through wavelength switching means such as a wavelength switching filter. It may be obtained.

【0009】一方、位置測定手段は、試料の空間位置情
報として試料表面の三次元座標データ(X,Y,Z)を
測定する。座標(X,Y)は色彩測定のなされた二次元
投影面に対応しており、Z座標がいわば試料の奥行きに
相当する。位置測定手段としては、プローブを試料表面
に軽く接触させて機械的に位置を測定する方法やレーザ
光を用い非接触で光学的に位置を測定する方法等、種々
のものを利用することができる。上述のように測定され
た二次元色彩分布データと三次元座標データを基に、処
理手段は両データを適宜対応付けて、試料の凹凸を有す
る表面における色彩分布を算出し出力する。なお、色彩
測定と位置測定とは同時又は非同時に行なうようにする
ことができる。
On the other hand, the position measuring means measures three-dimensional coordinate data (X, Y, Z) of the sample surface as spatial position information of the sample. The coordinates (X, Y) correspond to the two-dimensional projection plane on which the color measurement has been performed, and the Z coordinate corresponds to the depth of the sample. As the position measuring means, various methods can be used, such as a method of mechanically measuring a position by bringing a probe into light contact with a sample surface and a method of optically measuring a position without contact using a laser beam. . Based on the two-dimensional color distribution data and the three-dimensional coordinate data measured as described above, the processing means calculates and outputs the color distribution on the surface of the sample having the unevenness by appropriately associating the two data. The color measurement and the position measurement can be performed simultaneously or non-simultaneously.

【0010】[0010]

【発明の効果】本発明に係る色彩測定装置によれば、三
次元領域の広がりを有する試料表面の色彩分布を得るこ
とができる。このため、試料のより正確な把握が可能に
なる。更には、例えば自動認識や自動評価装置に本発明
の色彩測定装置を適用することにより、従来装置に比較
して格段に高度な処理を実現することができる。
According to the color measuring apparatus of the present invention, it is possible to obtain a color distribution on the sample surface having a three-dimensional area. For this reason, it is possible to more accurately grasp the sample. Furthermore, by applying the color measurement device of the present invention to, for example, an automatic recognition or automatic evaluation device, it is possible to realize much higher processing than a conventional device.

【0011】[0011]

【実施例】以下、本発明に係る色彩測定装置の一実施例
について図を用いて説明する。図1は本実施例の色彩測
定装置の構成図である。試料台21に載置した試料20
上面の二次元領域の色彩測定を行なうための測光部1
0、A/D変換部23、演算処理部24の構成は図4に
示したものと同一である。本実施例の装置は、更に試料
台21の上方に三次元位置情報を得る手段として測距部
30を備えており、測距部30は、照射部31、受光部
32、距離演算部33から構成されている。また試料台
駆動部40は、制御部41の制御によりX軸方向のみな
らずY軸方向にも試料台21を水平移動する構成となっ
ている。三次元座標算出部42は、制御部41からの移
動制御情報と測距部30からの計測結果を受けて、試料
表面に沿った三次元座標データを算出し合成処理部43
へと送る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of a color measuring apparatus according to the present invention will be described below with reference to the drawings. FIG. 1 is a configuration diagram of the color measurement device of the present embodiment. Sample 20 placed on sample table 21
Photometry unit 1 for performing color measurement of a two-dimensional area on the upper surface
The configurations of the A / D converter 23 and the arithmetic processing unit 24 are the same as those shown in FIG. The apparatus of the present embodiment further includes a distance measuring unit 30 as a means for obtaining three-dimensional position information above the sample table 21. The distance measuring unit 30 is provided with an irradiation unit 31, a light receiving unit 32, and a distance calculating unit 33. It is configured. Further, the sample stage drive unit 40 is configured to horizontally move the sample stage 21 not only in the X-axis direction but also in the Y-axis direction under the control of the control unit 41. The three-dimensional coordinate calculation unit 42 receives the movement control information from the control unit 41 and the measurement result from the distance measurement unit 30, calculates three-dimensional coordinate data along the sample surface, and
Send to

