JPH10160480A - Angular velocity sensor - Google Patents

Angular velocity sensor

Info

Publication number
JPH10160480A
JPH10160480A JP8332969A JP33296996A JPH10160480A JP H10160480 A JPH10160480 A JP H10160480A JP 8332969 A JP8332969 A JP 8332969A JP 33296996 A JP33296996 A JP 33296996A JP H10160480 A JPH10160480 A JP H10160480A
Authority
JP
Japan
Prior art keywords
angular velocity
axis
vibrating body
piezoelectric element
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8332969A
Other languages
Japanese (ja)
Inventor
Hiroaki Terao
博明 寺尾
Norihiko Shiratori
典彦 白鳥
Tomoo Namiki
智雄 並木
Minoru Hatakeyama
稔 畠山
Kazutoyo Ichikawa
和豊 市川
Yoshiya Okada
恵也 岡田
Masato Handa
正人 半田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miyota KK
Miyota Co Ltd
Original Assignee
Miyota KK
Miyota Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miyota KK, Miyota Co Ltd filed Critical Miyota KK
Priority to JP8332969A priority Critical patent/JPH10160480A/en
Publication of JPH10160480A publication Critical patent/JPH10160480A/en
Pending legal-status Critical Current

Links

Landscapes

  • Gyroscopes (AREA)

Abstract

PROBLEM TO BE SOLVED: To suppress deterioration of the mechanical quality coefficient by forming a groove in the vicinity of a node part of bending vibration of a vibrating body, and supporting the groove with a supporting member. SOLUTION: The sensor part 20 is constituted of a vibrating body 21, a piezoelectric element 23 and a weight 28. The piezoelectric element 23 is attached to the upper face of the vibrating body 21, and a detection electrode 24, a feedback electrode 25 are set on the upper face of the piezoelectric element 23. An electrode 27 is set on the lower face of the piezoelectric element 23. The weight 28 having a center axis agreeing with a Z axis is attached to the lower face of the vibrating body 21. A U-shaped groove 21a is formed in the vicinity of a node part 26 of the vibrating body 21, which is supported by a cylindrical supporting member 29. The vibration state is stabilized more as the groove 21a is closer to the node part 26. When an angular velocity acts to the sensor, the weight 28 moves because of a Coriolis force, thereby deforming the sensor part 20. Electric charges are generated at the detection electrode 24. A direction and a size of the angular velocity are detected from the amount of the electric charges.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は圧電振動型角速度セ
ンサに関するものである。
The present invention relates to a piezoelectric vibration type angular velocity sensor.

【0002】[0002]

【従来の技術】姿勢制御、位置制御が可能な角速度セン
サは、ビデオカメラの手ぶれ防止や、自動車のナビゲー
ションに使うことを目的に小型化、高性能化の開発が行
われている。角速度センサにもいろいろあるが、サイズ
やコストの面では圧電振動型の角速度センサが有利であ
り、音叉型、音片型(四角柱)、円柱型、三角柱型等が
製品化されている。
2. Description of the Related Art Angular velocity sensors capable of attitude control and position control have been developed for miniaturization and high performance for the purpose of preventing camera shake of a video camera and for use in car navigation. Although there are various types of angular velocity sensors, a piezoelectric vibration type angular velocity sensor is advantageous in terms of size and cost, and a tuning fork type, a sound piece type (quadrangular prism), a cylindrical type, a triangular prism type, and the like have been commercialized.

【0003】図1は音片型圧電振動角速度センサを説明
するための構造図である。圧電振動型角速度センサの原
理は、振動している振動子の中心軸(Z軸)回りに、回
転角速度(ω0)が加わると、もとの振動方向(X軸)
に対し、直角方向(Y軸)に回転角速度に比例したコリ
オリ力(Fc)が生じる力学現象を利用したもので、駆
動用圧電セラミックスを用いてX軸に振動を与え、Y軸
に設けた検出用圧電セラミックスによってコリオリ力を
電圧として検出するものである。コリオリ力は一般に次
式により求められる。 Fc=2m×v×ω0 mは質
量、vは速度 、ω0は角速度である。
FIG. 1 is a structural diagram for explaining a sound piece type piezoelectric vibration angular velocity sensor. The principle of the piezoelectric vibration type angular velocity sensor is that when a rotational angular velocity (ω0) is applied around the center axis (Z axis) of a vibrating vibrator, the original vibration direction (X axis)
On the other hand, it utilizes a mechanical phenomenon that generates a Coriolis force (Fc) proportional to the rotational angular velocity in a direction perpendicular to the axis (Y axis). The Coriolis force is detected as a voltage by the piezoelectric ceramics. The Coriolis force is generally obtained by the following equation. Fc = 2m × v × ω0 m is mass, v is velocity, and ω0 is angular velocity.

