JPH10148533A - Drive circuit for angular velocity sensor, and angular velocity sensor - Google Patents

Drive circuit for angular velocity sensor, and angular velocity sensor

Info

Publication number
JPH10148533A
JPH10148533A JP8320972A JP32097296A JPH10148533A JP H10148533 A JPH10148533 A JP H10148533A JP 8320972 A JP8320972 A JP 8320972A JP 32097296 A JP32097296 A JP 32097296A JP H10148533 A JPH10148533 A JP H10148533A
Authority
JP
Japan
Prior art keywords
angular velocity
velocity sensor
electrode
resonant frequency
piezoelectric element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8320972A
Other languages
Japanese (ja)
Inventor
Tomoo Namiki
智雄 並木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miyota KK
Miyota Co Ltd
Original Assignee
Miyota KK
Miyota Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miyota KK, Miyota Co Ltd filed Critical Miyota KK
Priority to JP8320972A priority Critical patent/JPH10148533A/en
Publication of JPH10148533A publication Critical patent/JPH10148533A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a drive circuit, whose adjusting time is shortened, by connecting a variable resistance to a impedance conversion circuit, selecting a resistance value, changing the resonant frequency in Z-axis direction of a vibrating body and the resonant frequency of a weight body, and reducing the frequency difference. SOLUTION: The impedance conversion circuit 32 is connected to the variable resistance 31, and then an oscillation circuit 30 is connected to the resistance 31. The value of the variable resistance 31 is set to 0, and the resonant frequency in the Z-axis direction of a vibrating body and the resonant frequency of a weight body are measured. At this time, when the resonant frequency of the weight body is larger than the resonant frequency in the Z-axis direction, the weight body is irradiated with a laser beam so as to be trimmed, and the resonant frequency in the Z-axis direction is adjusted approximately so as to become larger that the resonant frequency of the weight body. When the resonant frequency cannot be adjusted approximately, it is removed as a defect. The value of the variable resistance 31 is made large, it is misread, and the resonant frequency is adjusted so as to become a prescribed frequency difference. When the resonant frequency of the weight body is larger than the resonant frequency in the Z-axis direction, the value of the variable resistance 31 is reduced so as to match the prescribed frequency difference.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は圧電振動型角速度セ
ンサの駆動回路及び角速度センサに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a driving circuit for a piezoelectric vibration type angular velocity sensor and an angular velocity sensor.

【0002】[0002]

【従来の技術】姿勢制御、位置制御が可能な角速度セン
サは、ビデオカメラの手ぶれ防止や、自動車のナビゲー
ションに使うことを目的に小型化、高性能化の開発が行
われている。角速度センサにもいろいろあるが、サイズ
やコストの面では圧電振動型の角速度センサが有利であ
り、音叉型、音片型(四角柱)、円柱型、三角柱型等が
製品化されている。
2. Description of the Related Art Angular velocity sensors capable of attitude control and position control have been developed for miniaturization and high performance for the purpose of preventing camera shake of a video camera and for use in car navigation. Although there are various types of angular velocity sensors, a piezoelectric vibration type angular velocity sensor is advantageous in terms of size and cost, and a tuning fork type, a sound piece type (quadrangular prism), a cylindrical type, a triangular prism type, and the like have been commercialized.

【0003】図1は音片型圧電振動角速度センサを説明
するための構造図である。圧電振動型角速度センサの原
理は、振動している振動子の中心軸(Z軸)回りに、回
転角速度(Ω0)が加わると、もとの振動方向(X軸)
に対し、直角方向(Y軸)に回転角速度に比例したコリ
オリ力(Fc)が生じる力学現象を利用したもので、駆
動用圧電セラミックスを用いてX軸に振動を与え、Y軸
に設けた検出用圧電セラミックスによってコリオリ力を
電圧として検出するものである。コリオリ力は一般に次
式により求められる。 Fc=2m×v×Ω0 mは質
量、vは速度 、Ω0は角速度である。
FIG. 1 is a structural diagram for explaining a sound piece type piezoelectric vibration angular velocity sensor. The principle of the piezoelectric vibration type angular velocity sensor is that when a rotational angular velocity (Ω0) is applied around the center axis (Z axis) of a vibrating vibrator, the original vibration direction (X axis)
On the other hand, it utilizes a mechanical phenomenon that generates a Coriolis force (Fc) proportional to the rotational angular velocity in a direction perpendicular to the axis (Y axis). The Coriolis force is detected as a voltage by the piezoelectric ceramics. The Coriolis force is generally obtained by the following equation. Fc = 2m × v × Ω0 m is mass, v is velocity, and Ω0 is angular velocity.

【0004】振動周波数が同じであればX軸の振幅が大
きいほどY軸変位は大きく、検出電圧(感度)を高める
にはX軸の振幅が大きく、Y軸の検出効率を高めた共振
型振動角速度センサが有利である。音片型振動角速度セ
ンサは共振型であり、感度は高くできるが、駆動辺と検
出辺の振動姿勢を崩さず、共振周波数を正確に調整する
ことが難しく、しかも駆動辺と検出辺の共振特性の不一
致やズレによる顕著な特性変化や高機械的品質係数(Q
m)がゆえに応答速度が遅いなど問題も多い。
If the vibration frequency is the same, the displacement of the Y-axis increases as the amplitude of the X-axis increases, and the resonance-type vibration increases the amplitude of the X-axis and increases the detection efficiency of the Y-axis in order to increase the detection voltage (sensitivity). An angular velocity sensor is advantageous. The resonating type vibration angular velocity sensor is a resonance type and can increase sensitivity, but it is difficult to accurately adjust the resonance frequency without breaking the vibration posture of the driving side and the detection side, and the resonance characteristics of the driving side and the detection side Remarkable changes in characteristics due to discrepancies or deviations, and high mechanical quality factors (Q
There are also many problems such as a low response speed due to m).