【0012】上記構成の色彩測定装置において、図1の
ように凹凸を有する試料20の色彩測定を行なう際の動
作を図2を参照して説明する。まず、制御部41は試料
台駆動部40に移動制御信号を送り、試料台21を測光
部10の真下に移動する。そして従来の装置と同様に、
X軸方向に試料台21を間欠移動させつつ試料20上面
のY軸方向の一次元領域像に対する分光画像を繰り返し
得ることにより、試料20上面の二次元領域像の分光画
像データを得る。演算処理部24は、この分光画像デー
タを基に二次元領域像に対する色彩分布データを算出す
る。すなわち、この色彩測定により、図2(a)に示す
ような、試料20の上方への投影面における色を表現す
る指標値の分布データが得られる。なお図2(a)で
は、(X,Y)座標面において1区画を1個の微小領域
とし、各区画内の色を表現する指標値を色の濃淡で表わ
している。
Referring to FIG. 2, the operation of the color measuring apparatus having the above-described configuration when measuring the color of the sample 20 having irregularities as shown in FIG. 1 will be described. First, the control unit 41 sends a movement control signal to the sample stage drive unit 40, and moves the sample stage 21 directly below the photometry unit 10. And like the conventional device,
By repeatedly obtaining a spectral image with respect to the one-dimensional region image in the Y-axis direction on the upper surface of the sample 20 while intermittently moving the sample table 21 in the X-axis direction, spectral image data of a two-dimensional region image on the upper surface of the sample 20 is obtained. The arithmetic processing unit 24 calculates color distribution data for the two-dimensional region image based on the spectral image data. In other words, by this color measurement, distribution data of index values expressing colors on the projection plane above the sample 20 as shown in FIG. 2A is obtained. In FIG. 2A, one section is defined as one minute area on the (X, Y) coordinate plane, and an index value representing a color in each section is represented by shading of the color.

【0013】次に、制御部41は試料台駆動部40に移
動制御信号を送り、試料台21を測距部30の真下に移
動する。そして、試料台21をX軸及びY軸方向に間欠
的に移動させつつ測距を実行する。すなわち、照射部3
1からレーザ光を略Z軸方向に沿って試料20に向けて
照射し、試料20表面にて反射して戻ってきた光を受光
部32で受ける。距離演算部33では、レーザ光を照射
してから反射光を受光するまでの時間を計測し、この計
測値を基に測距部30から試料20表面までの距離を計
算する。
Next, the control unit 41 sends a movement control signal to the sample stage drive unit 40 to move the sample stage 21 directly below the distance measuring unit 30. Then, distance measurement is performed while the sample table 21 is intermittently moved in the X-axis and Y-axis directions. That is, the irradiation unit 3
The laser light is irradiated from 1 onto the sample 20 substantially along the Z-axis direction, and the light reflected by the surface of the sample 20 and returned is received by the light receiving unit 32. The distance calculation unit 33 measures the time from irradiation of the laser beam to reception of the reflected light, and calculates the distance from the distance measurement unit 30 to the surface of the sample 20 based on the measured value.

【0014】このような測距の際に、制御部41は各測
距点が二次元色彩分布の各微小領域に対応するように試
料台21の移動制御を行なう。すなわち、図2(a)に
おける1個の微小領域に対し、例えばその略中央の位置
の測距がなされるように制御する。三次元座標算出部4
2は、移動制御情報を基に(X,Y)座標で示した測距
点の位置を算出すると共に、距離演算部33から与えら
れる距離情報を基に試料台21上面を0基準としたZ座
標上での試料20表面の高さを算出する。これにより、
(X,Y,Z)三次元座標で表現する試料20表面の凹
凸に沿った位置データが得られる。図2(b)は、或る
Y座標におけるX−Z平面上の位置データを示したもの
である。すなわち、Z軸方向の値は試料台21上面から
試料20表面までの高さを示している。
At the time of such distance measurement, the control unit 41 controls the movement of the sample table 21 so that each distance measurement point corresponds to each minute area of the two-dimensional color distribution. That is, the control is performed so that the distance measurement is performed at a position substantially at the center of one minute region in FIG. 3D coordinate calculator 4
Numeral 2 calculates the position of the ranging point indicated by the (X, Y) coordinate based on the movement control information, and based on the distance information given from the distance calculating unit 33, the Z based on the upper surface of the sample table 21 as a zero reference. The height of the surface of the sample 20 on the coordinates is calculated. This allows
(X, Y, Z) Position data along irregularities on the surface of the sample 20 expressed by three-dimensional coordinates is obtained. FIG. 2B shows position data on an XZ plane at a certain Y coordinate. That is, the value in the Z-axis direction indicates the height from the upper surface of the sample table 21 to the surface of the sample 20.