【0004】振動周波数が同じであればX軸の振幅が大
きいほどY軸変位は大きく、検出電圧(感度)を高める
にはX軸の振幅が大きく、Y軸の検出効率を高めた共振
型振動角速度センサが有利である。音片型振動角速度セ
ンサは共振型であり、感度は高くできるが、駆動辺と検
出辺の振動姿勢を崩さず、振動周波数を正確に調整する
ことが難しく、しかも駆動辺と検出辺の振動特性の不一
致やズレによる顕著な特性変化や高機械的品質係数(Q
m)がゆえに応答速度が遅いなど問題も多い。
If the vibration frequency is the same, the displacement of the Y-axis increases as the amplitude of the X-axis increases, and the resonance-type vibration increases the amplitude of the X-axis and increases the detection efficiency of the Y-axis in order to increase the detection voltage (sensitivity). An angular velocity sensor is advantageous. The resonating type vibration angular velocity sensor is a resonance type and can have high sensitivity, but it is difficult to adjust the vibration frequency accurately without breaking the vibration posture of the driving side and the detection side, and the vibration characteristics of the driving side and the detection side Remarkable changes in characteristics due to discrepancies or deviations, and high mechanical quality factors (Q
There are also many problems such as a low response speed due to m).

【0005】一つの角速度センサで2軸回りの角速度を
検出できるものが望まれていた。(以下、2軸回りの角
速度を検出できる角速度センサを2軸角速度センサと呼
ぶ。)この要望に応えるものとして、振動体の表面に圧
電素子(以下、圧電効果を示す材料を総称して圧電素子
という。)を貼付して角速度により圧電素子が変形する
ことで変化する電荷の量を測定して角速度を検出するセ
ンサが開発された。図2はその角速度センサを斜め上か
ら見た分解斜視図である。図3は同じ角速度センサを斜
め下から見た分解斜視図である。振動体1の上面には、
下面に電極6を設け上面に4つの励振電極を兼ねる検出
電極5を設けた圧電素子2が貼付されている。振動体1
の下面には、上面に電極7を設け下面に帰還電極8を設
けた圧電素子3が貼付されている。帰還電極8の下面に
は重錘体9が貼付されセンサ部が構成されている。セン
サ部は円筒状支持部材10によりベンディング振動のノ
ード部4を固定されている。
[0005] It has been desired that one angular velocity sensor can detect angular velocities around two axes. (Hereinafter, an angular velocity sensor capable of detecting angular velocities around two axes is referred to as a two-axis angular velocity sensor.) In response to this demand, a piezoelectric element (hereinafter, a material exhibiting a piezoelectric effect is collectively referred to as a piezoelectric element on the surface of a vibrating body) A sensor has been developed that detects the angular velocity by measuring the amount of electric charge that changes when the piezoelectric element is deformed by the angular velocity after attaching the piezoelectric element. FIG. 2 is an exploded perspective view of the angular velocity sensor as viewed obliquely from above. FIG. 3 is an exploded perspective view of the same angular velocity sensor viewed obliquely from below. On the upper surface of the vibrating body 1,
The piezoelectric element 2 having the electrode 6 on the lower surface and the detection electrode 5 serving also as four excitation electrodes on the upper surface is attached. Vibrator 1
The piezoelectric element 3 having the electrode 7 on the upper surface and the feedback electrode 8 on the lower surface is attached to the lower surface of the piezoelectric element 3. A weight 9 is attached to the lower surface of the return electrode 8 to form a sensor unit. In the sensor section, the bending vibration node section 4 is fixed by a cylindrical support member 10.

【0006】電極6と振動体1は電気的に接続されて接
着されているので、振動体1と励振電極を兼ねる検出電
極5に交流をかけると圧電素子2が振動し振動体1も一
緒に振動する。4つの励振電極を兼ねる検出電極5は円
筒状支持部材10の内径より内側に設けてある。円筒状
支持部材10は図の如く2ヵ所をL字型をしたワイヤー
11で固定し、ワイヤー11の他端を基板に固定するも
のである。
Since the electrode 6 and the vibrating body 1 are electrically connected and bonded to each other, when an alternating current is applied to the vibrating body 1 and the detection electrode 5 which also serves as an excitation electrode, the piezoelectric element 2 vibrates and the vibrating body 1 is brought together. Vibrate. The detection electrodes 5 also serving as four excitation electrodes are provided inside the inner diameter of the cylindrical support member 10. As shown in the figure, the cylindrical support member 10 is fixed at two places with an L-shaped wire 11, and the other end of the wire 11 is fixed to a substrate.

【0007】角速度センサに角速度が作用するとコリオ
リ力により重錘体9が移動することでセンサ部が変形し
4つの検出電極5に電荷が発生する。4つの検出電極5
に発生する電荷の量により角速度の方向と強さが検出で
きる。
When an angular velocity acts on the angular velocity sensor, the weight 9 moves due to Coriolis force, thereby deforming the sensor section and generating electric charges on the four detection electrodes 5. Four detection electrodes 5
The direction and intensity of the angular velocity can be detected based on the amount of electric charge generated at the time.

【0008】振動体1を含む平面の中心に原点を定め、
同平面上にX軸、同平面上でX軸に直交するY軸、X
軸、Y軸に直交するZ軸を設定する。振動モードは何種
類も存在するが、角速度センサとして用いる振動モード
は、図4、図5に示すように重錘体9が縦方向に振れる
Z軸方向(縦方向)の振動モードと、図6、図7に示す
ように重錘体9が横方向に振れるX、Y軸方向(横方
向)の振動モードを用いる。
An origin is set at the center of the plane including the vibrating body 1,
X axis on the same plane, Y axis orthogonal to the X axis on the same plane, X
Set the Z axis perpendicular to the axis and the Y axis. Although there are many types of vibration modes, the vibration modes used as the angular velocity sensor include a vibration mode in the Z-axis direction (vertical direction) in which the weight body 9 vibrates in the vertical direction as shown in FIGS. 7, a vibration mode in the X and Y axis directions (lateral direction) in which the weight body 9 swings in the horizontal direction is used.