【0005】一つの角速度センサで2軸の角速度を検出
できるものが望まれていたが、この要望に応えるものと
して、振動体の表面に圧電素子を貼付して角速度により
圧電素子が変形することで変化する電荷の量を測定して
角速度を検出するセンサが開発された。図2はその角速
度センサを斜め上から見た分解斜視図である。図3は同
じ角速度センサを斜め下から見た分解斜視図である。振
動体1の上面には、下面に電極6を設け上面に4つの励
振電極を兼ねる検出電極5を設けた圧電素子2が貼付さ
れている。振動体1の下面には、上面に電極7を設け下
面に帰還電極8を設けた圧電素子3が貼付されている。
帰還電極8の下面には重錘体9が貼付され角速度センサ
部が構成されている。角速度センサ部は円筒状支持部材
10によりベンディング振動のノード部4を固定されて
いる。
There has been a demand for a sensor capable of detecting two-axis angular velocities with a single angular velocity sensor. To meet this demand, a piezoelectric element is attached to the surface of a vibrating body and the piezoelectric element is deformed by the angular velocity. Sensors have been developed that measure the amount of changing charge to detect angular velocity. FIG. 2 is an exploded perspective view of the angular velocity sensor as viewed obliquely from above. FIG. 3 is an exploded perspective view of the same angular velocity sensor viewed obliquely from below. A piezoelectric element 2 having an electrode 6 on the lower surface and a detection electrode 5 serving as four excitation electrodes on the upper surface is attached to the upper surface of the vibrating body 1. A piezoelectric element 3 having an electrode 7 on the upper surface and a feedback electrode 8 on the lower surface is attached to the lower surface of the vibrator 1.
A weight 9 is attached to the lower surface of the return electrode 8 to form an angular velocity sensor. In the angular velocity sensor unit, the bending vibration node unit 4 is fixed by a cylindrical support member 10.

【0006】電極6と振動体1は電気的に接続されて接
着されているので、振動体1と励振電極を兼ねる検出電
極5に交流をかけると、圧電素子2が振動し、振動体1
も一緒に振動する。円筒状支持部材10で支持しており
4つの励振用電極を兼ねる検出電極5は円筒状支持部材
10の内径より内側に設けてある。円筒状支持部材10
は図の如く2ヵ所をワイヤー11で固定し、ワイヤー1
1の他端を基板に固定するものである。
Since the electrode 6 and the vibrating body 1 are electrically connected and adhered, when an alternating current is applied to the vibrating body 1 and the detection electrode 5 which also serves as an excitation electrode, the piezoelectric element 2 vibrates, and the vibrating body 1 is vibrated.
Also vibrate together. The detection electrodes 5 supported by the cylindrical support member 10 and also serving as four excitation electrodes are provided inside the inner diameter of the cylindrical support member 10. Cylindrical support member 10
Is fixed at two places by wire 11 as shown in the figure.
1 is fixed to the substrate at the other end.

【0007】角速度センサに角速度が作用するとコリオ
リ力により重錘体9が移動することで角速度センサ部が
変形し検出電極に電荷が発生する。4つの検出電極5に
発生する電荷の量により角速度の方向と強さが検出でき
る。
When an angular velocity acts on the angular velocity sensor, the weight body 9 moves due to Coriolis force, so that the angular velocity sensor section is deformed and charges are generated on the detection electrodes. The direction and intensity of the angular velocity can be detected based on the amount of charges generated on the four detection electrodes 5.

【0008】図4は角速度センサを駆動させる回路図で
ある。振動体1に貼付された圧電素子2に形成されてい
る4つの励振電極を兼ねる検出電極5のそれぞれの励振
電極を兼ねる検出電極5a〜5dに抵抗12a〜12d
が接続される。抵抗12a〜12dは、発振回路13に
接続されている。圧電素子3に形成されている帰還電極
8にはインピーダンス変換回路14が接続され、インピ
ーダンス変換回路14は発振回路13に接続される。
FIG. 4 is a circuit diagram for driving the angular velocity sensor. The four detection electrodes 5 also serving as excitation electrodes formed on the piezoelectric element 2 affixed to the vibrating body 1 are respectively connected to the detection electrodes 5a to 5d also serving as excitation electrodes and are connected to resistors 12a to 12d.
Is connected. The resistors 12a to 12d are connected to the oscillation circuit 13. The impedance conversion circuit 14 is connected to the feedback electrode 8 formed on the piezoelectric element 3, and the impedance conversion circuit 14 is connected to the oscillation circuit 13.

【0009】振動体1を含む平面の中心に原点を定め、
同平面上にX軸、同平面上でX軸に直交するY軸、X
軸、Y軸に直交するZ軸を設定する。振動モードは何種
類も存在するが、角速度センサとして用いる振動モード
は、図5、図6に示す如く重錘体9が縦方向に振れるZ
軸方向の振動モード(励振)と、図7、図8に示す如く
重錘体9が横方向に振れるX、Y軸方向(横方向)の振
動モード(検出)を用いる。図5はZ軸方向の振動モー
ドを示した断面図でZ軸プラス方向に振れている状態を
示している。図6はZ軸方向の振動モードを示した断面
図でZ軸マイナス方向に振れている状態を示している。
Z軸方向の振動モードにおける振動周波数をZ軸方向の
共振周波数と言う。Z軸方向の振動モードは駆動モード
として用いられる。図7はX、Y軸方向の振動モードを
示した断面図でX軸プラス方向に振れている状態を示し
ている。図8はX、Y軸方向の振動モードを示した断面
図でX軸マイナス方向に振れている状態を示している。
X、Y軸方向の振動モードにおける振動周波数を重錘体
の共振周波数と言う。X、Y軸方向の振動モードは検出
モードとして用いられる。一般的に、共振型角速度セン
サでは駆動モードと検出モードの振動周波数(共振周波
数)が近いと検出感度が高くなる。従って、Z軸方向の
共振周波数と重錘体の共振周波数を近づけることで検出
感度を上げることができる。
An origin is set at the center of the plane including the vibrating body 1,
X axis on the same plane, Y axis orthogonal to the X axis on the same plane, X
Set the Z axis perpendicular to the axis and the Y axis. Although there are many types of vibration modes, the vibration mode used as the angular velocity sensor is such that the weight body 9 swings in the vertical direction as shown in FIGS.
The vibration mode (excitation) in the axial direction and the vibration mode (detection) in the X and Y axis directions (lateral direction) in which the weight body 9 swings in the lateral direction as shown in FIGS. 7 and 8 are used. FIG. 5 is a cross-sectional view showing a vibration mode in the Z-axis direction, and shows a state in which the vibration is caused in the Z-axis plus direction. FIG. 6 is a cross-sectional view showing a vibration mode in the Z-axis direction, and shows a state in which the vibration is caused in the Z-axis minus direction.
The vibration frequency in the vibration mode in the Z-axis direction is called the resonance frequency in the Z-axis direction. The vibration mode in the Z-axis direction is used as a drive mode. FIG. 7 is a cross-sectional view showing a vibration mode in the X and Y axis directions, and shows a state in which the vibration mode swings in the X axis plus direction. FIG. 8 is a cross-sectional view showing a vibration mode in the X and Y axis directions, and shows a state in which the vibration mode swings in the X axis minus direction.
The vibration frequency in the vibration mode in the X and Y axis directions is called the resonance frequency of the weight. The vibration mode in the X and Y axis directions is used as a detection mode. Generally, in the resonance type angular velocity sensor, the detection sensitivity increases when the vibration frequency (resonance frequency) of the drive mode and the detection mode is close. Therefore, the detection sensitivity can be increased by making the resonance frequency in the Z-axis direction close to the resonance frequency of the weight body.