【0015】合成処理部43には、二次元色彩分布デー
タと三次元位置データとが入力される。上述のように、
二次元色彩分布データの各微小領域と三次元位置データ
の(X,Y)座標上での各位置とは対応している。そこ
で、合成処理部43では、これらのデータを基に、試料
20の三次元形状に関連付けて色彩情報を求める。例え
ば、試料20の表面形状を表わす三次元(X,Y,Z)
座標のグラフ上に色を表現する指標値を重畳して表示
し、これをディスプレイの画面上に表示する。図2
(c)は、図2(b)のグラフ中に色を表現する指標値
(この例では色の濃淡)を合成して表現した例である。
勿論、グラフ等で視覚的に表現する以外に表等により数
値データとして出力することもできる。
The synthesis processing section 43 receives two-dimensional color distribution data and three-dimensional position data. As mentioned above,
Each minute area of the two-dimensional color distribution data corresponds to each position on the (X, Y) coordinates of the three-dimensional position data. Therefore, the synthesis processing unit 43 obtains color information in association with the three-dimensional shape of the sample 20 based on these data. For example, three-dimensional (X, Y, Z) representing the surface shape of the sample 20
An index value representing a color is superimposed and displayed on a graph of coordinates, and this is displayed on a display screen. FIG.
FIG. 2C shows an example in which index values (in this example, shades of color) expressing colors are combined and expressed in the graph of FIG.
Of course, it is also possible to output numerical data as a table or the like in addition to the visual representation using a graph or the like.

【0016】図3は、本発明の他の実施例による色彩測
定装置の構成図である。この色彩測定装置では、主とし
て測光部の構成が先の実施例とは相違している。すなわ
ち、この実施例の色彩測定装置では、撮像用照明50が
斜め上方から試料台21に載置された試料20を照射
し、試料20上面の全体像又は一部領域像がCCDカメ
ラ51により撮影される。試料20とCCDカメラ51
との間には分光手段として切替式干渉フィルタ52が配
置されており、フィルタにより定まる特定波長の反射光
のみをCCDカメラ51へ導入するようになっている。
CCDカメラ51の画像信号は、A/D変換部23にて
ディジタルデータに変換された後に演算処理部53へと
送られる。
FIG. 3 is a block diagram of a color measuring apparatus according to another embodiment of the present invention. In this color measurement device, the configuration of the photometry section is different from that of the previous embodiment. That is, in the color measurement device of this embodiment, the imaging illumination 50 irradiates the sample 20 placed on the sample stage 21 from obliquely above, and the entire image or a partial area image of the upper surface of the sample 20 is photographed by the CCD camera 51. Is done. Sample 20 and CCD camera 51
Between them, a switchable interference filter 52 is arranged as spectral means, and only reflected light of a specific wavelength determined by the filter is introduced into the CCD camera 51.
The image signal from the CCD camera 51 is converted to digital data by the A / D converter 23 and then sent to the arithmetic processing unit 53.

【0017】この色彩測定装置では、試料台21又は測
光部の移動走査を行なうことなしに、CCDカメラ51
による1回の撮像すなわちデータの取得により、切替式
干渉フィルタ52のフィルタによって決まる特定波長に
対応した二次元画像データが得られる。この二次元画像
は、試料20上面の撮影領域における特定波長に対する
画像である。そして、切替式干渉フィルタ52を回転し
異なる波長に対する複数の二次元画像を得て、演算処理
部53にてこのデータを演算処理することにより二次元
色彩分布データを算出するようにしている。
In this color measuring apparatus, the CCD camera 51 can be used without moving and scanning the sample table 21 or the photometric unit.
, One-time imaging, that is, data acquisition, obtains two-dimensional image data corresponding to a specific wavelength determined by the filter of the switchable interference filter 52. This two-dimensional image is an image corresponding to a specific wavelength in an imaging region on the upper surface of the sample 20. Then, the switchable interference filter 52 is rotated to obtain a plurality of two-dimensional images for different wavelengths, and the arithmetic processing unit 53 performs arithmetic processing on the data to calculate two-dimensional color distribution data.