【0009】図4はZ軸方向の振動モードを示した断面
図でZ軸プラス方向に振れている状態を示している。図
5はZ軸方向の振動モードを示した断面図でZ軸マイナ
ス方向に振れている状態を示している。Z軸方向の振動
モードにおける共振周波数をZ軸方向の共振周波数と言
う。Z軸方向の振動モードは駆動(励振)モードとして
用いられる。ノード部4は図の如く振動体1の内部に存
在する。この従来例はノード部4を円筒状支持部材10
で間接的に支持している。
FIG. 4 is a cross-sectional view showing a vibration mode in the Z-axis direction, showing a state in which the vibration mode swings in the Z-axis plus direction. FIG. 5 is a cross-sectional view showing the vibration mode in the Z-axis direction, and shows a state in which the vibration mode swings in the Z-axis minus direction. The resonance frequency in the vibration mode in the Z-axis direction is called the resonance frequency in the Z-axis direction. The vibration mode in the Z-axis direction is used as a drive (excitation) mode. The node part 4 exists inside the vibrating body 1 as shown in the figure. In this conventional example, the node portion 4 is connected to a cylindrical support member 10.
Indirectly support in.

【0010】図6はX軸方向の振動モードを示した断面
図でX軸プラス方向に振れている状態を示している。図
7はX軸方向の振動モードを示した断面図でX軸マイナ
ス方向に振れている状態を示している。Y軸に関しても
同様であるのでX軸方向のみを図示した。X、Y軸方向
の振動モードにおける共振周波数を重錘体の共振周波数
と言う。X、Y軸方向の振動モードは検出モードとして
用いられる。一般的に、共振型角速度センサでは駆動モ
ードと検出モードの共振周波数が近いと検出感度が高く
なる。
FIG. 6 is a cross-sectional view showing a vibration mode in the X-axis direction, showing a state in which the vibration mode swings in the X-axis plus direction. FIG. 7 is a cross-sectional view showing a vibration mode in the X-axis direction, and shows a state of swinging in the X-axis minus direction. Since the same applies to the Y axis, only the X axis direction is shown. The resonance frequency in the vibration mode in the X and Y axis directions is called the resonance frequency of the weight body. The vibration mode in the X and Y axis directions is used as a detection mode. Generally, in a resonance type angular velocity sensor, the detection sensitivity increases when the resonance frequencies of the drive mode and the detection mode are close.

【0011】[0011]

【発明が解決しようとする課題】共振型角速度センサの
場合、検出感度を上げるためには、前述したように、駆
動(励振)モードと検出モードの共振周波数を、たとえ
ば重錘体にレーザ光を照射しトリミングする方法で近く
するとよい。その前提として、機械的品質係数(Qm)
はある程度高く設定する必要がある。機械的品質係数
(Qm)が高すぎると応答速度が遅くなるという問題も
あるが、ある程度高い場合は振動姿態が安定し検出感度
は上がる。逆に、機械的品質係数(Qm)が低ければ駆
動モードはもちろん、検出モードにおいても共振の強さ
が小さくなり、圧電素子に十分な変形を与えることがで
きない。従って、検出電極より得られる発生電荷が少な
くなり、検出感度は低下することになる。従来例では、
円筒状支持部材10が、センサ部のノード部を圧電素子
3を介して間接的に支持しているため、励振時に円筒状
支持部材10も周期的に変形する。それゆえ機械的品質
係数(Qm)は支持する前に比べて低くなる。加えて組
立誤差が大きい場合は、ノード部からさらにはずれた部
分を支持することとなり機械的品質係数(Qm)は著し
く低下する。また、検出精度を上げるためには振動姿態
を安定化させる必要がある。
In the case of a resonance type angular velocity sensor, in order to increase the detection sensitivity, as described above, the resonance frequency of the drive (excitation) mode and the detection mode, for example, the laser beam is applied to the weight body. It is advisable to use the method of irradiating and trimming to get closer. As a premise, the mechanical quality factor (Qm)
Needs to be set to some high level. If the mechanical quality factor (Qm) is too high, there is a problem that the response speed becomes slow. However, if the mechanical quality factor (Qm) is high to some extent, the vibration mode is stabilized and the detection sensitivity is increased. Conversely, if the mechanical quality factor (Qm) is low, the strength of resonance will be low not only in the drive mode but also in the detection mode, and it will not be possible to give sufficient deformation to the piezoelectric element. Therefore, the amount of charges generated from the detection electrode is reduced, and the detection sensitivity is reduced. In the conventional example,
Since the cylindrical support member 10 indirectly supports the node portion of the sensor unit via the piezoelectric element 3, the cylindrical support member 10 is also periodically deformed when excited. Therefore, the mechanical quality factor (Qm) is lower than before supporting. In addition, when the assembly error is large, a portion further deviating from the node portion is supported, and the mechanical quality factor (Qm) is significantly reduced. Further, in order to increase the detection accuracy, it is necessary to stabilize the vibration mode.

【0012】[0012]

【課題を解決するための手段】本発明は従来の角速度セ
ンサの課題を解決するためのものであり、小型、軽量で
検出感度、検出精度の高い角速度センサを提供する。
SUMMARY OF THE INVENTION The present invention has been made to solve the problems of the conventional angular velocity sensor, and provides a small and lightweight angular velocity sensor having high detection sensitivity and detection accuracy.

