JPH10160379A - Heat exchanging element - Google Patents

Heat exchanging element

Info

Publication number
JPH10160379A
JPH10160379A JP8313269A JP31326996A JPH10160379A JP H10160379 A JPH10160379 A JP H10160379A JP 8313269 A JP8313269 A JP 8313269A JP 31326996 A JP31326996 A JP 31326996A JP H10160379 A JPH10160379 A JP H10160379A
Authority
JP
Japan
Prior art keywords
partition plate
spacing
heat exchange
plate
exchange element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8313269A
Other languages
Japanese (ja)
Other versions
JP3488028B2 (en
Inventor
Takuya Murayama
拓也 村山
Toshio Utagawa
敏男 歌川
Shigemichi Takagi
茂道 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Synthetic Chemical Industry Co Ltd
Panasonic Ecology Systems Co Ltd
Original Assignee
Matsushita Seiko Co Ltd
Nippon Synthetic Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Seiko Co Ltd, Nippon Synthetic Chemical Industry Co Ltd filed Critical Matsushita Seiko Co Ltd
Priority to JP31326996A priority Critical patent/JP3488028B2/en
Publication of JPH10160379A publication Critical patent/JPH10160379A/en
Application granted granted Critical
Publication of JP3488028B2 publication Critical patent/JP3488028B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PROBLEM TO BE SOLVED: To restrain the shifting of carbon dioxide, smell constituents and the like to the other air stream and permit the improvement of exchanging efficiency of temperature and humidity by a method wherein a partitioning plate and a spacing plate or at least the partitioning plate is constituted of a moisture penetrating polyester based film, containing constituents shown by specified formulas with a specified rate. SOLUTION: Unit element 4, consisting of a partitioning plate 2a and a spacing plate 3, is laminated alternately while changing the direction of the same by 90 degrees on every other stages to form ventilation passages 5, 6 while the exchange of temperature and moisture is effected between a primary air stream A and a secondary air stream B through the partitioning plate 2a. The partitioning plate 2a and the distance plate 3 or at least the partitioning plate 2a is constituted of a moisture penetrating polyester based film 7 constituted of 15-50wt.% of the constituent shown by a formula I and 50-85wt.% of the constituent shown by a formula II. In the formulas, R1 means a bivalent residue obtained by removing carboxyl group from dicarboxylic acid having the molecular weight of 300 or less, R2 means a bivalent residue, obtained by removing hydroxide group from short-chain glycol having the molecular weight of 250 or less, R3 means a bivalent residue, obtained by removing hydroxide group from polyethylene glycol having the molecular weight of 500-4000.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、熱交換形換気扇等
に使用する積層構造の熱交換素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a laminated heat exchange element used for a heat exchange type ventilation fan and the like.

【0002】[0002]

【従来の技術】従来、この種の熱交換素子は、特開昭5
5−72797号公報に記載されたものが知られてい
る。
2. Description of the Related Art Conventionally, this type of heat exchange element is disclosed in
What is described in 5-72797 gazette is known.

【0003】以下、その熱交換素子について図7を参照
しながら説明する。図に示すように、熱交換素子101
は仕切板102と前記仕切板102を所定間隔に保持す
る波形の間隔板103からなり、1次気流Aと2次気流
Bとが直交するよう流入し、前記仕切板102を介して
熱交換される。
Hereinafter, the heat exchange element will be described with reference to FIG. As shown in FIG.
Is composed of a partition plate 102 and a corrugated spacing plate 103 that holds the partition plate 102 at a predetermined interval. The primary air flow A and the secondary air flow B flow so as to be orthogonal, and heat is exchanged through the partition plate 102. You.

【0004】[0004]

【発明が解決しようとする課題】このような従来の熱交
換素子では、熱交換素子101を構成する仕切板102
および間隔板103の基材は、和紙等の多孔質材料で形
成されているために、1次気流と2次気流が混合する。
この課題を解決するために多孔質材料にポリビニールア
ルコール等を含侵させ、2種の気流の混合を抑制するよ
うな効果を持たせている。そのために1次気流または2
次気流からの水蒸気の移行が妨げられ、湿度交換効率が
低下するという課題がある。2種の気流の混合を抑制
し、かつ湿度交換効率の高い熱交換素子が要求されてい
る。
In such a conventional heat exchange element, a partition plate 102 constituting the heat exchange element 101 is used.
Further, since the base material of the spacing plate 103 is formed of a porous material such as Japanese paper, the primary airflow and the secondary airflow are mixed.
In order to solve this problem, a porous material is impregnated with polyvinyl alcohol or the like so as to have an effect of suppressing the mixing of two types of air streams. Therefore, the primary airflow or 2
There is a problem that the transfer of water vapor from the secondary air flow is hindered, and the efficiency of humidity exchange is reduced. There is a demand for a heat exchange element that suppresses mixing of two types of airflow and has high humidity exchange efficiency.

【0005】また、仕切板102および間隔板103の
膜厚は100〜200μmと厚いために温度交換効率が
低いという課題がある。仕切板の厚さを薄くし、温度交
換効率を向上させると仕切板に腰がなくなり作業性が低
下するという課題がある。仕切板の作業性が良く、熱交
換素子の量産性を向上させ、かつ温度および湿度の交換
効率の高い熱交換素子が要求されている。
Further, since the thickness of the partition plate 102 and the spacing plate 103 is as large as 100 to 200 μm, there is a problem that the temperature exchange efficiency is low. When the thickness of the partition plate is reduced and the temperature exchange efficiency is improved, there is a problem that the partition plate becomes loose and the workability is reduced. There is a demand for a heat exchange element which has good workability of the partition plate, improves mass productivity of the heat exchange element, and has a high temperature and humidity exchange efficiency.

【0006】また、多湿条件下では仕切板102がたわ
み、1次気流側と2次気流側で不均一になり、通気抵抗
が高くなるという課題がある。寸法安定性が良く、気流
の通気抵抗を低減することと、1次気流と2次気流の通
気抵抗の不均一をなくす熱交換素子が要求されている。
In addition, there is another problem that the partition plate 102 bends under humid conditions and becomes uneven between the primary airflow side and the secondary airflow side, thereby increasing the airflow resistance. There is a need for a heat exchange element that has good dimensional stability, reduces airflow resistance, and eliminates nonuniform airflow resistance between the primary and secondary airflows.

【0007】また、従来の熱交換素子101で気流の通
気抵抗を低減しようとした場合、間隔板103の幅ピッ
チwを広くする必要があった。幅ピッチwを広くする
と、湿度により波形が崩れてしまうという課題と、間隔
板103の高さピッチhを高くすると、熱交換素子の一
定高さ以内では仕切板の面積が減少し、温度および湿度
の交換効率が低下するという課題がある。温度および湿
度の交換効率が低下することなく、気流の通気抵抗の小
さい熱交換素子が要求されている。
In order to reduce the airflow resistance of the conventional heat exchange element 101, it is necessary to increase the width pitch w of the spacing plate 103. If the width pitch w is widened, the waveform is broken by humidity, and if the height pitch h of the spacing plate 103 is increased, the area of the partition plate is reduced within a certain height of the heat exchange element, and the temperature and humidity are reduced. There is a problem that the exchange efficiency of the battery is reduced. There is a demand for a heat exchange element having a small airflow resistance without lowering the efficiency of exchanging temperature and humidity.

【0008】また、熱交換素子101の間隔板103は
通風路を構成するものであり、温度および湿度の交換効
率への寄与は小さく、間隔板を少なくし気流との接触を
少なくし通気抵抗を低減する熱交換素子が要求されてい
る。
Further, the spacing plate 103 of the heat exchange element 101 constitutes a ventilation path, and the contribution of the temperature and humidity to the exchange efficiency is small, the number of spacing plates is reduced, the contact with the air flow is reduced, and the ventilation resistance is reduced. There is a need for reduced heat exchange elements.