【0018】また上記二つの実施例では、試料の三次元
位置を得るために光学的な非接触式の測距部を用いてい
たが、接触式の計測手段を用いることもできる。例え
ば、試料台に載置された試料に対し上方からプローブを
静かに降下させ、そのプローブが試料表面に接触したこ
とを検知してプローブの降下動作を停止させる。そし
て、プローブの降下量に基づきZ軸方向の座標を算出す
る構成とするとよい。更に、測光及び測距を互いに障害
にならない位置にて行なえる構成とすれば、測距と測光
とを同時に実行し測定時間を短縮することができる。
In the above two embodiments, an optical non-contact type distance measuring unit is used to obtain the three-dimensional position of the sample. However, a contact type measuring unit may be used. For example, the probe is gently lowered from above with respect to the sample placed on the sample stage, and the lowering operation of the probe is stopped by detecting that the probe has contacted the sample surface. Then, it is preferable that the coordinates in the Z-axis direction are calculated based on the descending amount of the probe. Furthermore, if the photometry and the distance measurement can be performed at a position that does not hinder each other, the distance measurement and the photometry can be performed simultaneously, and the measurement time can be reduced.

【0019】本発明の色彩測定装置では、次のような動
作を行なう構成とすることもできる。通常、大きな凹凸
を有する試料に斜め上方から光を照射すると陰影を生じ
る。例えばほぼ全周から光を照射するように光源を配置
しても、均等に試料面を照らすのは困難である。そこ
で、まず測距を実行することにより試料表面の三次元位
置データを求める。これにより試料表面の凹凸の状態が
把握できるから、表面上の或る位置に対して、その周囲
の位置データの値を基に最適又はより好ましい照明の状
態を求める。そして、周囲に配置した複数の光源の発光
量をそれぞれ制御する。すなわち、周囲の凸部による影
ができにくいように、複数の各光源の発光量を制御す
る。これにより、試料表面の任意の点において光の照射
状態をほぼ均等にすることができる。
The color measuring device of the present invention may be configured to perform the following operation. Usually, when a sample having large unevenness is irradiated with light from obliquely above, a shadow is produced. For example, even if a light source is arranged to irradiate light from almost the entire circumference, it is difficult to uniformly illuminate the sample surface. Therefore, first, three-dimensional position data on the sample surface is obtained by performing distance measurement. As a result, the state of unevenness on the surface of the sample can be grasped, so that an optimum or more preferable illumination state is obtained for a certain position on the surface based on the value of position data around the position. Then, the light emission amounts of a plurality of light sources arranged in the periphery are controlled respectively. That is, the light emission amount of each of the plurality of light sources is controlled so that shadows due to the surrounding convex portions are not easily formed. This makes it possible to make the light irradiation state almost uniform at any point on the sample surface.

【0020】なお、上記実施例は一例であって、本発明
の趣旨の範囲で適宜変更や修正を行なえることは明らか
である。
The above embodiment is merely an example, and it is apparent that changes and modifications can be made as appropriate within the scope of the present invention.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明に係る色彩測定装置の一実施例の構成
図。
FIG. 1 is a configuration diagram of an embodiment of a color measurement device according to the present invention.

【図2】 本発明に係る色彩測定装置の処理動作を説明
するための模式図。
FIG. 2 is a schematic diagram for explaining a processing operation of the color measurement device according to the present invention.

【図3】 本発明に係る色彩測定装置の他の実施例の構
成図。
FIG. 3 is a configuration diagram of another embodiment of the color measurement device according to the present invention.

【図4】 従来の色彩測定装置の構成図。FIG. 4 is a configuration diagram of a conventional color measurement device.

【符号の説明】[Explanation of symbols]

10…測光部 20…試料 21…試料台 30…測距部 31…照射部 32…受光部 33…距離演算部 42…三次元座標算出部 43…合成処理部 DESCRIPTION OF SYMBOLS 10 ... Photometry part 20 ... Sample 21 ... Sample stand 30 ... Distance measuring part 31 ... Irradiation part 32 ... Light receiving part 33 ... Distance calculation part 42 ... Three-dimensional coordinate calculation part 43 ... Synthesis processing part