【0013】板状の振動体と、少なくとも励振用電極お
よび検出用電極が形成され該振動体の片面若しくは両面
に貼付される圧電素子と、重錘体と、ノード部を支持す
る支持部材とを有する角速度センサにおいて、該振動体
のベンディング振動のノード部近傍に溝を形成するとと
もに該支持部材は該溝を支持するようにする。このよう
な構成をとることでノード部を支持部材がほぼ直接支持
することができ、振動姿態を安定させ、機械的品質係数
(Qm)の低下を抑えることができる。これにより検出
感度、検出精度ともに向上する。
A plate-shaped vibrator, a piezoelectric element having at least an excitation electrode and a detection electrode formed thereon and attached to one or both surfaces of the vibrator, a weight, and a support member for supporting the node portion In the angular velocity sensor having the groove, a groove is formed in the vicinity of the node of the bending vibration of the vibrating body, and the support member supports the groove. With such a configuration, the supporting member can directly support the node portion almost directly, stabilizing the vibration mode, and suppressing a decrease in the mechanical quality factor (Qm). Thereby, both the detection sensitivity and the detection accuracy are improved.

【0014】[0014]

【発明の実施の形態】本発明を図面に基き詳細に説明す
る。図8は本発明の第一実施例で上面図である。図9は
本発明の第一実施例で正面断面図である。図8、図9の
如くXYZ三次元直交座標系を設定する。振動体21を
含む平面の面上中心に原点22を定め、同平面上にX
軸、同平面上でX軸に直交するY軸、X軸、Y軸に直交
するZ軸を設定する。振動体21の上面には、円板状の
圧電素子23が、その面上中心と原点22とが一致する
ように貼付されている。圧電素子23の上面には4つの
扇型をした励振電極を兼ねる検出電極24と略十字型を
した帰還電極25がノード部26の付近から内側に設け
られている。4つの励振電極を兼ねる検出電極24はX
軸、Y軸上に配置され、かつ、X軸、Y軸に対して線対
称に形成されている。略十字型をした帰還電極25もX
軸、Y軸に対して略対称に形成されている。圧電素子2
3の下面には原点22を中心とし4つの励振電極を兼ね
る検出電極24の外形よりやや大きい円形をした電極2
7が設けられている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail with reference to the drawings. FIG. 8 is a top view of the first embodiment of the present invention. FIG. 9 is a front sectional view of the first embodiment of the present invention. An XYZ three-dimensional orthogonal coordinate system is set as shown in FIGS. An origin 22 is set at the center of the plane including the vibrating body 21 and X
The axis, the Y axis orthogonal to the X axis on the same plane, the X axis, and the Z axis orthogonal to the Y axis are set. A disc-shaped piezoelectric element 23 is attached to the upper surface of the vibrating body 21 so that the center on the surface and the origin 22 coincide. On the upper surface of the piezoelectric element 23, four fan-shaped detection electrodes 24 also serving as excitation electrodes and a substantially cross-shaped feedback electrode 25 are provided inside from near the node portion 26. The detection electrode 24 also serving as the four excitation electrodes is X
It is arranged on the axis and the Y axis, and is formed line-symmetrically with respect to the X and Y axes. The cross-shaped return electrode 25 is also X
It is formed substantially symmetrically with respect to the axis and the Y axis. Piezoelectric element 2
On the lower surface of 3, an electrode 2 having a circular shape slightly larger than the outer shape of the detection electrode 24 also serving as four excitation electrodes centered on the origin 22.
7 are provided.

【0015】振動体21の下面には重錘体28が貼付さ
れ、重錘体28の中心軸はZ軸と一致している。ここで
重錘体28は、2つの円柱を中心軸を一致させて重ね合
わせた形状に形成されている。第一実施例では重錘体に
円柱を組み合わせた形状のものを用いたが、その中心軸
上に重心があるように形成されていれば形状は問わな
い。しかしながら、簡単に精度よく加工するには円柱ま
たは円柱を組み合わせた形状のものが好ましい。固定方
法は溶接等でもかまわない。振動体21と圧電素子23
と重錘体28とでセンサ部20が構成される。振動体2
1には、ノード部26近傍にコの字型をした溝21aが
設けられている。センサ部20の形状によりノード部2
6の位置が異なるため、センサ部20の形状により溝2
1aの形状は決定される。円筒状支持部材29は溝21
aを支持している。円筒状支持部材29の固定方法は接
着剤を用いたが、溶接等でもかまわない。また、接着剤
は溝21aに充填されていてもかまわない。ここで、た
とえば弾性接着剤を用いると振動漏れを軽減することが
できる。溝21aはノード部26を円筒状支持部材29
が直接支持できる位置に形成するのがもっとも好まし
い。実際には加工誤差、組立誤差により、ノード部26
の位置は微妙に変化し、円筒状支持部材29がノード部
26を直接支持することは難しいが、溝21aがノード
部に近ければ近いほど円筒状支持部材29に漏れる振動
が少なくなり、振動姿態が安定する。
A weight 28 is attached to the lower surface of the vibrating body 21, and the center axis of the weight 28 coincides with the Z axis. Here, the weight body 28 is formed in a shape in which two cylinders are overlapped with their central axes aligned. In the first embodiment, the shape in which the weight is formed by combining the cylinder with the weight is used, but the shape is not limited as long as the weight is formed so as to have the center of gravity on the central axis. However, for easy and accurate processing, a cylinder or a combination of cylinders is preferable. The fixing method may be welding or the like. Vibrator 21 and piezoelectric element 23
And the weight body 28 constitute the sensor section 20. Vibrator 2
1 is provided with a U-shaped groove 21 a near the node portion 26. Depending on the shape of the sensor unit 20, the node unit 2
6 are different from each other, so that the shape of the
The shape of 1a is determined. The cylindrical support member 29 has the groove 21
a. Although the adhesive is used for fixing the cylindrical support member 29, welding or the like may be used. The adhesive may be filled in the groove 21a. Here, for example, when an elastic adhesive is used, vibration leakage can be reduced. The groove 21a is used to connect the node portion 26 to the cylindrical support member 29.
Is most preferably formed at a position where it can be directly supported. Actually, due to processing errors and assembly errors, the node section 26
Is slightly changed, and it is difficult for the cylindrical support member 29 to directly support the node portion 26. However, as the groove 21a is closer to the node portion, the vibration leaking to the cylindrical support member 29 is reduced, and the vibration mode is changed. Becomes stable.