【0010】Z軸方向の共振周波数と重錘体の共振周波
数とが離れていて、かつ、Z軸方向の共振周波数が重錘
体の共振周波数より大きい場合、重錘体9の端面をレー
ザ光線を照射してトリミング(質量の除去)することに
より両者の共振周波数を近づけることができる。
When the resonance frequency in the Z-axis direction and the resonance frequency of the weight body are separated from each other and the resonance frequency in the Z-axis direction is higher than the resonance frequency of the weight body, the end face of the weight body 9 is irradiated with the laser beam. Irradiation and trimming (removal of mass) make it possible to bring the two resonance frequencies closer to each other.

【0011】[0011]

【発明が解決しようとする課題】Z軸方向の共振周波数
と重錘体の共振周波数を近づけることで検出感度を上げ
ることができる。その方法として前述したように、たと
えば重錘体の端面にレーザ光線を照射してトリミング
(質量の除去)する方法がある。ところが、この方法で
あると概略の調整はしやすいが、微調整はレーザ光線を
照射する位置や照射量をその都度計算して求め、少しず
つ共振周波数を所定の値(周波数差)に合わせ込まなけ
ればならない。そのため数Hzレベルでの調整ははなは
だ困難であり、共振周波数調整には時間がかかる。本発
明はこのような課題を解決するためのものである。
The detection sensitivity can be increased by bringing the resonance frequency in the Z-axis direction close to the resonance frequency of the weight body. As described above, for example, there is a method of trimming (removing mass) by irradiating the end face of the weight body with a laser beam. However, with this method, it is easy to roughly adjust, but fine adjustment is performed by calculating the position and amount of irradiation of the laser beam each time, and adjusting the resonance frequency to a predetermined value (frequency difference) little by little. There must be. Therefore, adjustment at a level of several Hz is extremely difficult, and it takes time to adjust the resonance frequency. The present invention is to solve such a problem.

【0012】[0012]

【課題を解決するための手段】本発明は従来の角速度セ
ンサの課題を解決するためのものであり、安価で検出精
度の高い角速度センサを提供する。
SUMMARY OF THE INVENTION The present invention has been made to solve the problems of the conventional angular velocity sensor, and provides an inexpensive angular velocity sensor having high detection accuracy.

【0013】少なくとも、板状の振動体と、励振用電
極、検出用電極及び帰還電極が形成され該振動体の片面
または両面に貼付される圧電素子と、該圧電素子の貼付
された振動体の振動ノード部を支持する支持部材とで構
成される角速度センサ部を駆動する発振回路を有する角
速度センサの駆動回路において、角速度センサ部の帰還
電極と発振回路は、固定抵抗または可変抵抗とインピー
ダンス変換回路を介して接続する。また、少なくとも、
板状の振動体と、励振用電極、検出用電極及び帰還電極
が形成され該振動体の片面または両面に貼付される圧電
素子と、該圧電素子の貼付された振動体の振動ノード部
を支持する支持部材とで構成される角速度センサ部を駆
動する回路部を有する角速度センサにおいて、前記帰還
電極と該回路部の発振回路は、固定抵抗または可変抵抗
とインピーダンス変換回路を介して接続する。抵抗値を
適切に選択してやることでZ軸方向の共振周波数と重錘
体の共振周波数を変化させることにより、両者の周波数
差を小さくでき、所定の周波数差に調整できる。抵抗は
可変抵抗であると好ましい。これによりさらに微調整が
簡単に正確にできる。
At least a plate-shaped vibrator, a piezoelectric element on which an excitation electrode, a detection electrode, and a return electrode are formed and attached to one or both surfaces of the vibrator, and a vibrator to which the piezoelectric element is attached In a driving circuit of an angular velocity sensor having an oscillation circuit for driving an angular velocity sensor unit composed of a support member for supporting an oscillation node unit, a feedback electrode and an oscillation circuit of the angular velocity sensor unit include a fixed resistor or a variable resistor and an impedance conversion circuit. Connect through. Also, at least,
A plate-shaped vibrator, a piezoelectric element on which an excitation electrode, a detection electrode, and a feedback electrode are formed and attached to one or both surfaces of the vibrator, and a vibration node portion of the vibrator to which the piezoelectric element is attached are supported. In the angular velocity sensor having a circuit section for driving an angular velocity sensor section constituted by a supporting member to be connected, the feedback electrode and an oscillation circuit of the circuit section are connected to each other via a fixed resistor or a variable resistor and an impedance conversion circuit. By changing the resonance frequency in the Z-axis direction and the resonance frequency of the weight body by properly selecting the resistance value, the frequency difference between the two can be reduced and the predetermined frequency difference can be adjusted. Preferably, the resistor is a variable resistor. This makes fine adjustments easier and more accurate.