【0009】本発明は、このような従来の課題を解決す
るものであり、二酸化炭素および臭い成分等の他気流へ
の移行を抑制し、温度および湿度の交換効率を向上させ
ること、また仕切板の作業性を良くし、量産性を向上さ
せること、また寸法安定性を良くすることにより、気流
の通気抵抗が低減し、1次気流と2次気流の通気抵抗の
不均一をなくすことのできる熱交換素子の提供を目的と
している。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned conventional problems, and it is intended to suppress the transfer of carbon dioxide and odor components to other airflows and to improve the efficiency of exchanging temperature and humidity. By improving the workability of the above, improving the mass productivity, and improving the dimensional stability, the airflow resistance of the airflow is reduced, and the unevenness of the airflow resistance between the primary airflow and the secondary airflow can be eliminated. The purpose is to provide a heat exchange element.

【0010】[0010]

【課題を解決するための手段】本発明の換気装置は上記
目的を達成するために、仕切板と、仕切板を所定間隔に
保持する間隔板とからなる単位素子を一段おきに90度
交互に積層し、1次気流と2次気流とが前記仕切板を介
して、温度と湿度を交換させるものにおいて、上記仕切
板と上記間隔板、または少なくとも前記仕切板を一般式
(化1)で示される成分を15〜50重量%とし、一般
式(化2)で示される成分を50〜85重量%とからな
る透湿性ポリエステル系フィルムで構成したものであ
る。
In order to achieve the above-mentioned object, a ventilating device according to the present invention alternates unit elements, each consisting of a partition plate and a spacing plate for holding the partition plate at a predetermined interval, alternately by 90 degrees. When the primary air flow and the secondary air flow exchange temperature and humidity via the partition plate, the partition plate and the spacing plate, or at least the partition plate are represented by a general formula (Formula 1). The component represented by the general formula (Chemical Formula 2) is comprised of a moisture-permeable polyester film comprising 50 to 85% by weight.

【0011】本発明によれば、二酸化炭素および臭い成
分等の他気流への移行を抑制し、温度および湿度の交換
効率を向上させることができる。また寸法安定性を良く
することにより、気流の通気抵抗を低減することのでき
る熱交換素子が得られる。
According to the present invention, it is possible to suppress the transfer of carbon dioxide and odor components to other airflows, and to improve the efficiency of exchanging temperature and humidity. Further, by improving the dimensional stability, a heat exchange element capable of reducing the airflow resistance can be obtained.

【0012】また他の手段は、仕切板と間隔板、または
少なくとも仕切板を構成する透湿性ポリエステル系フィ
ルムを、セルロース繊維50〜99重量%およびポリエ
ステル系成分1〜50重量%とからなる混抄紙で両面ま
たは少なくとも片面をラミネートしたものである。
Another means is a mixed paper comprising a partition plate and a spacing plate, or at least a moisture-permeable polyester film constituting the partition plate, comprising 50 to 99% by weight of cellulose fibers and 1 to 50% by weight of a polyester component. Are laminated on both sides or at least one side.

【0013】そして本発明によれば、仕切板の作業性を
良くし、量産性を向上させることができる。また透湿性
ポリエステル系フィルムと混抄紙を部分的に溶着してい
るので、水蒸気の溶解、拡散、脱溶解する面積の減少を
抑えることができ、湿度交換効率の低下を抑制すること
のできる熱交換素子が得られる。
According to the present invention, the workability of the partition plate can be improved, and the mass productivity can be improved. In addition, since the moisture-permeable polyester film and the mixed paper are partially welded, it is possible to suppress the reduction of the area for dissolving, diffusing, and dissolving water vapor, and to suppress the decrease in the humidity exchange efficiency. An element is obtained.

【0014】また他の手段は、仕切板に透湿性ポリエス
テル系フィルムを用い、その仕切板表面の両端部を遮蔽
する遮蔽リブと、前記遮蔽リブと並行に所定間隔に複数
本の間隔リブを設ける。前記仕切板の裏面は、前記仕切
板表面の遮蔽リブと直交または斜交するように遮蔽リブ
を設け、その遮蔽リブと並行に所定間隔に複数本の間隔
リブを設け、前記仕切板を介して前記仕切板の表裏の遮
蔽リブおよび間隔リブを樹脂にて一体成形した単位素子
と、前記仕切板とを交互に複数枚積層接着したものであ
る。
Another means is to use a moisture-permeable polyester film for the partition plate, and provide a shielding rib for shielding both ends of the partition plate surface, and a plurality of spacing ribs at predetermined intervals in parallel with the shielding rib. . The rear surface of the partition plate is provided with a shielding rib so as to be orthogonal or oblique to the shielding rib on the surface of the partition plate, and a plurality of spacing ribs are provided at predetermined intervals in parallel with the shielding rib, via the partition plate. A plurality of unit elements in which shielding ribs and spacing ribs on the front and back of the partition plate are integrally formed of resin, and a plurality of the partition plates are alternately laminated and adhered.

【0015】そして本発明によれば、温度および湿度の
交換効率が低下することなく、気流の通気抵抗を低減す
ることのできる熱交換素子が得られる。
According to the present invention, a heat exchange element capable of reducing the airflow resistance without lowering the temperature and humidity exchange efficiency is obtained.

【0016】また他の手段は、仕切板表面および裏面の
間隔リブを断続的な構造としたものである。
Another means is that the spacing ribs on the front and back surfaces of the partition plate have an intermittent structure.

【0017】そして本発明によれば、間隔リブを断続的
にすることにより気流は分岐と合流が行われることによ
り境界層が破壊され、温度および湿度の交換効率を向上
することのできる熱交換素子が得られる。
According to the present invention, the heat exchange element is capable of improving the temperature and humidity exchange efficiency by breaking the boundary layer by branching and merging the air flow by making the spacing ribs intermittent. Is obtained.

【0018】また他の手段は、ほぼ六角形を有する仕切
板表面の両端部を遮蔽する遮蔽リブと、前記遮蔽リブと
並行に所定間隔に複数本の間隔リブを設け、前記仕切板
の裏面は、気流の流入口および吐出口の近傍では、前記
仕切板表面の間隔リブと直交または斜交するように、ま
た中央部分では対向流部分が形成されるように間隔リブ
と遮蔽リブを設けたものである。
Another means is to provide a shielding rib for shielding both ends of the surface of the partition plate having a substantially hexagonal shape, and a plurality of spacing ribs at predetermined intervals in parallel with the shielding rib. In the vicinity of the inlet and the outlet of the air flow, a spacing rib and a shielding rib are provided so as to be orthogonal or oblique to the spacing rib on the surface of the partition plate, and to form a counterflow portion at the center. It is.

【0019】そして本発明によれば、対向流の構造によ
り温度および湿度の交換効率を向上することのできる熱
交換素子が得られる。
According to the present invention, there is provided a heat exchange element capable of improving the efficiency of exchanging temperature and humidity by the structure of the counter flow.

【0020】また他の手段は、仕切板表面の中央部分の
対向流部分はほぼS字状を有し、前記仕切板の裏面の中
央部分は、前記仕切板表面の対向流部分のS字状の山の
部分と、前記仕切板裏面の対向流部分のS字状の谷の部
分が重なるように構成したものである。
Another means is that an opposing flow portion at the center of the surface of the partition plate has a substantially S-shape, and a central portion of the back surface of the partition plate has an S-shape of the opposing flow portion of the surface of the partition plate. And the S-shaped valley portion of the counterflow portion on the back surface of the partition plate overlaps with the ridge portion.

【0021】そして本発明によれば、S字状の通風路に
より1次気流と2次気流の接触時間が長くなり、温度お
よび湿度の交換効率を向上させることができ、また1次
気流と2次気流の通気抵抗の不均一をなくすことのでき
る熱交換素子が得られる。
According to the present invention, the contact time between the primary air flow and the secondary air flow is increased by the S-shaped ventilation path, so that the temperature and humidity exchange efficiency can be improved. A heat exchange element that can eliminate unevenness in the ventilation resistance of the secondary airflow is obtained.