【0016】振動体21は恒弾性材料としてエリンバ材
を用い、圧電素子23はPZTを用いた。振動体21と
圧電素子23はエポキシ系の接着剤を用いて接着した。
圧電素子23の平面上に蒸着によりAg−Cr、あるい
はNi−Cr等の合金の薄膜にて電極を形成した。電極
形成は、スパッタ、スクリーン印刷などの方法を用いて
もかまわない。重錘体28と円筒状支持部材29はエリ
ンバ材を用いた。材質は所定の機能を満たすものであれ
ば、これに限定されるものではない。
The vibrating body 21 uses an elinvar material as a constant elastic material, and the piezoelectric element 23 uses PZT. The vibrating body 21 and the piezoelectric element 23 were bonded using an epoxy adhesive.
Electrodes were formed on the plane of the piezoelectric element 23 by a thin film of an alloy such as Ag-Cr or Ni-Cr by vapor deposition. The electrodes may be formed by a method such as sputtering or screen printing. The weight body 28 and the cylindrical support member 29 are made of an elinvar material. The material is not limited to this as long as it satisfies a predetermined function.

【0017】電極27と振動体21は電気的に接続され
て接着されているので、振動体21と4つの励振電極を
兼ねる検出電極24に交流をかけると、圧電素子23
は、径方向に伸縮することにより振動体21と一緒にZ
軸方向に振動する。円筒状支持部材29で支持してお
り、4つの励振用電極を兼ねる検出電極24は円筒状支
持部材29の内径付近から内側に設けてある。
Since the electrode 27 and the vibrating body 21 are electrically connected and adhered to each other, when an alternating current is applied to the vibrating body 21 and the detection electrode 24 serving also as four excitation electrodes, the piezoelectric element 23
Is Z together with the vibrating body 21 by expanding and contracting in the radial direction.
Vibrates in the axial direction. The detection electrode 24 supported by the cylindrical support member 29 and also serving as the four excitation electrodes is provided from the vicinity of the inner diameter of the cylindrical support member 29 to the inside.

【0018】角速度センサに角速度が作用するとコリオ
リ力により重錘体28が移動することでセンサ部20が
変形し4つの励振電極を兼ねる検出電極24に電荷が発
生する。4つの励振電極を兼ねる検出電極24に発生す
る電荷の量により角速度の方向と大きさが検出できる。
When an angular velocity acts on the angular velocity sensor, the weight body 28 moves by Coriolis force, thereby deforming the sensor section 20 and generating charges on the detection electrodes 24 which also serve as four excitation electrodes. The direction and magnitude of the angular velocity can be detected based on the amount of charge generated on the detection electrode 24 also serving as the four excitation electrodes.

【0019】図10は本発明の第二実施例で上面図であ
る。図11は本発明の第二実施例で正面断面図である。
第一実施例は圧電素子を1枚用いたが、第二実施例は圧
電素子を2枚用いてセンサ部を構成したものである。
FIG. 10 is a top view of the second embodiment of the present invention. FIG. 11 is a front sectional view of the second embodiment of the present invention.
In the first embodiment, one piezoelectric element is used, whereas in the second embodiment, a sensor unit is configured by using two piezoelectric elements.

【0020】図10、図11の如くXYZ三次元直交座
標系を設定する。振動体41を含む平面の面上中心に原
点42を定め、同平面上にX軸、同平面上でX軸に直交
するY軸、X軸、Y軸に直交するZ軸を設定する。振動
体41の上面には、円板状の圧電素子43が、その面上
中心と原点42とが一致するように貼付されている。圧
電素子43の上面には4つの扇型をした検出電極44と
略十字型をした帰還電極45がノード部46の付近から
内側に設けられている。4つの検出電極44はX軸、Y
軸上で、かつ、X軸、Y軸に対して線対称に形成されて
いる。略十字型をした帰還電極25もX軸、Y軸に対し
て略対称に形成されている。圧電素子43の下面には原
点42を中心とし4つの検出電極44の外形よりやや大
きい円形をした電極47が設けられている。
An XYZ three-dimensional orthogonal coordinate system is set as shown in FIGS. An origin 42 is determined at the center of the plane including the vibrating body 41, and an X axis is set on the plane, a Y axis orthogonal to the X axis on the plane, and a Z axis orthogonal to the X axis and the Y axis. A disk-shaped piezoelectric element 43 is attached to the upper surface of the vibrating body 41 such that the center on the surface and the origin 42 coincide. On the upper surface of the piezoelectric element 43, four fan-shaped detection electrodes 44 and a substantially cross-shaped feedback electrode 45 are provided from the vicinity of the node portion 46 to the inside. The four detection electrodes 44 are X axis, Y
It is formed on the axis and symmetrically with respect to the X axis and the Y axis. The substantially cross-shaped feedback electrode 25 is also formed substantially symmetrically with respect to the X axis and the Y axis. On the lower surface of the piezoelectric element 43, an electrode 47 having a circular shape slightly larger than the outer shape of the four detection electrodes 44 is provided around the origin 42.