【0014】[0014]

【発明の実施の形態】本発明の実施の形態を図面に基き
詳細に説明する。図9は本発明の第一実施例で上面図で
ある。図10は本発明の第一実施例で正面断面図であ
る。図11は本発明の第一実施例で回路図である。振動
体21の上面には、下面に電極23を設け上面に4つの
励振電極を兼ねる検出電極24と、十字型をした帰還電
極25を設けた円板状の圧電素子22がエポキシ系の接
着剤により貼付されている。さらに、振動体21の面上
中心と圧電素子22の面上中心が一致するように配置さ
れ貼付されている。振動体21の下面には、重錘体27
が振動体21の面上中心と重錘体27の中心軸が一致す
るように配置され貼付されている。重錘体27は、二つ
の直径の異なる円柱を中心軸を一致させて重ね合わせた
形状に形成されている。振動体21に小さい直径の円柱
の端面が貼付される。振動体21と、重錘体27は恒弾
性材料であるエリンバ材を用いた。圧電素子22は圧電
セラミックスであるPZTを用い、電極は蒸着によりA
g−Cr合金で形成した。振動体21と重錘体27は溶
接等により接合してもよい。
Embodiments of the present invention will be described in detail with reference to the drawings. FIG. 9 is a top view of the first embodiment of the present invention. FIG. 10 is a front sectional view of the first embodiment of the present invention. FIG. 11 is a circuit diagram of the first embodiment of the present invention. On the upper surface of the vibrator 21, an electrode 23 is provided on the lower surface and a detection electrode 24 also serving as four excitation electrodes is provided on the upper surface, and a disk-shaped piezoelectric element 22 provided with a cross-shaped feedback electrode 25 is an epoxy-based adhesive. Is attached. Further, the piezoelectric element 22 is arranged and attached such that the center on the plane of the vibrating body 21 and the center on the plane of the piezoelectric element 22 coincide. A weight 27 is provided on the lower surface of the vibrating body 21.
Are arranged and attached such that the center on the surface of the vibrating body 21 and the central axis of the weight body 27 coincide. The weight body 27 is formed in a shape in which two cylinders having different diameters are overlapped with their central axes aligned. The end face of a small diameter cylinder is attached to the vibrating body 21. For the vibrating body 21 and the weight body 27, an elinvar material as a constant elastic material was used. The piezoelectric element 22 is made of PZT, which is a piezoelectric ceramic, and the electrodes are made of A by evaporation.
It was formed of a g-Cr alloy. The vibrating body 21 and the weight body 27 may be joined by welding or the like.

【0015】振動体21、圧電素子22、重錘体27に
より角速度センサ部が構成される。円筒状支持部材26
は、該角速度センサ部のベンディング振動のノード部2
8に接着固定されている。円筒状支持部材26は恒弾性
材料であるエリンバ材を用いた。なお円筒状支持部材2
6は振動体21と一体加工により形成してもよい。部材
の材質は角速度センサとしての機能を満たすものであれ
ばこれらに限定されるものではない。
The angular velocity sensor is constituted by the vibrating body 21, the piezoelectric element 22, and the weight 27. Cylindrical support member 26
Is a bending vibration node 2 of the angular velocity sensor.
8 is adhered and fixed. As the cylindrical support member 26, an elinvar material which is a constant elastic material was used. The cylindrical support member 2
6 may be formed integrally with the vibrating body 21. The material of the member is not limited to these as long as it satisfies the function as the angular velocity sensor.

【0016】電極23と振動体21は電気的に接続され
て接着されているので、振動体21と4つの励振電極を
兼ねる検出電極24に交流をかけると、圧電素子22
は、径方向に伸縮することにより振動体21と一緒にZ
軸方向に振動する。円筒状支持部材26で支持してお
り、4つの励振用電極を兼ねる検出電極24は円筒状支
持部材26の内径付近に設けてある。
Since the electrode 23 and the vibrating body 21 are electrically connected and adhered to each other, when an alternating current is applied to the vibrating body 21 and the detection electrode 24 serving also as four excitation electrodes, the piezoelectric element 22
Is Z together with the vibrating body 21 by expanding and contracting in the radial direction.
Vibrates in the axial direction. The detection electrode 24 supported by the cylindrical support member 26 and also serving as the four excitation electrodes is provided near the inner diameter of the cylindrical support member 26.

【0017】角速度センサに角速度が作用するとコリオ
リ力により重錘体27が移動することで角速度センサ部
が変形し検出電極に電荷が発生する。4つの検出電極2
4に発生する電荷の量により角速度の方向と強さが検出
できる。
When an angular velocity acts on the angular velocity sensor, the weight 27 moves due to the Coriolis force, so that the angular velocity sensor section is deformed and charges are generated on the detection electrodes. Four detection electrodes 2
4, the direction and intensity of the angular velocity can be detected.

【0018】ここで検出感度を上げるには、Z軸方向の
共振周波数と重錘体の共振周波数とを近づけ所定の周波
数差にする必要がある。従来は重錘体27の端面にレー
ザ光線を照射(トリミング)して調整をしていた。本発
明では、回路側の調整によりZ軸方向の共振周波数と重
錘体の共振周波数とを所定の周波数差に調整する。以下
その回路と調整方法について詳述する。
Here, in order to increase the detection sensitivity, it is necessary to make the resonance frequency in the Z-axis direction close to the resonance frequency of the weight body to make a predetermined frequency difference. Conventionally, adjustment was performed by irradiating (trimming) a laser beam onto the end face of the weight body 27. In the present invention, the resonance frequency in the Z-axis direction and the resonance frequency of the weight are adjusted to a predetermined frequency difference by adjustment on the circuit side. Hereinafter, the circuit and the adjustment method will be described in detail.