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 a)分光測定により、試料全体又は一部領
域の平面投影画像に対応した色彩分布情報を測定する色
彩測定手段と、 b)平面投影画像に対応した試料の空間位置情報を測定す
る位置測定手段と、 c)色彩分布情報及び空間位置情報を基に、三次元領域の
広がりを有する試料表面の色彩分布を算出する処理手段
と、 を備えることを特徴とする色彩測定装置。
1. a) color measurement means for measuring color distribution information corresponding to a plane projection image of the whole or a part of a sample by spectroscopic measurement; and b) measuring spatial position information of the sample corresponding to the plane projection image. A color measuring device that calculates a color distribution on a sample surface having a three-dimensional area based on the color distribution information and the spatial position information.
JP33499796A 1996-11-29 1996-11-29 Color measuring device Pending JPH10160573A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33499796A JPH10160573A (en) 1996-11-29 1996-11-29 Color measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33499796A JPH10160573A (en) 1996-11-29 1996-11-29 Color measuring device

Publications (1)

Publication Number Publication Date
JPH10160573A true JPH10160573A (en) 1998-06-19

Family

ID=18283586

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33499796A Pending JPH10160573A (en) 1996-11-29 1996-11-29 Color measuring device

Country Status (1)

Country Link
JP (1) JPH10160573A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7180634B2 (en) * 2000-05-26 2007-02-20 Lg Electronics Inc. Color quantization and method thereof and searching method using the same
EP1936945A1 (en) * 2006-12-21 2008-06-25 Gretag-Macbeth AG Scanning apparatus with electronic distance control and without distance sensor
US7633051B2 (en) 2006-12-18 2009-12-15 X-Rite Europe Gmbh Spectral photoelectric measurement transformer
US7821639B2 (en) 2006-12-21 2010-10-26 X-Rite Europe Gmbh Color measuring head and scanner device equipped therewith

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7180634B2 (en) * 2000-05-26 2007-02-20 Lg Electronics Inc. Color quantization and method thereof and searching method using the same
US7633051B2 (en) 2006-12-18 2009-12-15 X-Rite Europe Gmbh Spectral photoelectric measurement transformer
EP1936945A1 (en) * 2006-12-21 2008-06-25 Gretag-Macbeth AG Scanning apparatus with electronic distance control and without distance sensor
US7755773B2 (en) 2006-12-21 2010-07-13 X-Rite Europe Gmbh Scanner device
US7821639B2 (en) 2006-12-21 2010-10-26 X-Rite Europe Gmbh Color measuring head and scanner device equipped therewith

Similar Documents

Publication Publication Date Title
US7092105B2 (en) Method and apparatus for measuring the three-dimensional surface shape of an object using color informations of light reflected by the object
KR100716131B1 (en) Three-dimensional measuring instrument, filter striped plate, and illuminating means
US11754506B2 (en) Imaging assisted scanning spectroscopy for gem identification
US5706083A (en) Spectrophotometer and its application to a colorimeter
US11493331B2 (en) Three-dimensional shape measuring apparatus, three-dimensional shape measuring method, three-dimensional shape measuring computer-readable storage medium, and three-dimensional shape measuring computer-readable storage device
WO2000033026A1 (en) Apparatus and method to measure three-dimensional data
JP6230434B2 (en) Image inspection apparatus, image inspection method, image inspection program, and computer-readable recording medium
JP2004309240A (en) Three-dimensional shape measuring apparatus
JP2017122614A (en) Image generation method and inspection device
US11448500B2 (en) Three-dimensional shape measuring apparatus and method thereof utilizing point cloud data and top view map imaging
JP2018179665A (en) Inspection method and inspection device
JPH10160573A (en) Color measuring device
JP2012237613A (en) Shape measuring device and shape measuring method
JP2004340680A (en) Method for measuring surface profile and/or film thickness, and its apparatus
JP4192038B2 (en) Surface shape and / or film thickness measuring method and apparatus
JP2733170B2 (en) 3D shape measuring device
JP2001324455A (en) Visual inspection apparatus for mounting substrate
JPH0723684Y2 (en) Range finder
JP2018132390A (en) Film thickness measuring method and film thickness measuring device
JP2839059B2 (en) 3D shape measuring device
JPH06213633A (en) Three dimensional shape measurement device
KR102485992B1 (en) Method for Evaluating Thermal Protection Effect and Infrared Irradiation device Therefor
JPH06102021A (en) Three-dimensional shape measuring apparatus
JPH0658755A (en) Distance image catching device
Paveleva Colour moiré phenomenon and its application for topographical measurements