【0021】振動体41の下面には、後述する円筒状支
持部材52の内径より径の小さい円板状で、かつ、中心
部分に貫通穴を設けたドーナツ状の圧電素子48が、そ
の面上中心と原点42と一致するように貼付されてい
る。圧電素子48の上面には、その面上中心を中心とす
る円環形状をした電極49が設けられている。圧電素子
48の下面には、その面上中心を中心とする円環形状を
した励振電極50が設けられている。さらに、振動体4
1の下面には重錘体51が貼付され、重錘体51の中心
軸はZ軸と一致している。ここで重錘体51は、2つの
円柱51aと51bの中心軸を一致させて重ね合わせた
形状に形成されている。また、圧電素子48の貫通穴は
円柱51aの径より大きく形成されている。第二実施例
でも重錘体に円柱を組み合わせた形状のものを用いた
が、第一実施例で述べたように、その中心軸上に重心が
あるように形成されていれば形状は問わない。固定方法
は溶接等でもかまわない。振動体41と圧電素子43、
48と重錘体51とでセンサ部40が構成される。振動
体41には、ノード部46近傍にコの字型をした溝41
aが設けられている。センサ部40の形状によりノード
部46の位置が異なるため、センサ部40の形状により
溝41aの形状は決定される。円筒状支持部材52は溝
41aを支持している。支持方法は接着剤を用いたが、
溶接等でもかまわない。また、接着剤は溝41aに充填
されていてもかまわない。ここで、たとえば弾性接着剤
を用いると振動漏れを軽減することができる。溝41a
はノード部46を円筒状支持部材52が直接支持できる
位置に形成するのがもっとも好ましい。実際には加工誤
差、組立誤差により、ノード部46の位置は微妙に変化
し、円筒状支持部材52がノード部46を直接支持する
ことは難しいが、溝41aがノード部に近ければ近いほ
ど円筒状支持部材52に漏れる振動が少なくなり、振動
姿態が安定する。
On the lower surface of the vibrating body 41, a donut-shaped piezoelectric element 48 having a disk shape smaller in diameter than the inner diameter of a cylindrical support member 52 to be described later and having a through hole at the center is provided on the lower surface. It is affixed so as to coincide with the center and the origin 42. On the upper surface of the piezoelectric element 48, an electrode 49 having an annular shape centered on the center on the surface is provided. The lower surface of the piezoelectric element 48 is provided with an excitation electrode 50 having an annular shape centered on the center on the surface. Further, the vibrating body 4
A weight body 51 is attached to the lower surface of 1, and the central axis of the weight body 51 coincides with the Z axis. Here, the weight body 51 is formed in a shape in which the center axes of the two cylinders 51a and 51b are aligned and overlapped. The through hole of the piezoelectric element 48 is formed to be larger than the diameter of the column 51a. Also in the second embodiment, a shape obtained by combining a cylinder with a weight body was used, but as described in the first embodiment, any shape may be used as long as it is formed to have a center of gravity on its central axis. . The fixing method may be welding or the like. Vibrating body 41 and piezoelectric element 43,
The sensor unit 40 is composed of the weight 48 and the weight 51. The vibrating body 41 has a U-shaped groove 41 near the node portion 46.
a is provided. Since the position of the node portion 46 differs depending on the shape of the sensor portion 40, the shape of the groove 41a is determined by the shape of the sensor portion 40. The cylindrical support member 52 supports the groove 41a. The supporting method used an adhesive,
It may be welding. Further, the adhesive may be filled in the groove 41a. Here, for example, when an elastic adhesive is used, vibration leakage can be reduced. Groove 41a
It is most preferable to form the node portion 46 at a position where the cylindrical support member 52 can directly support the node portion 46. Actually, the position of the node portion 46 is slightly changed due to a processing error and an assembly error, and it is difficult for the cylindrical support member 52 to directly support the node portion 46. However, the closer the groove 41a is to the node portion, the more the cylindrical portion becomes. The vibration leaking to the support member 52 is reduced, and the vibration state is stabilized.