【0019】図11をもとに回路の説明をする。これは
発振回路に共振周波数調整用の抵抗を取り付けた実施例
である。振動体21に貼付された圧電素子22に形成さ
れている4つの励振電極を兼ねる検出電極24のそれぞ
れの励振電極を兼ねる検出電極24a〜24dに抵抗2
9a〜29dが接続される。抵抗29a〜29dは、発
振回路30に接続されている。圧電素子22に形成され
ている帰還電極25には可変抵抗31が直列に接続され
ている。可変抵抗31にはインピーダンス変換回路32
が接続され、インピーダンス変換回路32は発振回路3
0に接続される。
The circuit will be described with reference to FIG. This is an embodiment in which a resistor for adjusting the resonance frequency is attached to the oscillation circuit. The four detecting electrodes 24 also serving as the excitation electrodes formed on the piezoelectric element 22 attached to the vibrating body 21 are respectively connected to the detecting electrodes 24a to 24d which also serve as the exciting electrodes.
9a to 29d are connected. The resistors 29a to 29d are connected to the oscillation circuit 30. A variable resistor 31 is connected in series to the feedback electrode 25 formed on the piezoelectric element 22. The variable resistor 31 includes an impedance conversion circuit 32
Are connected, and the impedance conversion circuit 32
Connected to 0.

【0020】可変抵抗31を変化させると等価回路上の
等価抵抗を調整することができる。共振回路におけるQ
値は Q=ω0L/Rで表される。ここでω0は共振角周
波数、Lはインダクタンス、Rは抵抗である。Rを変化
させることで、Qも変化し、R、Qの両者が変化するこ
とにより、共振角周波数ω0も変化する。図12は帰還
電極に接続した抵抗値とZ軸方向の共振周波数のと関係
を示すグラフである。図13は帰還電極に接続した抵抗
値と重錘体の共振周波数のと関係を示すグラフである。
グラフより抵抗値が大きくなるとZ軸方向の共振周波数
は小さくなり、重錘体の共振周波数はほとんど変化しな
いことがわかる。この性質を利用して共振周波数を調整
するものである。
By changing the variable resistance 31, the equivalent resistance on the equivalent circuit can be adjusted. Q in resonant circuit
The value is represented by Q = ω0L / R. Here, ω0 is the resonance angular frequency, L is the inductance, and R is the resistance. By changing R, Q also changes, and by changing both R and Q, the resonance angular frequency ω0 also changes. FIG. 12 is a graph showing the relationship between the resistance value connected to the feedback electrode and the resonance frequency in the Z-axis direction. FIG. 13 is a graph showing the relationship between the resistance value connected to the feedback electrode and the resonance frequency of the weight body.
It can be seen from the graph that as the resistance value increases, the resonance frequency in the Z-axis direction decreases, and the resonance frequency of the weight body hardly changes. The resonance frequency is adjusted using this property.

【0021】調整方法を説明する。可変抵抗31の値を
0としてZ軸方向の共振周波数と重錘体の共振周波数を
測定する。ここで、重錘体の共振周波数がZ軸方向の共
振周波数より大きい場合はレーザ光線を照射等のトリミ
ングをして、Z軸方向の共振周波数が重錘体の共振周波
数より大きくなるように概略調整をする。概略調整がで
きないものは不良として取り除く。重錘体の共振周波数
の変化はZ軸方向の共振周波数に比べて、抵抗値を大き
くしても周波数の減少が小さいためである。Z軸方向の
共振周波数が重錘体の共振周波数より大きい場合は、可
変抵抗31の値を大きくするとともに、測定をしながら
所定の周波数差になるように調整する。Z軸方向の共振
周波数よりも重錘体の共振周波数が大きくなった場合
は、可変抵抗31の値を小さくして所定の周波数差にあ
わせこむ。従って、回路をこのように構成する事によっ
て、Z軸方向の共振周波数は帰還電極25に接続した可
変抵抗31を調整することで重錘体の共振周波数に極め
て容易にかつ正確に所定の周波数差に合わせ込むことが
できる。
The adjusting method will be described. With the value of the variable resistor 31 set to 0, the resonance frequency in the Z-axis direction and the resonance frequency of the weight are measured. Here, when the resonance frequency of the weight body is higher than the resonance frequency in the Z-axis direction, trimming such as irradiation with a laser beam is performed so that the resonance frequency in the Z-axis direction becomes higher than the resonance frequency of the weight body. Make adjustments. Those that cannot be roughly adjusted are removed as defective. This is because the change in the resonance frequency of the weight body is smaller than the resonance frequency in the Z-axis direction even if the resistance value is increased, even if the resistance value is increased. When the resonance frequency in the Z-axis direction is higher than the resonance frequency of the weight body, the value of the variable resistor 31 is increased, and the measurement is adjusted so as to have a predetermined frequency difference while measuring. When the resonance frequency of the weight body becomes higher than the resonance frequency in the Z-axis direction, the value of the variable resistor 31 is reduced to match the predetermined frequency difference. Therefore, by configuring the circuit in this manner, the resonance frequency in the Z-axis direction can be very easily and accurately adjusted to the resonance frequency of the weight by adjusting the variable resistor 31 connected to the feedback electrode 25. Can be adjusted to

【0022】図14は本発明の第二実施例で上面図であ
る。図15は本発明の第二実施例で正面断面図である。
図16は本発明の第二実施例で回路図である。第二実施
例は、圧電素子を2枚用いたものである。振動体41の
上面には、下面に電極43を設け上面に4つの励振電極
を兼ねる検出電極44を設けた円板状の圧電素子42が
エポキシ系の接着剤により貼付されている。さらに、振
動体41の面上中心と圧電素子42の面上中心が一致す
るように配置され貼付されている。振動体41の下面に
は、上面に電極45を設け下面に帰還電極46を設けた
円板状の圧電素子47がエポキシ系の接着剤により貼付
されている。さらに、振動体41の面上中心と圧電素子
47の面上中心が一致するように配置され貼付されてい
る。圧電素子47の下面には重錘体48が振動体41の
面上中心と重錘体48の中心軸が一致するように配置さ
れ貼付されている。重錘体48は、二つの直径の異なる
円柱を中心軸を一致させて重ね合わせた形状に形成され
ている。圧電素子47に小さい直径の円柱の端面が貼付
される。振動体41と、重錘体48は恒弾性材料である
エリンバ材を用いた。圧電素子42、圧電素子47は圧
電セラミックスであるPZTを用い、電極は蒸着により
Ag−Cr合金で形成した。
FIG. 14 is a top view of the second embodiment of the present invention. FIG. 15 is a front sectional view of the second embodiment of the present invention.
FIG. 16 is a circuit diagram of the second embodiment of the present invention. The second embodiment uses two piezoelectric elements. A disk-shaped piezoelectric element 42 provided with an electrode 43 on the lower surface and a detection electrode 44 also serving as four excitation electrodes on the upper surface is attached to the upper surface of the vibrating body 41 with an epoxy-based adhesive. Further, the piezoelectric element 42 is arranged and attached such that the center on the plane of the vibrating body 41 and the center on the plane of the piezoelectric element 42 coincide with each other. A disk-shaped piezoelectric element 47 having an electrode 45 on the upper surface and a feedback electrode 46 on the lower surface is attached to the lower surface of the vibrating body 41 with an epoxy adhesive. Furthermore, the piezoelectric element 47 is arranged and attached such that the center on the plane of the vibrating body 41 and the center on the plane of the piezoelectric element 47 coincide. A weight 48 is arranged and attached to the lower surface of the piezoelectric element 47 such that the center on the surface of the vibrating body 41 and the center axis of the weight 48 coincide with each other. The weight body 48 is formed in a shape in which two cylinders having different diameters are overlapped with their central axes aligned. The end face of a small diameter cylinder is attached to the piezoelectric element 47. For the vibrating body 41 and the weight body 48, an elinvar material which is a constant elastic material was used. The piezoelectric elements 42 and 47 were made of PZT, which is a piezoelectric ceramic, and the electrodes were formed of an Ag—Cr alloy by vapor deposition.