【0022】[0022]

【発明の実施の形態】本発明は、仕切板と、仕切板を所
定間隔に保持する間隔板とからなる単位素子を一段おき
に90度交互に積層し、1次気流と2次気流とが前記仕
切板を介して、温度と湿度を交換させるものにおいて、
上記仕切板と上記間隔板、または少なくとも前記仕切板
を一般式(化1)で示される成分を15〜50重量%と
し、一般式(化2)で示される成分を50〜85重量%
とからなる透湿性ポリエステル系フィルムを設けた構成
としたものであり、仕切板を介して1次気流と2次気流
との間で湿度交換される際に、多湿側の気流中の水蒸気
のみを透湿性ポリエステル系フィルムの表面で溶解さ
せ、内部で拡散させ、低湿側の表面で脱溶解させ水蒸気
を移行させるもので、二酸化炭素および臭い成分等の他
気流への移行が抑制でき、また従来の多孔質材に比べ膜
厚が薄いために、温度および湿度の交換効率を向上させ
ることができる。また、透湿性ポリエステル系フィルム
は結晶性を有するために、多湿条件下においても寸法安
定性が高く、仕切板のたわみを防止し、気流の通気抵抗
を低減させるという作用を有する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS According to the present invention, a unit element composed of a partition plate and a spacing plate for holding the partition plate at a predetermined interval is alternately stacked at 90 ° intervals at every other stage, so that the primary air flow and the secondary air flow are changed. In the one that exchanges temperature and humidity through the partition plate,
The above-mentioned partition plate and the above-mentioned spacing plate, or at least the above-mentioned partition plate, the component represented by the general formula (Formula 1) is 15 to 50% by weight, and the component represented by the general formula (Formula 2) is 50 to 85% by weight.
When the humidity is exchanged between the primary airflow and the secondary airflow through the partition plate, only the water vapor in the humid airflow is removed. It dissolves on the surface of the moisture-permeable polyester film, diffuses inside, dissolves on the surface on the low humidity side and transfers water vapor, it can suppress the transfer to other air currents such as carbon dioxide and odor components, and Since the film thickness is smaller than that of the porous material, the exchange efficiency of temperature and humidity can be improved. Further, since the moisture-permeable polyester film has crystallinity, it has high dimensional stability even under humid conditions, has an effect of preventing deflection of the partition plate, and reducing airflow resistance.

【0023】また、仕切板と間隔板、または少なくとも
仕切板を構成する透湿性ポリエステル系フィルムを、セ
ルロース繊維50〜99重量%およびポリエステル系成
分1〜50重量%とからなる混抄紙で両面または少なく
とも片面をラミネートすることにより、仕切板および間
隔板または仕切板の腰が強くなり、作業性が良く、量産
性が向上する。また、混抄紙中のセルロース繊維は透湿
性ポリエステル系フィルムと溶着しないために、透湿性
ポリエステル系フィルムと混抄紙を部分的に溶着してい
るので、水蒸気の溶解、拡散、脱溶解する面積の減少を
抑えることができ、湿度交換効率の低下を抑制すること
ができる。
Further, the partition plate and the spacing plate, or at least the moisture-permeable polyester film constituting the partition plate may be coated on both sides or at least with a mixed paper comprising 50 to 99% by weight of cellulose fibers and 1 to 50% by weight of a polyester component. By laminating one side, the stiffness of the partition plate and the spacing plate or the partition plate is strengthened, workability is improved, and mass productivity is improved. In addition, since the cellulose fibers in the mixed paper do not fuse with the moisture-permeable polyester film, the moisture-permeable polyester film and the mixed paper are partially welded, reducing the area in which water vapor dissolves, diffuses, and dissolves. , And a decrease in humidity exchange efficiency can be suppressed.

【0024】また、仕切板に透湿性ポリエステル系フィ
ルムを用い、その仕切板表面の両端部を遮蔽する遮蔽リ
ブと、前記遮蔽リブと並行に所定間隔に複数本の間隔リ
ブを設けた。前記仕切板の裏面は、前記仕切板表面の遮
蔽リブと直交または斜交するように遮蔽リブを設け、そ
の遮蔽リブと並行に所定間隔に複数本の間隔リブを、前
記仕切板を介して樹脂にて一体成形し単位素子を形成す
る。前記単位素子と前記仕切板とを交互に複数枚積層接
着したものである。樹脂で遮蔽リブおよび間隔リブを構
成するために、高さ方向を高くすることなく気流の通風
路を広くし間隔リブを少なくすることができるために、
気流の通気抵抗を低減することができる。また、リブを
樹脂で成形することにより、湿度による変形やリブ高さ
を高くすることなく安定な通風路が構成されるので、熱
交換素子の一定高さ内での仕切板面積を減少させること
なく、また仕切板に透湿性ポリエステル系フィルムを使
用することにより、温度および湿度の交換効率も向上す
る。
Further, a moisture-permeable polyester film was used for the partition plate, and a shielding rib for shielding both ends of the partition plate surface, and a plurality of spacing ribs were provided at predetermined intervals in parallel with the shielding rib. The rear surface of the partition plate is provided with a shielding rib so as to be orthogonal or oblique to the shielding rib on the surface of the partition plate, and a plurality of spacing ribs are provided at predetermined intervals in parallel with the shielding rib, and a resin is interposed through the partition plate. To form a unit element. A plurality of the unit elements and the partition plates are alternately laminated and bonded. Since the shielding ribs and the spacing ribs are made of resin, the airflow passage can be widened and the spacing ribs can be reduced without increasing the height direction.
The airflow resistance can be reduced. In addition, since the ribs are formed of resin, a stable ventilation path is formed without deformation due to humidity and height of the ribs, so that the partition plate area within a certain height of the heat exchange element can be reduced. In addition, by using a moisture-permeable polyester film for the partition plate, the exchange efficiency of temperature and humidity is also improved.

【0025】また、仕切板表面および裏面の間隔リブを
断続的な構造としたものであり、間隔リブを断続的にす
ることにより、流入口より流入した気流は断続した間隔
リブによって分岐と合流を繰り返すことにより境界層が
破壊され、温度および湿度の交換効率を高くすることが
できる。
Further, the spacing ribs on the front and back surfaces of the partition plate have an intermittent structure. By making the spacing ribs intermittent, the airflow flowing from the inflow port is branched and merged by the intermittent spacing ribs. By repeating, the boundary layer is destroyed, and the temperature and humidity exchange efficiency can be increased.

【0026】また、ほぼ六角形を有する仕切板表面の両
端部を遮蔽する遮蔽リブと、前記遮蔽リブと並行に所定
間隔に複数本の間隔リブを設け、前記仕切板の裏面は、
気流の流入口および吐出口の近傍では、前記仕切板表面
の間隔リブと直交または斜交するように、また中央部分
では対向流部分の通風路を構成することにより、直交流
方式よりも高い温度および湿度の交換効率が得られる。
Further, a shielding rib for shielding both ends of the surface of the partition plate having a substantially hexagonal shape, and a plurality of spacing ribs are provided at predetermined intervals in parallel with the shielding rib.
In the vicinity of the inflow port and the discharge port of the airflow, the temperature is higher than that of the cross-flow system by forming a ventilation path of the counterflow part so as to be orthogonal or oblique to the spacing rib on the surface of the partition plate and in the center part. And humidity exchange efficiency.

【0027】また、仕切板表面および裏面の中央部分の
対向流部分をほぼS字状にすることにより、直線状通風
路よりも通風路が長くなるために1次気流と2次気流の
接触時間が長くなり、温度および湿度の交換効率が向上
する。また仕切板表面のS字状の間隔リブの山と裏面の
S字状の間隔リブの谷が重なるようにすることにより、
対向流部分での仕切板のたわみが防止できるために、1
次気流側と2次気流側の気流の通気抵抗の不均一をなく
すことができる。
Also, by making the opposed flow portions at the center portions of the front and back surfaces of the partition plate substantially S-shaped, the ventilation path becomes longer than the linear ventilation path, so that the contact time between the primary air flow and the secondary air flow is increased. And the efficiency of temperature and humidity exchange is improved. Also, by making the ridges of the S-shaped spacing ribs on the front surface of the partition plate and the valleys of the S-shaped spacing ribs on the back surface overlap,
Since the deflection of the partition plate at the counterflow portion can be prevented,
It is possible to eliminate non-uniformity in airflow resistance between the airflow on the secondary airflow side and the airflow on the secondary airflow side.

【0028】以下、本発明の実施例について図面を参照
しながら説明する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.