【0022】振動体41は恒弾性材料としてエリンバ材
を用い、圧電素子43、48はPZTを用いた。振動体
41と圧電素子43、48はエポキシ系の接着剤を用い
て接着した。圧電素子43、48の平面上に蒸着により
Ag−Cr、あるいはNi−Cr等の合金の薄膜にて電
極を形成した。電極形成は、スパッタ、スクリーン印刷
などの方法を用いてもかまわない。重錘体51と円筒状
支持部材52はエリンバ材を用いた。材質は所定の機能
を満たすものであれば、これに限定されるものではな
い。
The vibrating body 41 uses an elinvar material as a constant elastic material, and the piezoelectric elements 43 and 48 use PZT. The vibrating body 41 and the piezoelectric elements 43 and 48 were bonded using an epoxy-based adhesive. Electrodes were formed on the flat surfaces of the piezoelectric elements 43 and 48 by vapor deposition using a thin film of an alloy such as Ag-Cr or Ni-Cr. The electrodes may be formed by a method such as sputtering or screen printing. The weight body 51 and the cylindrical support member 52 are made of an elinvar material. The material is not limited to this as long as it satisfies a predetermined function.

【0023】電極49と振動体41は電気的に接続され
て接着されているので、振動体41と励振電極50に交
流をかけると、圧電素子48は、径方向に伸縮すること
により振動体41と一緒にZ軸方向に振動する。円筒状
支持部材52で支持しており、4つの検出電極44は円
筒状支持部材52の内径付近から内側に設けてある。
Since the electrode 49 and the vibrating body 41 are electrically connected and adhered to each other, when an alternating current is applied to the vibrating body 41 and the excitation electrode 50, the piezoelectric element 48 expands and contracts in the radial direction, thereby causing the vibrating body 41 to expand and contract. Vibrates in the Z-axis direction together with. It is supported by a cylindrical support member 52, and the four detection electrodes 44 are provided from near the inner diameter of the cylindrical support member 52 to the inside.

【0024】角速度センサに角速度が作用するとコリオ
リ力により重錘体51が移動することでセンサ部40が
変形し4つの検出電極44に電荷が発生する。4つの検
出電極44に発生する電荷の量により角速度の方向と大
きさが検出できる。
When an angular velocity acts on the angular velocity sensor, the weight 51 moves by Coriolis force, so that the sensor section 40 is deformed and electric charges are generated on the four detection electrodes 44. The direction and magnitude of the angular velocity can be detected based on the amount of charge generated on the four detection electrodes 44.

【0025】[0025]

【発明の効果】本発明は前記のような構成にすることで
次のような効果が生じる。 1 振動体に溝を設け、該溝を支持することで、ノード
部を支持部材がほぼ直接支持することができ振動姿態が
安定する。 2 機械的品質係数(Qm)の低下を抑えることができ
る。 3 検出感度、検出精度ともに向上する。
According to the present invention, the following effects can be obtained by employing the above-described structure. (1) By providing a groove in the vibrating body and supporting the groove, the supporting member can directly support the node portion almost stably, and the vibration state is stabilized. (2) A decrease in the mechanical quality factor (Qm) can be suppressed. 3 Both detection sensitivity and detection accuracy are improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】音片型圧電振動角速度センサを説明するための
構造図。
FIG. 1 is a structural diagram for explaining a sound piece type piezoelectric vibration angular velocity sensor.

【図2】本発明に係る角速度センサの従来例を斜め上か
ら見た分解斜視図。
FIG. 2 is an exploded perspective view of a conventional example of an angular velocity sensor according to the present invention as viewed obliquely from above.

【図3】本発明に係る角速度センサの従来例を斜め下か
ら見た分解斜視図。
FIG. 3 is an exploded perspective view of a conventional example of an angular velocity sensor according to the present invention as viewed obliquely from below.

【図4】本発明に係る角速度センサの従来例のZ軸方向
の振動モードを示した断面図。
FIG. 4 is a sectional view showing a vibration mode in the Z-axis direction of a conventional example of the angular velocity sensor according to the present invention.

【図5】本発明に係る角速度センサの従来例のZ軸方向
の振動モードを示した断面図。
FIG. 5 is a sectional view showing a vibration mode in the Z-axis direction of a conventional example of the angular velocity sensor according to the present invention.

【図6】本発明に係る角速度センサの従来例のX、Y軸
方向の振動モードを示した断面図。
FIG. 6 is a sectional view showing a vibration mode in the X and Y axis directions of a conventional example of the angular velocity sensor according to the present invention.

【図7】本発明に係る角速度センサの従来例のX、Y軸
方向の振動モードを示した断面図。
FIG. 7 is a cross-sectional view showing a vibration mode in the X and Y axis directions of a conventional example of the angular velocity sensor according to the present invention.

【図8】本発明に係る角速度センサの第一実施例で上面
図。
FIG. 8 is a top view of the first embodiment of the angular velocity sensor according to the present invention.

【図9】本発明に係る角速度センサの第一実施例で正面
断面図。
FIG. 9 is a front sectional view of the first embodiment of the angular velocity sensor according to the present invention.

【図10】本発明に係る角速度センサの第二実施例で上
面図。
FIG. 10 is a top view of an angular velocity sensor according to a second embodiment of the present invention.

【図11】本発明に係る角速度センサの第二実施例で正
面断面図。
FIG. 11 is a front sectional view of a second embodiment of the angular velocity sensor according to the present invention.