【0023】振動体41、圧電素子42、圧電素子4
7、重錘体48により角速度センサ部が構成される。円
筒状支持部材49は、該角速度センサ部のベンディング
振動のノード部50上に接着固定されている。円筒状支
持部材49は恒弾性材料であるエリンバ材を用いた。部
材の材質は角速度センサとしての機能を満たすものであ
ればこれらに限定されるものではない。
Vibrator 41, piezoelectric element 42, piezoelectric element 4
7. The angular velocity sensor unit is constituted by the weight 48. The cylindrical support member 49 is adhesively fixed on the bending vibration node 50 of the angular velocity sensor. As the cylindrical support member 49, an elinvar material which is a constant elastic material was used. The material of the member is not limited to these as long as it satisfies the function as the angular velocity sensor.

【0024】電極43と振動体41は電気的に接続され
て接着されているので、振動体41と4つの励振電極を
兼ねる検出電極44に交流をかけると、圧電素子42
は、径方向に伸縮することにより振動体41と一緒にZ
軸方向に振動する。円筒状支持部材49で支持してお
り、4つの励振用電極を兼ねる検出電極44は円筒状支
持部材49の内径より内側に設けてある。
Since the electrode 43 and the vibrating body 41 are electrically connected and adhered to each other, when an alternating current is applied to the vibrating body 41 and the detection electrode 44 serving also as the four excitation electrodes, the piezoelectric element 42
Is Z together with the vibrating body 41 by expanding and contracting in the radial direction.
Vibrates in the axial direction. The detection electrode 44 supported by the cylindrical support member 49 and also serving as the four excitation electrodes is provided inside the inner diameter of the cylindrical support member 49.

【0025】角速度センサに角速度が作用するとコリオ
リ力により重錘体48が移動することで角速度センサ部
が変形し検出電極に電荷が発生する。4つの検出電極4
4に発生する電荷の量により角速度の方向と強さが検出
できる。
When an angular velocity acts on the angular velocity sensor, the weight 48 moves due to Coriolis force, thereby deforming the angular velocity sensor and generating electric charges on the detection electrodes. Four detection electrodes 4
4, the direction and intensity of the angular velocity can be detected.

【0026】図16をもとに回路の説明をする。振動体
41に貼付された圧電素子42に形成されている4つの
検出電極を兼ねる励振電極44のそれぞれの励振電極を
兼ねる検出電極44a〜44dに抵抗51a〜51dが
接続される。抵抗51a〜51dは、発振回路52に接
続されている。圧電素子47に形成されている帰還電極
46には可変抵抗53が直列に接続されている。可変抵
抗53にはインピーダンス変換回路54が接続され、イ
ンピーダンス変換回路54は発振回路52に接続され
る。
The circuit will be described with reference to FIG. The resistances 51a to 51d are connected to the detection electrodes 44a to 44d also serving as the excitation electrodes of the four excitation electrodes 44 serving as the four detection electrodes formed on the piezoelectric element 42 attached to the vibrating body 41. The resistors 51a to 51d are connected to the oscillation circuit 52. A variable resistor 53 is connected in series to a feedback electrode 46 formed on the piezoelectric element 47. An impedance conversion circuit 54 is connected to the variable resistor 53, and the impedance conversion circuit 54 is connected to the oscillation circuit 52.

【0027】調整方法は第一実施例と同じであるので省
略する。また第一実施例、第二実施例では抵抗として可
変抵抗を用いた例を示したが固定抵抗を用いることも可
能である。Z軸方向の共振周波数と重錘体の共振周波数
の周波数差がわかっている場合には、あらかじめ実験に
より抵抗値とZ軸方向の共振周波数、重錘体の共振周波
数との関係を求めておくことにより(たとえば図12、
図13)、両者の共振周波数と周波数差より使用する抵
抗が決定される。それを回路の可変抵抗に替えて取り付
ければよい。さらに共振周波数の調整は、レーザ光線に
よる方法(トリミング、質量の除去等)と組み合わせて
行ってもよい。いずれにしても角速度センサの種類によ
って調整時間が短くなる方法を適当に組み合わせるよう
にすれば安価に製造することができる。
The adjusting method is the same as that of the first embodiment, and will not be described. In the first embodiment and the second embodiment, an example in which a variable resistor is used as the resistor has been described. However, a fixed resistor can be used. When the frequency difference between the resonance frequency in the Z-axis direction and the resonance frequency of the weight body is known, the relationship between the resistance value, the resonance frequency in the Z-axis direction, and the resonance frequency of the weight body is determined in advance by experiments. By this (for example, FIG. 12,
13), the resistance to be used is determined from the resonance frequency and the frequency difference between the two. What is necessary is just to replace it with the variable resistor of a circuit, and to attach it. Further, the adjustment of the resonance frequency may be performed in combination with a method using a laser beam (trimming, removal of mass, etc.). In any case, the method can be manufactured at low cost by appropriately combining the methods of shortening the adjustment time depending on the type of the angular velocity sensor.