【0029】[0029]

【実施例】【Example】

(実施例1)図1の熱交換素子1は仕切板2aと、前記
仕切板を所定間隔に保持する間隔板3とからなる単位素
子4を一段おきに90度交互に積層した構成とし、前記
仕切板2aと前記間隔板3は通風路5および通風路6を
形成し、1次気流Aと2次気流Bが交錯して各々通風路
5および通風路6を通るようにして、仕切板2aを介し
て1次気流Aと2次気流Bの間で温度および湿度の交換
が行われるよう構成されている。上記仕切板2aおよび
間隔板3、または少なくとも前記仕切板2aは、一般式
(化1)で示される成分を15〜50重量%とし、一般
式(化2)で示される成分を50〜85重量%とからな
る透湿性ポリエステル系フィルム7を設けた構成とした
ものである。前記透湿性ポリエステル系フィルム7にお
いて、酸成分は芳香族二塩基酸やその低級アルキルエス
テルを用いるが、中でもテレフタール酸が好ましい。他
にイソフタル酸、1,5、2,6、あるいは2,7ナフ
タレンジカルボン酸、ジフェニル―4,4’―ジカルボ
ン酸、4,4’―ジフェニロエーテルジカルボン酸、
4,4’―ジフェニルスルフォンカルボン酸、4,4’
―ジフェノキシエタンジカルボン酸、こはく酸、アジピ
ン酸、セバシン酸、ドデカン2酸等を使用、あるいは併
用することができるが、結晶性を示すためには全酸成分
の少なくとも50モル%は同一成分であることが望まし
い。
Embodiment 1 The heat exchange element 1 of FIG. 1 has a structure in which unit elements 4 each composed of a partition plate 2a and a spacing plate 3 for holding the partition plate at a predetermined interval are alternately stacked at 90 ° every other stage. The partition plate 2a and the spacing plate 3 form a ventilation path 5 and a ventilation path 6, and the primary air flow A and the secondary air flow B intersect and pass through the ventilation path 5 and the ventilation path 6, respectively. The temperature and the humidity are exchanged between the primary airflow A and the secondary airflow B via the first and second airflows. The partition plate 2a and the spacing plate 3, or at least the partition plate 2a, contain 15 to 50% by weight of the component represented by the general formula (Chemical Formula 1) and 50 to 85% by weight of the component represented by the general formula (Chemical Formula 2). % Is provided with a moisture-permeable polyester film 7 consisting of In the moisture-permeable polyester film 7, an aromatic dibasic acid or a lower alkyl ester thereof is used as an acid component, and terephthalic acid is particularly preferable. Besides, isophthalic acid, 1,5,2,6 or 2,7 naphthalenedicarboxylic acid, diphenyl-4,4′-dicarboxylic acid, 4,4′-diphenyloether dicarboxylic acid,
4,4'-diphenylsulfonecarboxylic acid, 4,4 '
-Diphenoxyethanedicarboxylic acid, succinic acid, adipic acid, sebacic acid, dodecane diacid, etc. can be used or used in combination, but in order to exhibit crystallinity, at least 50 mol% of all acid components must be the same component. Desirably.

【0030】短鎖グリコール成分には、主として1,4
ブタンジオールを用いるのが好適であるが、炭素数2〜
12のアルキレングリコール等を使用、あるいは併用す
ることができる。これら短鎖グリコール成分は結晶性を
示すためには短鎖グリコール成分の50モル%以上は同
一成分であることが望ましい。
The short-chain glycol component mainly comprises 1,4
It is preferable to use butanediol, but it has 2 to 2 carbon atoms.
Twelve alkylene glycols or the like can be used or used in combination. In order for these short-chain glycol components to exhibit crystallinity, it is desirable that 50 mol% or more of the short-chain glycol components be the same component.

【0031】ポリエチレンオキサイドグリコールには分
子量が500〜4000の範囲であることが必要であ
り、更に好ましくは、500〜3000の範囲にあるこ
とが望ましい。
The polyethylene oxide glycol must have a molecular weight in the range of 500 to 4000, and more preferably in the range of 500 to 3000.

【0032】更に共重合するポリエチレンオキサイドグ
リコールの共重合量は、多いほど透湿性能が良好となる
ため、本発明に適用するには樹脂に対して50重量%以
上必要であるが、必要以上の共重合は逆に結晶性を悪化
させるので、90重量%以下でなくてはならない。
Further, the greater the copolymerization amount of polyethylene oxide glycol to be copolymerized, the better the moisture permeation performance becomes. Therefore, 50% by weight or more based on the resin is required for application to the present invention. Copolymerization adversely affects the crystallinity, so it must be less than 90% by weight.

【0033】また熱可塑性、結晶性を損なわない程度に
3官能モノマー(無水トリメリット酸、TMP等)を共
重合しても良い。
A trifunctional monomer (trimellitic anhydride, TMP, etc.) may be copolymerized to the extent that thermoplasticity and crystallinity are not impaired.

【0034】上記各成分は、公知技術を持ってエステル
化、あるいはエステル交換反応を経た後、重宿合反応を
行いポリエステル共重合体を得ることができる。
Each of the above-mentioned components undergoes esterification or transesterification according to a known technique, and then undergoes double-bonding reaction to obtain a polyester copolymer.

【0035】温度および湿度の交換効率を向上させるた
めには、透湿性ポリエステル系フィルムの膜厚は薄いほ
ど好ましいが、薄くなると透湿性ポリエステル系フィル
ムの取り扱いが悪くなり、作業性および量産性が低下す
る。本発明の透湿性ポリエステル系フィルムの膜厚は5
〜100μm、好ましくは7〜30μm、更に好ましく
は7〜15μmである。
To improve the temperature and humidity exchange efficiency, the thinner the film thickness of the moisture-permeable polyester film, the better. However, the thinner the film, the poorer the handling of the moisture-permeable polyester film, and the lower the workability and mass productivity. I do. The film thickness of the moisture-permeable polyester film of the present invention is 5
To 100 μm, preferably 7 to 30 μm, more preferably 7 to 15 μm.

【0036】触媒としては、公知のものを使用すること
ができるが、中でもチタン系触媒が好ましく用いられ
る。
As the catalyst, known catalysts can be used, and among them, a titanium-based catalyst is preferably used.

【0037】その他、芳香族あるいは脂肪族ハロゲン、
アンチモン等の難燃化剤を添加することにより、不燃化
させることができる。
In addition, aromatic or aliphatic halogens,
By adding a flame retardant such as antimony, it can be made nonflammable.

【0038】あるいは、フィルムタッキング防止剤とし
てタルク、炭酸カルシウムの如き無機充填剤を添加する
ことができる。
Alternatively, an inorganic filler such as talc or calcium carbonate can be added as a film tacking inhibitor.

【0039】上記構成により、1次気流Aおよび2次気
流Bを熱交換素子1に送風すると、通風路5を流れる1
次気流Aと通風路6を流れる2次気流Bは、仕切板2a
を介して温度と湿度の交換をする。
When the primary airflow A and the secondary airflow B are blown to the heat exchange element 1 according to the above configuration, the primary airflow A and the secondary airflow B
The secondary airflow A flowing through the secondary airflow A and the secondary airflow B flowing through the ventilation passage 6 are separated by the partition plate 2a.
Exchange of temperature and humidity through.

【0040】仕切板2aを介して1次気流と2次気流と
の間で湿度交換される際に、多湿気流中の水蒸気のみを
透湿性ポリエステル系フィルム7の表面で溶解させ、内
部で拡散させ、低湿側の表面で脱溶解させ水蒸気を移行
させるもので、二酸化炭素および臭い成分等の他気流へ
の移行が抑制でき、また従来の多孔質材に比べ膜厚が薄
いために、温度および湿度の交換効率を向上させること
ができる。また、透湿性ポリエステル系フィルム7は結
晶性を有するために、多湿条件下においても寸法安定性
が高く、仕切板2aのたわみを防止し、気流の通気抵抗
を低減させることができる。
When the humidity is exchanged between the primary airflow and the secondary airflow through the partition plate 2a, only the water vapor in the humid airflow is dissolved on the surface of the moisture-permeable polyester film 7 and diffused inside. It dissolves and disperses water vapor on the surface on the low-humidity side, and can suppress the transfer to other airflows such as carbon dioxide and odor components. Exchange efficiency can be improved. In addition, since the moisture-permeable polyester film 7 has crystallinity, it has high dimensional stability even under humid conditions, prevents deflection of the partition plate 2a, and can reduce airflow resistance.