【符号の説明】[Explanation of symbols]

1 振動体 2 圧電素子 3 圧電素子 4 ノード部 5 励振電極を兼ねる検出電極 6 電極 7 電極 8 帰還電極 9 重錘体 10 円筒状支持部材 11 ワイヤー 20 センサ部 21 振動体 21a 溝 22 原点 23 圧電素子 24 励振電極を兼ねる検出電極 25 帰還電極 26 ノード部 27 電極 28 重錘体 29 円筒状支持部材 40 センサ部 41 振動体 41a 溝 42 原点 43 圧電素子 44 検出電極 45 帰還電極 46 ノード部 47 電極 48 圧電素子 49 電極 50 励振電極 51 重錘体 51a 円柱 51b 円柱 52 円筒状支持部材 DESCRIPTION OF SYMBOLS 1 Vibration body 2 Piezoelectric element 3 Piezoelectric element 4 Node part 5 Detection electrode 6 serving also as excitation electrode 6 Electrode 7 Electrode 8 Return electrode 9 Weight body 10 Cylindrical support member 11 Wire 20 Sensor part 21 Vibration body 21a Groove 22 Origin 23 Piezoelectric element 24 Detection electrode also serving as excitation electrode 25 Return electrode 26 Node part 27 Electrode 28 Weight body 29 Cylindrical support member 40 Sensor part 41 Vibration body 41a Groove 42 Origin 43 Piezoelectric element 44 Detection electrode 45 Feedback electrode 46 Node part 47 Electrode 48 Piezoelectric Element 49 Electrode 50 Excitation electrode 51 Weight 51a Column 51b Column 52 Cylindrical support member

───────────────────────────────────────────────────── フロントページの続き (72)発明者 畠山 稔 長野県北佐久郡御代田町大字御代田4107番 地5 ミヨタ株式会社内 (72)発明者 市川 和豊 長野県北佐久郡御代田町大字御代田4107番 地5 ミヨタ株式会社内 (72)発明者 岡田 恵也 長野県北佐久郡御代田町大字御代田4107番 地5 ミヨタ株式会社内 (72)発明者 半田 正人 長野県北佐久郡御代田町大字御代田4107番 地5 ミヨタ株式会社内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Minoru Hatakeyama 4107 Miyota, Miyoshida-cho, Kitasaku-gun, Nagano Prefecture 5 Inside Miyota Co., Ltd. (72) Inventor Kazutoyo Ichikawa 4107 Miyoshida, Miyoshida-cho, Kitasaku-gun, Nagano prefecture Inside Miyota Co., Ltd. (72) Keiya Okada, Inventor 4107, Miyoshida, Miyoshida-cho, Kitasaku-gun, Nagano Prefecture 5 Inside Miyota Co., Ltd. (72) Inventor Masato Handa, 4107 Miyoshida, Miyoda-machi, Kitasaku-gun, Nagano Prefecture, Japan 5 Inside

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 板状の振動体と、少なくとも励振用電極
および検出用電極が形成され該振動体の片面若しくは両
面に貼付される圧電素子と、重錘体と、ノード部を支持
する支持部材とを有する角速度センサにおいて、該振動
体のベンディング振動のノード部近傍に溝を形成すると
ともに該支持部材は該溝を支持することを特徴とする角
速度センサ。
1. A plate-shaped vibrating body, a piezoelectric element on which at least an excitation electrode and a detecting electrode are formed and attached to one or both sides of the vibrating body, a weight body, and a supporting member for supporting a node portion The angular velocity sensor according to claim 1, wherein a groove is formed near a node portion of the bending vibration of the vibrating body, and the support member supports the groove.
JP8332969A 1996-11-27 1996-11-27 Angular velocity sensor Pending JPH10160480A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8332969A JPH10160480A (en) 1996-11-27 1996-11-27 Angular velocity sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8332969A JPH10160480A (en) 1996-11-27 1996-11-27 Angular velocity sensor

Publications (1)

Publication Number Publication Date
JPH10160480A true JPH10160480A (en) 1998-06-19

Family

ID=18260852

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8332969A Pending JPH10160480A (en) 1996-11-27 1996-11-27 Angular velocity sensor

Country Status (1)

Country Link
JP (1) JPH10160480A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004537733A (en) * 2001-08-10 2004-12-16 ザ・ボーイング・カンパニー Isolated resonator gyroscope

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004537733A (en) * 2001-08-10 2004-12-16 ザ・ボーイング・カンパニー Isolated resonator gyroscope

Similar Documents

Publication Publication Date Title
JP2004537733A (en) Isolated resonator gyroscope
JPH10160476A (en) Rate gyroscope with mechanical resonant body
JP2000074673A (en) Compound movement sensor
JPH08278146A (en) Vibrating gyro
JPS62106314A (en) Vibration gyroscope
JP2009074996A (en) Piezoelectric vibration gyro
JPH0743262B2 (en) Vibrating gyro
JPH10160480A (en) Angular velocity sensor
JPH09166445A (en) Angular velocity sensor
JPH0989569A (en) Vibrating gyro
JPH10300477A (en) Angular velocity sensor
JP2002277247A (en) Vibratory gyro
JPH09287956A (en) Angular velocity sensor
JPH10160481A (en) Angular velocity sensor
JPH1068626A (en) Angular speed sensor
JPH09196685A (en) Angular velocity sensor
JPH08304078A (en) Angular speed sensor
JPH09325033A (en) Angular velocity sensor
JP2003166830A (en) Vibration gyroscope and adjusting method for vibration gyroscope
JPH0968543A (en) Angular velocity sensor
JPH10148533A (en) Drive circuit for angular velocity sensor, and angular velocity sensor
JP2000337886A (en) Microgyroscope
JPH08201067A (en) Angular speed sensor
JPH09113281A (en) Angular velocity sensor
JPH1172332A (en) Method for adjusting angular velocity sensor