【0028】[0028]

【発明の効果】本発明は前記のような構成にすることで
次のような効果が生じる。 1 帰還用電極に接続した抵抗の値、または可変抵抗を
用いて調整することにより容易にかつ正確にZ軸方向の
共振周波数を調整できる。 2 調整時間が短縮され安価に製造できる。 3 検出感度が上がる。
According to the present invention, the following effects can be obtained by employing the above-described structure. (1) The resonance frequency in the Z-axis direction can be easily and accurately adjusted by adjusting the value of the resistor connected to the feedback electrode or the variable resistor. (2) Adjustment time is shortened and it can be manufactured at low cost. 3 The detection sensitivity increases.

【図面の簡単な説明】[Brief description of the drawings]

【図1】音片型圧電振動角速度センサを説明するための
構造図。
FIG. 1 is a structural diagram for explaining a sound piece type piezoelectric vibration angular velocity sensor.

【図2】本発明に係る角速度センサの従来例を斜め上か
ら見た分解斜視図。
FIG. 2 is an exploded perspective view of a conventional example of an angular velocity sensor according to the present invention as viewed obliquely from above.

【図3】本発明に係る角速度センサを従来例を斜め下か
ら見た分解斜視図。
FIG. 3 is an exploded perspective view of a conventional example of an angular velocity sensor according to the present invention as viewed obliquely from below.

【図4】本発明に係る角速度センサの従来例で回路図。FIG. 4 is a circuit diagram of a conventional example of an angular velocity sensor according to the present invention.

【図5】本発明に係る角速度センサの従来例のZ軸方向
の振動モードを示した断面図。
FIG. 5 is a sectional view showing a vibration mode in the Z-axis direction of a conventional example of the angular velocity sensor according to the present invention.

【図6】本発明に係る角速度センサの従来例のZ軸方向
の振動モードを示した断面図。
FIG. 6 is a sectional view showing a vibration mode in the Z-axis direction of a conventional example of the angular velocity sensor according to the present invention.

【図7】本発明に係る角速度センサの従来例のX、Y軸
方向の振動モードを示した断面図。
FIG. 7 is a cross-sectional view showing a vibration mode in the X and Y axis directions of a conventional example of the angular velocity sensor according to the present invention.

【図8】本発明に係る角速度センサの従来例のX、Y軸
方向の振動モードを示した断面図。
FIG. 8 is a cross-sectional view showing a vibration mode in the X and Y axis directions of a conventional example of the angular velocity sensor according to the present invention.

【図9】本発明に係る角速度センサの第一実施例で上面
図。
FIG. 9 is a top view of the angular velocity sensor according to the first embodiment of the present invention.

【図10】本発明に係る角速度センサの第一実施例で正
面断面図。
FIG. 10 is a front sectional view of the first embodiment of the angular velocity sensor according to the present invention.

【図11】本発明に係わる角速度センサの第一実施例で
回路図。
FIG. 11 is a circuit diagram of a first embodiment of an angular velocity sensor according to the present invention.

【図12】本発明に係る角速度センサの帰還電極に接続
した抵抗値とZ軸方向の共振周波数との関係を示すグラ
フ。
FIG. 12 is a graph showing a relationship between a resistance value connected to a feedback electrode of the angular velocity sensor according to the present invention and a resonance frequency in the Z-axis direction.

【図13】本発明に係る角速度センサの帰還電極に接続
した抵抗値とX、Y軸方向の共振周波数との関係を示す
グラフ。
FIG. 13 is a graph showing the relationship between the resistance value connected to the feedback electrode of the angular velocity sensor according to the present invention and the resonance frequency in the X and Y axis directions.

【図14】本発明に係る角速度センサの第二実施例で上
面図。
FIG. 14 is a top view of a second embodiment of the angular velocity sensor according to the present invention.

【図15】本発明に係る角速度センサの第二実施例で正
面断面図。
FIG. 15 is a front sectional view of an angular velocity sensor according to a second embodiment of the present invention.

【図16】本発明に係る角速度センサの第二実施例で回
路図。
FIG. 16 is a circuit diagram of a second embodiment of the angular velocity sensor according to the present invention.

【符号の説明】 1 振動体 2 圧電素子 3 圧電素子 4 ノード部 5 励振電極を兼ねる検出電極 5a 励振電極を兼ねる検出電極 5b 励振電極を兼ねる検出電極 5c 励振電極を兼ねる検出電極 5d 励振電極を兼ねる検出電極 6 電極 7 電極 8 帰還電極 9 重錘体 10 円筒状支持部材 11 ワイヤー 12a 抵抗 12b 抵抗 12c 抵抗 12d 抵抗 13 発振回路 14 インピーダンス変換回路 21 振動体 22 圧電素子 23 電極 24 励振電極を兼ねる検出電極 24a 励振電極を兼ねる検出電極 24b 励振電極を兼ねる検出電極 24c 励振電極を兼ねる検出電極 24d 励振電極を兼ねる検出電極 25 帰還電極 26 円筒状支持部材 27 重錘体 28 ノード部 29a 抵抗 29b 抵抗 29c 抵抗 29d 抵抗 30 発振回路 31 可変抵抗 32 インピーダンス変換回路 41 振動体 42 圧電素子 43 電極 44 励振電極を兼ねる検出電極 44a 励振電極を兼ねる検出電極 44b 励振電極を兼ねる検出電極 44c 励振電極を兼ねる検出電極 44d 励振電極を兼ねる検出電極 45 電極 46 帰還電極 47 圧電素子 48 重錘体 49 円筒状支持部材 50 ノード部 51 抵抗 51a 抵抗 51b 抵抗 51c 抵抗 51d 抵抗 52 発振回路 53 可変抵抗 54 インピーダンス変換回路[Description of Signs] 1 Vibration body 2 Piezoelectric element 3 Piezoelectric element 4 Node unit 5 Detection electrode also serving as excitation electrode 5a Detection electrode also serving as excitation electrode 5b Detection electrode also serving as excitation electrode 5c Detection electrode also serving as excitation electrode 5d Also serving as excitation electrode Detection electrode 6 Electrode 7 Electrode 8 Return electrode 9 Weight body 10 Cylindrical support member 11 Wire 12a Resistance 12b Resistance 12c Resistance 12d Resistance 13 Oscillation circuit 14 Impedance conversion circuit 21 Vibrator 22 Piezoelectric element 23 Electrode 24 Detection electrode serving also as excitation electrode 24a Detection electrode also serving as excitation electrode 24b Detection electrode also serving as excitation electrode 24c Detection electrode also serving as excitation electrode 24d Detection electrode also serving as excitation electrode 25 Return electrode 26 Cylindrical support member 27 Weight body 28 Node 29a Resistance 29b Resistance 29c Resistance 29d Resistance 30 Oscillation circuit 31 Variable resistance 32 Impedance conversion circuit 41 Vibrator 42 Piezoelectric element 43 Electrode 44 Detection electrode 44a also serving as excitation electrode 44a Detection electrode also serving as excitation electrode 44b Detection electrode also serving as excitation electrode 44c Detection electrode also serving as excitation electrode 44d Detection electrode also serving as excitation electrode 45 Electrode 46 Return electrode 47 Piezoelectric element 48 Weight body 49 Cylindrical support member 50 Node part 51 Resistance 51a Resistance 51b Resistance 51c Resistance 51d Resistance 52 Oscillation circuit 53 Variable resistance 54 Impedance conversion circuit