【0041】(実施例2)図2を参照しながら説明す
る。なお第1実施例と同一箇所には同一番号を付し、そ
の詳細な説明は省略する。
(Embodiment 2) A description will be given with reference to FIG. The same portions as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof will be omitted.

【0042】図2において、仕切板2aを構成する透湿
性ポリエステル系フィルム7を、セルロース繊維50〜
99重量%およびポリエステル系成分1〜50重量%と
からなる混抄紙8で両面をラミネートしたものである。
In FIG. 2, the moisture-permeable polyester film 7 constituting the partition plate 2a is
Both sides are laminated with a mixed paper 8 composed of 99% by weight and 1 to 50% by weight of a polyester component.

【0043】透湿性ポリエステル系フィルム7と混抄紙
8のラミネートは、押し出しラミネートまたは熱ラミネ
ートによって溶着する。
The laminate of the moisture-permeable polyester film 7 and the mixed paper 8 is welded by extrusion lamination or heat lamination.

【0044】上記混抄紙8を構成するセルロース繊維お
よびポリエステル系成分の重量比について、透湿性ポリ
エステル系フィルム7と混抄紙8をラミネートする時
は、各々のポリエステル系成分により溶着されるため、
混抄紙8中のポリエステル系成分が増えると透湿性ポリ
エステル系フィルム7との溶着面積が増加し、水蒸気の
溶解、拡散、脱溶解する面積が減少するために湿度交換
効率を低くする。また混抄紙8中のポリエステル系成分
が減ると透湿性ポリエステル系フィルム7との溶着面積
が減少し、接着性が低下する。よって、本発明の混抄紙
8を構成するセルロース繊維およびポリエステル系成分
の重量比は、セルロース繊維50〜99重量%およびポ
リエステル系成分1〜50重量%、好ましくはセルロー
ス繊維75〜85重量%およびポリエステル系成分15
〜25重量%が望ましい。
Regarding the weight ratio of the cellulose fiber and the polyester component constituting the mixed paper 8, when the moisture permeable polyester film 7 and the mixed paper 8 are laminated, they are welded by the respective polyester components.
When the polyester-based component in the mixed paper 8 increases, the area for welding with the moisture-permeable polyester-based film 7 increases, and the area for dissolving, diffusing, and dissolving water vapor decreases, thereby lowering the humidity exchange efficiency. Further, when the amount of the polyester component in the mixed paper 8 is reduced, the area for welding with the moisture-permeable polyester film 7 is reduced, and the adhesiveness is reduced. Therefore, the weight ratio of the cellulose fiber and the polyester component constituting the mixed paper 8 of the present invention is 50 to 99% by weight of the cellulose fiber and 1 to 50% by weight of the polyester component, preferably 75 to 85% by weight of the cellulose fiber and the polyester component. System component 15
~ 25% by weight is desirable.

【0045】上記構成により、温度および湿度の交換効
率を向上させるために膜厚を薄くした結果、腰の弱い透
湿性ポリエステル系フィルム7を混抄紙8で両面をラミ
ネートすることにより、仕切板2aの腰が強くなり、作
業性を良くし、量産性が向上する。また、混抄紙8中の
セルロース繊維は透湿性ポリエステル系フィルム7と溶
着しないため、透湿性ポリエステル系フィルム7と混抄
紙8を部分的に溶着しているので、水蒸気の溶解、拡
散、脱溶解する面積の減少を抑えることができ、湿度交
換効率の低下を抑制することができる。
With the above structure, as a result of reducing the film thickness in order to improve the temperature and humidity exchange efficiency, the weakly permeable polyester film 7 is laminated on both sides with the mixed paper 8 to form the partition plate 2a. The stiffness is increased, workability is improved, and mass productivity is improved. In addition, since the cellulose fibers in the mixed paper 8 do not adhere to the moisture-permeable polyester film 7, the moisture-permeable polyester film 7 and the mixed paper 8 are partially welded, so that the water vapor dissolves, diffuses, and dissolves. A decrease in area can be suppressed, and a decrease in humidity exchange efficiency can be suppressed.

【0046】(実施例3)図3を参照しながら説明す
る。なお第1および第2実施例と同一箇所には同一番号
を付し、その詳細な説明は省略する。
(Embodiment 3) A description will be given with reference to FIG. The same parts as those in the first and second embodiments are denoted by the same reference numerals, and detailed description thereof will be omitted.

【0047】図3において、ほぼ四角形の仕切板2aの
表面に両端部を遮断する遮蔽リブ9aと、前記遮蔽リブ
9aと並行に1次気流Aの通風路10と1次気流Aの流
入口12と吐出口13を間隔リブ11aで構成し、一
方、前記仕切板2aの裏面は前記流入口12と吐出口1
3を遮蔽するように遮蔽リブ9bで、2次気流Bの通風
路14と流入口15と吐出口16を形成するように遮蔽
リブ9bと間隔リブ11bを前記仕切板2aを介して樹
脂で一体成形し単位素子17を形成する。
In FIG. 3, a shielding rib 9a for blocking both ends is provided on the surface of a substantially rectangular partition plate 2a, a ventilation path 10 for the primary air flow A and an inlet 12 for the primary air flow A in parallel with the shielding rib 9a. And the discharge port 13 are formed by spacing ribs 11a, while the back surface of the partition plate 2a is
3, the shielding rib 9b and the spacing rib 11b are integrally formed of resin via the partition plate 2a so as to form the ventilation path 14, the inlet 15 and the discharge port 16 of the secondary airflow B. The unit element 17 is formed by molding.

【0048】前記単位素子17と前記仕切板2aとを交
互に積層接着し、熱交換素子を形成する。
The unit elements 17 and the partition plates 2a are alternately laminated and bonded to form a heat exchange element.

【0049】上記構成により、1次気流Aおよび2次気
流Bを熱交換素子に送風すると仕切板2aの表面を流れ
る1次気流Aは、流入口12より流入し、通風路10を
通り、吐出口13より吐出する。
With the above configuration, when the primary airflow A and the secondary airflow B are blown to the heat exchange element, the primary airflow A flowing on the surface of the partition plate 2a flows in from the inlet 12 and passes through the ventilation passage 10 to be discharged. Discharge from outlet 13.

【0050】一方、仕切板2aの裏面を流れる2次気流
Bは、流入口15より1次気流Aとは直交または斜交す
るように流入し、通風路14を通り、吐出口16より吐
出する。この時に仕切板2aを介して1次気流Aと2次
気流Bの間で温度と湿度を交換する。
On the other hand, the secondary air flow B flowing on the back surface of the partition plate 2a flows from the inflow port 15 so as to be orthogonal or oblique to the primary air flow A, passes through the ventilation path 14, and is discharged from the discharge port 16. . At this time, the temperature and humidity are exchanged between the primary airflow A and the secondary airflow B via the partition plate 2a.

【0051】遮蔽リブ9a、9bおよび間隔リブ11
a、11bを樹脂で形成するために、湿度による変形や
リブ高さを高くすることなく安定な通風路10、14を
構成するために、熱交換素子の一定高さ内での仕切板面
積を減少させることなく、また仕切板2aに透湿性ポリ
エステル系フィルム7を使用することにより、温度およ
び湿度の交換効率も向上することができ、また高さ方向
を高くすることなく気流の通風路を広くすることができ
るために、気流の通気抵抗を低減することができる。
The shielding ribs 9a, 9b and the spacing rib 11
In order to form the stable ventilation passages 10 and 14 without deforming due to humidity and increasing the height of the ribs, since the a and 11b are formed of resin, the area of the partition plate within a certain height of the heat exchange element must be reduced. By using the moisture permeable polyester film 7 for the partition plate 2a without reducing the temperature and humidity, the exchange efficiency of temperature and humidity can be improved, and the airflow path of the air flow can be widened without increasing the height direction. Therefore, the airflow resistance can be reduced.

【0052】なお、実施例では、仕切板2aの表面およ
び裏面に遮蔽リブ9a、9b、間隔リブ11a、11b
を樹脂と一体成形した単位素子17を形成し、前記単位
素子17と前記仕切板2aとを交互に積層接着し、熱交
換素子を形成するよう説明したが、仕切板2aの片面の
両端部を遮蔽する遮蔽リブと、前記遮蔽リブと並行に所
定間隔に複数本の間隔リブを樹脂にて一体成形した単位
素子を一段おきに90度交互に積層接着し、熱交換素子
を形成してもよく、その作用効果に差異を生じない。
In the embodiment, the shielding ribs 9a and 9b and the spacing ribs 11a and 11b are provided on the front and back surfaces of the partition plate 2a.
Was formed integrally with resin, and the unit elements 17 and the partition plates 2a were alternately laminated and bonded to form a heat exchange element. However, both ends of one surface of the partition plate 2a were A heat exchange element may be formed by alternately stacking and bonding a shielding rib to be shielded and unit elements in which a plurality of spacing ribs are integrally formed of resin at predetermined intervals in parallel with the shielding rib at every other stage by 90 degrees. , Does not cause a difference in the operation and effect.

【0053】また、遮蔽リブ9a、9b、間隔リブ11
a、11bを樹脂と仕切板2aで一体成形した単位素子
17で説明したが、別に成形した遮蔽リブ9a、9b、
間隔リブ11a、11bを仕切板2aに接着し、単位素
子17として構成したものでもよい。
The shielding ribs 9a and 9b, the spacing rib 11
Although the unit elements 17 in which a and 11b are integrally formed with the resin and the partition plate 2a have been described, the shielding ribs 9a and 9b, which are formed separately,
The spacing ribs 11a and 11b may be bonded to the partition plate 2a to form the unit element 17.

【0054】(実施例4)図4を参照しながら説明す
る。なお第1、2および第3実施例と同一箇所には同一
番号を付し、その詳細な説明は省略する。
(Embodiment 4) A description will be given with reference to FIG. The same parts as those in the first, second and third embodiments are denoted by the same reference numerals, and detailed description thereof will be omitted.

【0055】図4において、1次気流Aの通風路10を
形成する間隔リブを断続とした断続間隔リブ19aと、
2次気流Bの通風路14を形成する間隔リブを断続とし
た断続間隔リブ19bで形成した単位素子20と、前記
仕切板2aとを交互に積層接着した熱交換素子を形成す
る。
In FIG. 4, an intermittent interval rib 19a in which the interval rib forming the ventilation path 10 for the primary air flow A is intermittent,
A heat exchange element is formed by alternately laminating and adhering unit elements 20 formed by intermittent spacing ribs 19b in which the spacing ribs forming the ventilation path 14 of the secondary airflow B are intermittent, and the partition plate 2a.

【0056】上記構成により、1次気流Aと2次気流B
は、流入口12、15より流入し、複数の断続間隔リブ
19a、19bにより分岐と合流を繰り返しながら境界
層を破壊し、吐出口13、16より吐出する。この時に
仕切板2aを介して1次気流Aと2次気流Bの間で温度
と湿度を交換する。
With the above configuration, the primary air flow A and the secondary air flow B
Flows through the inlets 12 and 15, breaks the boundary layer while repeating branching and merging by the plurality of intermittent ribs 19a and 19b, and is discharged from the discharge ports 13 and 16. At this time, the temperature and humidity are exchanged between the primary airflow A and the secondary airflow B via the partition plate 2a.

【0057】間隔リブを断続的にすることにより、流入
口12、15より流入した気流は複数の断続間隔リブ1
9a、19bによって分岐と合流を繰り返しながら境界
層が破壊するために、仕切板2aの表面で効率良く熱交
換されるため、温度および湿度の交換効率を高くするこ
とができる。
By making the spacing ribs intermittent, the airflow flowing from the inflow ports 12 and 15 is reduced to a plurality of intermittent spacing ribs 1.
Since the boundary layer is broken while repeating branching and merging by 9a and 19b, heat is efficiently exchanged on the surface of the partition plate 2a, so that the temperature and humidity exchange efficiency can be increased.

【0058】なお、実施例では、仕切板2aの両面の間
隔リブ19a、19bを断続な構造としたが、仕切板2
aの片面の間隔リブは連続リブとし、他面の間隔リブを
断続な構造としてもよく、その作用効果に差異を生じな
い。
In the embodiment, the spacing ribs 19a and 19b on both sides of the partition plate 2a are intermittent.
The spacing rib on one side may be a continuous rib and the spacing rib on the other side may be an intermittent structure, so that there is no difference in the operation and effect.

【0059】(実施例5)図5を参照しながら説明す
る。なお第1、2、3および第4実施例と同一箇所には
同一番号を付し、その詳細な説明は省略する。
(Embodiment 5) A description will be given with reference to FIG. The same parts as those in the first, second, third and fourth embodiments are denoted by the same reference numerals, and detailed description thereof will be omitted.

【0060】図5において、仕切板2bはほぼ六角形
で、この仕切板2bの表面には両端部を遮断する遮蔽リ
ブ21aと、前記遮蔽リブ21aと並行に間隔リブ23
aで1次気流Aの通風路22と1次気流Aの流入口24
と前記流入口24と相対向する面に吐出口25を設けた
構成とする。一方、前記仕切板2bの裏面の遮蔽リブ2
1bは、前記1次気流Aの流入口24側と吐出口25側
が遮蔽されるように構成し、前記遮蔽リブ21bと間隔
リブ23bで2次気流Bの通風路26と流入口27と吐
出口28を構成する。前記遮蔽リブ21bと前記間隔リ
ブ23bは、前記仕切板2b表面の1次気流Aの流入口
24と吐出口25の近傍では、前記間隔リブ23aとは
直交または斜交するように構成し、中央部では前記仕切
板2b表面の1次気流Aと対向するように構成し、前記
遮蔽リブ21a、21b、間隔リブ23a、23bを樹
脂と仕切板2bを介して一体成形し単位素子29を形成
する。
In FIG. 5, a partition plate 2b has a substantially hexagonal shape. On the surface of the partition plate 2b, shielding ribs 21a for blocking both ends and spacing ribs 23 are provided in parallel with the shielding ribs 21a.
a, the ventilation path 22 of the primary airflow A and the inlet 24 of the primary airflow A
And a discharge port 25 provided on a surface opposite to the inflow port 24. On the other hand, the shielding rib 2 on the back surface of the partition plate 2b
1b is configured such that the inlet 24 side and the discharge port 25 side of the primary air flow A are shielded, and the shielding rib 21b and the spacing rib 23b provide a ventilation path 26 for the secondary air flow B, an inlet 27, and a discharge port. 28. The shielding ribs 21b and the spacing ribs 23b are configured so as to be orthogonal or oblique to the spacing ribs 23a near the inlet 24 and the outlet 25 of the primary airflow A on the surface of the partition plate 2b. The unit is formed so as to face the primary air flow A on the surface of the partition plate 2b, and the shielding ribs 21a, 21b and the spacing ribs 23a, 23b are integrally formed with the resin and the partition plate 2b to form the unit element 29. .

【0061】前記単位素子29と前記仕切板2bとを交
互に積層接着し、1次気流Aの通風路22と2次気流B
の通風路26が構成されるように、熱交換素子を形成す
る。
The unit elements 29 and the partition plates 2b are alternately laminated and adhered, and the primary airflow A ventilation passage 22 and the secondary airflow B
The heat exchange element is formed so that the ventilation path 26 of FIG.

【0062】上記構成により、1次気流Aおよび2次気
流Bを熱交換素子に送風すると仕切板2bの表面を流れ
る1次気流Aは、流入口24より流入し、中央部の対向
流部分を通り、吐出口25より吐出する。
With the above configuration, when the primary airflow A and the secondary airflow B are blown to the heat exchange element, the primary airflow A flowing on the surface of the partition plate 2b flows in from the inflow port 24, and flows through the counterflow portion at the center. As shown in FIG.