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも、板状の振動体と、励振用電
極、検出用電極及び帰還電極が形成され該振動体の片面
または両面に貼付される圧電素子と、該圧電素子の貼付
された振動体の振動ノード部を支持する支持部材とで構
成される角速度センサ部を駆動する発振回路を有する角
速度センサの駆動回路において、角速度センサ部の帰還
電極と発振回路は、固定抵抗または可変抵抗とインピー
ダンス変換回路を介して接続されることを特徴とする角
速度センサの駆動回路。
At least a plate-shaped vibrator, a piezoelectric element having an excitation electrode, a detection electrode, and a return electrode formed thereon and attached to one or both surfaces of the oscillator, and a vibration attached to the piezoelectric element In a driving circuit for an angular velocity sensor having an oscillation circuit for driving an angular velocity sensor unit composed of a support member for supporting a vibration node part of a body, a feedback electrode and an oscillation circuit of the angular velocity sensor unit are provided with a fixed resistor or a variable resistor and an impedance. A driving circuit for an angular velocity sensor, wherein the driving circuit is connected via a conversion circuit.
【請求項2】 少なくとも、板状の振動体と、励振用電
極、検出用電極及び帰還電極が形成され該振動体の片面
または両面に貼付される圧電素子と、該圧電素子の貼付
された振動体の振動ノード部を支持する支持部材とで構
成される角速度センサ部を駆動する回路部を有する角速
度センサにおいて、前記帰還電極と該回路部の発振回路
は、固定抵抗または可変抵抗とインピーダンス変換回路
を介して接続されていることを特徴とする角速度セン
サ。
2. A piezoelectric element having at least a plate-shaped vibrator, an excitation electrode, a detection electrode, and a return electrode formed thereon and affixed to one or both surfaces of the vibrator, and a vibration affixed to the piezoelectric element An angular velocity sensor having a circuit unit for driving an angular velocity sensor unit composed of a support member for supporting a vibration node unit of a body, wherein the feedback electrode and an oscillation circuit of the circuit unit include a fixed resistor or a variable resistor and an impedance conversion circuit. The angular velocity sensor is connected via a.
JP8320972A 1996-11-15 1996-11-15 Drive circuit for angular velocity sensor, and angular velocity sensor Pending JPH10148533A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8320972A JPH10148533A (en) 1996-11-15 1996-11-15 Drive circuit for angular velocity sensor, and angular velocity sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8320972A JPH10148533A (en) 1996-11-15 1996-11-15 Drive circuit for angular velocity sensor, and angular velocity sensor

Publications (1)

Publication Number Publication Date
JPH10148533A true JPH10148533A (en) 1998-06-02

Family

ID=18127362

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8320972A Pending JPH10148533A (en) 1996-11-15 1996-11-15 Drive circuit for angular velocity sensor, and angular velocity sensor

Country Status (1)

Country Link
JP (1) JPH10148533A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6392327B1 (en) * 2000-03-29 2002-05-21 James L. Sackrison Sonic transducer and feedback control method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6392327B1 (en) * 2000-03-29 2002-05-21 James L. Sackrison Sonic transducer and feedback control method thereof

Similar Documents

Publication Publication Date Title
JP4814715B2 (en) Temperature compensation mechanism of micro mechanical ring vibrator
JP4577671B2 (en) Configuration for angular velocity measurement
JP2001091264A (en) Angular velocity detecitng gyro having high q-value
JPH063455B2 (en) Vibrating gyro
JPH10160476A (en) Rate gyroscope with mechanical resonant body
US5912528A (en) Vibrating gyroscope
JP2009074996A (en) Piezoelectric vibration gyro
EP0806631B1 (en) Angular velocity sensor and its fabricating
JPH10148533A (en) Drive circuit for angular velocity sensor, and angular velocity sensor
JPH09166445A (en) Angular velocity sensor
JPH11248459A (en) Oscillator and oscillatory gyroscope and method for measuring rotational angular velocity
JPH10300477A (en) Angular velocity sensor
JPH09287956A (en) Angular velocity sensor
JPH1172332A (en) Method for adjusting angular velocity sensor
JPH1068626A (en) Angular speed sensor
JPH10160480A (en) Angular velocity sensor
JPH10160481A (en) Angular velocity sensor
JPH10274531A (en) Manufacture of angular velocity sensor
JPH09196685A (en) Angular velocity sensor
JPH08201067A (en) Angular speed sensor
JPH04118515A (en) Angular speed detector and acceleration detector
JPH09325033A (en) Angular velocity sensor
JPH08327370A (en) Angular velocity sensor
JPH09113281A (en) Angular velocity sensor
EP0684450A2 (en) Supporting structure of vibrator