【0063】一方、仕切板2bの裏面を流れる2次気流
Bは、流入口27より1次気流Aとは直交または斜交す
るように流入し、中央部の対向流部分では1次気流Aと
は対向するように、また吐出口28近傍では1次気流A
とは直交または斜交するように吐出する。この時に仕切
板2bを介して1次気流Aと2次気流Bの間で温度と湿
度を交換する。
On the other hand, the secondary air flow B flowing on the back surface of the partition plate 2b flows in from the inflow port 27 so as to be orthogonal or oblique to the primary air flow A, and the primary air flow A flows in the opposite flow portion at the center. Are opposed to each other, and the primary airflow A
Are discharged so as to be orthogonal or oblique. At this time, the temperature and humidity are exchanged between the primary airflow A and the secondary airflow B via the partition plate 2b.

【0064】熱交換素子の中央部に対向流部分が形成さ
れることにより、直交流方式よりも温度および湿度の交
換効率を高くすることができる。
By forming the counterflow portion at the center of the heat exchange element, the exchange efficiency of temperature and humidity can be made higher than in the cross-flow system.

【0065】(実施例6)図6を参照しながら説明す
る。なお第1、2、3、4および第5実施例と同一箇所
には同一番号を付し、その詳細な説明は省略する。
(Embodiment 6) A description will be given with reference to FIG. The same parts as those in the first, second, third, fourth and fifth embodiments are denoted by the same reference numerals, and detailed description thereof will be omitted.

【0066】図6において、1次気流Aと2次気流Bの
通風路22、26の中央部をS字状のS字間隔リブ30
a、30bで構成し、仕切板2bの表面のS字間隔リブ
30aのS字の山の部分と、前記仕切板2bの裏面のS
字間隔リブ30bの谷の部分とが前記仕切板2bを介し
て重なるように形成した単位素子31に前記仕切板2b
を交互に積層接着した熱交換素子を形成する。
In FIG. 6, the central portions of the ventilation passages 22 and 26 for the primary air flow A and the secondary air flow B are S-shaped S-shaped interval ribs 30.
a, 30b, the S-shaped ridge of the S-shaped spacing rib 30a on the surface of the partition plate 2b, and the S-shaped portion on the back surface of the partition plate 2b.
The partition plate 2b is provided on the unit element 31 formed so that the valley portion of the character-shaped interval rib 30b overlaps with the partition plate 2b via the partition plate 2b.
Are alternately stacked and bonded to form a heat exchange element.

【0067】上記構成により、1次気流Aと2次気流B
は、流入口24、27より流入し、中央部のS字の通風
路内を通り、吐出口25、28から吐出する。この時に
仕切板2bを介して1次気流Aと2次気流Bの間で温度
と湿度を交換する。
With the above configuration, the primary air flow A and the secondary air flow B
Flows through the inlets 24 and 27, passes through the central S-shaped ventilation path, and is discharged from the discharge ports 25 and 28. At this time, the temperature and humidity are exchanged between the primary airflow A and the secondary airflow B via the partition plate 2b.

【0068】仕切板2bの表面および裏面の中央部分の
対向流部分をS字状にすることにより、直線状通風路よ
りも通風路が長くなるために1次気流Aと2次気流Bの
接触時間が増加し、温度および湿度の交換効率が向上す
る。また仕切板2b表面のS字間隔リブ30aのS字の
山と裏面のS字間隔リブ30bのS字の谷が重なるよう
にすることにより、対向流部分での仕切板2bのたわみ
が防止できるために、仕切板2bのたわみによる1次気
流側と2次気流側の気流の通気抵抗の不均一をなくすこ
とができる。
By making the opposed flow portion at the center of the front and back surfaces of the partition plate 2b S-shaped, the ventilation path becomes longer than the linear ventilation path, so that the primary air flow A and the secondary air flow B contact each other. Time is increased and the efficiency of temperature and humidity exchange is improved. Also, by making the S-shaped peak of the S-shaped spacing rib 30a on the front surface of the partition plate 2b and the S-shaped valley of the S-shaped spacing rib 30b on the rear surface overlap, the deflection of the partition plate 2b in the counterflow portion can be prevented. Therefore, it is possible to eliminate unevenness in airflow resistance between the primary airflow side and the secondary airflow side due to the deflection of the partition plate 2b.

【0069】なお、実施例では、仕切板2bの表面およ
び裏面の中央部の間隔リブをS字に形成して説明した
が、複数の山と谷のある波形状にしてもよく、その作用
効果に差異を生じない。
In the embodiment, the spacing ribs at the center of the front and back surfaces of the partition plate 2b are formed in an S-shape. However, the ribs may have a wave shape with a plurality of peaks and valleys. Makes no difference.

【0070】また、熱交換素子の中央部の対向流部分が
仕切板2bを介して、表面のS字間隔リブ30aと裏面
のS字間隔リブ30bのS字の山と谷が重なる形状で説
明したが、表面のS字間隔リブ30aと裏面のS字間隔
リブ30bの山と山、谷と谷が重なる形状に構成したも
のでも温度および湿度の交換効率は向上する。
The counterflow portion at the center of the heat exchange element will be described as having a shape in which the S-shaped peaks and valleys of the S-shaped spacing ribs 30a on the front surface and the S-shaped spacing ribs 30b on the back surface overlap via the partition plate 2b. However, the efficiency of exchanging temperature and humidity is improved even when the S-shaped spacing ribs 30a on the front surface and the S-shaped spacing ribs 30b on the back surface are configured so that the ridges and valleys overlap.

【0071】[0071]

【発明の効果】以上の実施例から明らかなように、本発
明によれば、二酸化炭素および臭い成分等の他気流への
移行を抑制し、温度および湿度の交換効率の向上に効果
のある熱交換素子が提供できる。
As is clear from the above embodiments, according to the present invention, it is possible to suppress the transfer of carbon dioxide and odor components to other airflows, and to improve the heat and humidity exchange efficiency. An exchange element can be provided.

【0072】また仕切板の作業性を良くし、量産性の向
上に効果のある熱交換素子を提供できる。
Further, it is possible to provide a heat exchange element which improves the workability of the partition plate and is effective in improving mass productivity.

【0073】また寸法安定性を良くすることにより、気
流の通気抵抗が低減し、1次気流と2次気流の通気抵抗
の不均一をなくすことに効果のある熱交換素子を提供で
きる。
Further, by improving the dimensional stability, it is possible to provide a heat exchange element which is effective in reducing the airflow resistance of the airflow and eliminating the unevenness of the airflow resistance between the primary airflow and the secondary airflow.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例1の熱交換素子の斜視図FIG. 1 is a perspective view of a heat exchange element according to a first embodiment of the present invention.

【図2】本発明の実施例2の仕切板の断面図FIG. 2 is a sectional view of a partition plate according to a second embodiment of the present invention.

【図3】本発明の実施例3の熱交換素子の斜視図FIG. 3 is a perspective view of a heat exchange element according to a third embodiment of the present invention.

【図4】本発明の実施例4の熱交換素子の斜視図FIG. 4 is a perspective view of a heat exchange element according to a fourth embodiment of the present invention.

【図5】本発明の実施例5の熱交換素子の斜視図FIG. 5 is a perspective view of a heat exchange element according to a fifth embodiment of the present invention.

【図6】本発明の実施例6の熱交換素子の斜視図FIG. 6 is a perspective view of a heat exchange element according to a sixth embodiment of the present invention.

【図7】従来の熱交換素子の斜視図FIG. 7 is a perspective view of a conventional heat exchange element.

【符号の説明】[Explanation of symbols]

1 熱交換素子 2a、2b 仕切板 3 間隔板 4、17、20、29、31 単位素子 5、6、10、14、22、26 通風路 7 透湿性ポリエステル
系フィルム 8 混抄紙 9a、9b、21a、21b 遮蔽リブ 11a、11b、23a、23b 間隔リブ 12、15、24、27 流入口 13、16、25、28 吐出口 19a、19b 断続間隔リブ 30a、30b S字間隔リブ
DESCRIPTION OF SYMBOLS 1 Heat exchange element 2a, 2b Partition plate 3 Interval plate 4, 17, 20, 29, 31 Unit element 5, 6, 10, 14, 22, 26 Ventilation path 7 Moisture-permeable polyester film 8 Mixed paper 9a, 9b, 21a , 21b Shielding ribs 11a, 11b, 23a, 23b Spacing ribs 12, 15, 24, 27 Inflow ports 13, 16, 25, 28 Discharge ports 19a, 19b Intermittent spacing ribs 30a, 30b S-shaped spacing ribs

───────────────────────────────────────────────────── フロントページの続き (72)発明者 歌川 敏男 大阪府大阪市城東区今福西6丁目2番61号 松下精工株式会社内 (72)発明者 高木 茂道 岐阜県大垣市上屋2丁目80番地 日本合成 化学工業株式会社大垣フィルム工場内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Toshio Utagawa 6-2-61 Imafukunishi, Joto-ku, Osaka-shi, Osaka Inside Matsushita Seiko Co., Ltd. (72) Inventor Shigemichi Takagi 2-80 Kamaya, Ogaki-shi, Gifu Prefecture Nihon Gosei Chemical Industry Co., Ltd. Ogaki Film Factory

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】仕切板と、仕切板を所定間隔に保持する間
隔板とからなる単位素子を一段おきに90度交互に積層
し、1次気流と2次気流とが前記仕切板を介して、温度
と湿度を交換させるものにおいて、上記仕切板と上記間
隔板、または少なくとも前記仕切板を下記一般式 【化1】 で示される成分を15〜50重量%とし、下記一般式 【化2】 で示される成分を50〜85重量%とからなる透湿性ポ
リエステル系フィルムで構成した熱交換素子。
A unit element comprising a partition plate and a spacing plate for holding the partition plate at a predetermined interval is alternately stacked at 90 ° every other stage, and a primary airflow and a secondary airflow pass through the partition plate. Wherein the partition plate and the spacing plate, or at least the partition plate, have the following general formula: The component represented by the formula is 15 to 50% by weight, and the following general formula: A heat exchange element comprising a moisture-permeable polyester film comprising 50 to 85% by weight of the component represented by
【請求項2】仕切板と間隔板、または少なくとも仕切板
を構成する透湿性ポリエステル系フィルムを、セルロー
ス繊維50〜99重量%およびポリエステル系成分1〜
50重量%とからなる混抄紙で両面または少なくとも片
面をラミネートした請求項1記載の熱交換素子。
2. The method according to claim 1, wherein the partition plate and the spacing plate, or at least the moisture-permeable polyester film constituting the partition plate, comprises 50 to 99% by weight of cellulose fiber and 1 to 1 polyester component.
The heat exchange element according to claim 1, wherein both sides or at least one side are laminated with a mixed paper comprising 50% by weight.
【請求項3】仕切板表面の両端部を遮蔽する遮蔽リブ
と、前記遮蔽リブと並行に所定間隔に複数本の間隔リブ
を設け、前記仕切板の裏面は、前記仕切板表面の遮蔽リ
ブと直交または斜交するように遮蔽リブを設け、その遮
蔽リブと並行に所定間隔に複数本の間隔リブを、前記仕
切板を介して樹脂にて一体成形した単位素子と、前記仕
切板とを交互に複数枚積層接着してなる請求項1または
2記載の熱交換素子。
3. A shielding rib for shielding both ends of a surface of a partition plate, and a plurality of spacing ribs provided at predetermined intervals in parallel with the shielding rib, and a back surface of the partition plate is provided with a shielding rib on a surface of the partition plate. A shielding rib is provided so as to be orthogonal or oblique, and a plurality of spacing ribs are formed at predetermined intervals in parallel with the shielding rib, and a unit element integrally formed of resin via the partition plate and the partition plate alternately. The heat exchange element according to claim 1, wherein a plurality of the heat exchange elements are laminated and adhered to the heat exchanger.
【請求項4】仕切板表面および裏面の間隔リブを断続的
な構造とした請求項3記載の熱交換素子。
4. The heat exchange element according to claim 3, wherein the spacing ribs on the front and back surfaces of the partition plate have an intermittent structure.
【請求項5】ほぼ六角形を有する仕切板表面の両端部を
遮蔽する遮蔽リブと、前記遮蔽リブと並行に所定間隔に
複数本の間隔リブを設け、前記仕切板の裏面は、気流の
流入口および吐出口の近傍では、前記仕切板表面の間隔
リブと直交または斜交するように、また中央部分では対
向流部分が形成されるように間隔リブと遮蔽リブを設け
た請求項1または2記載の熱交換素子。
5. A shielding rib for shielding both ends of a surface of a partition plate having a substantially hexagonal shape, and a plurality of spacing ribs provided at predetermined intervals in parallel with the shielding rib. The spacing rib and the shielding rib are provided near the inlet and the discharge port so as to be orthogonal or oblique to the spacing rib on the surface of the partition plate, and so as to form a counterflow portion at a center portion. The heat exchange element as described.
【請求項6】仕切板表面の中央部分の対向流部分はほぼ
S字状を有し、前記仕切板の裏面の中央部分は、前記仕
切板表面の対向流部分のS字状の山の部分と、前記仕切
板裏面の対向流部分のS字状の谷の部分が重なるように
構成した請求項5記載の熱交換素子。
6. An opposing flow portion at a central portion of the surface of the partition plate has a substantially S-shape, and a central portion of a back surface of the partition plate has an S-shaped mountain portion of the opposing flow portion of the surface of the partition plate. 6. The heat exchange element according to claim 5, wherein an S-shaped valley portion of the counterflow portion on the back surface of the partition plate overlaps.
JP31326996A 1996-11-25 1996-11-25 Heat exchange element Expired - Fee Related JP3488028B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31326996A JP3488028B2 (en) 1996-11-25 1996-11-25 Heat exchange element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31326996A JP3488028B2 (en) 1996-11-25 1996-11-25 Heat exchange element

Publications (2)

Publication Number Publication Date
JPH10160379A true JPH10160379A (en) 1998-06-19
JP3488028B2 JP3488028B2 (en) 2004-01-19

Family

ID=18039185

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31326996A Expired - Fee Related JP3488028B2 (en) 1996-11-25 1996-11-25 Heat exchange element

Country Status (1)

Country Link
JP (1) JP3488028B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7188665B2 (en) 2001-11-16 2007-03-13 Mitsubishi Denki Kabushiki Kaisha Heat exchanger and heat exchanger ventilator

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07190666A (en) * 1993-12-28 1995-07-28 Mitsubishi Electric Corp Heat exchanger, its spacer plate and manufacture of partition plate of heat exchanger
JPH08219676A (en) * 1995-02-15 1996-08-30 Mitsubishi Electric Corp Heat-exchanger, distance plate of heat-exchanger, and partition plate of heat-exchanger

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07190666A (en) * 1993-12-28 1995-07-28 Mitsubishi Electric Corp Heat exchanger, its spacer plate and manufacture of partition plate of heat exchanger
JPH08219676A (en) * 1995-02-15 1996-08-30 Mitsubishi Electric Corp Heat-exchanger, distance plate of heat-exchanger, and partition plate of heat-exchanger

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7188665B2 (en) 2001-11-16 2007-03-13 Mitsubishi Denki Kabushiki Kaisha Heat exchanger and heat exchanger ventilator

Also Published As

Publication number Publication date
JP3488028B2 (en) 2004-01-19

Similar Documents

Publication Publication Date Title
EP2851642B1 (en) Heat-exchange element and air conditioner
JP4206894B2 (en) Total heat exchange element
US8550151B2 (en) Heat exchanger
WO2010125644A1 (en) Total heat exchange element
US8726978B2 (en) Heat exchanger element and heat exchanger
JPH06194093A (en) Total enthalpy heat exchanger
JP2008089199A (en) Total enthalpy heat exchanger
JPH11108580A (en) Heat exchange element
JPH10160379A (en) Heat exchanging element
JP5610777B2 (en) Total heat exchange element
JP4928295B2 (en) Sensible heat exchange element
JP2738284B2 (en) Method of manufacturing heat exchanger, spacing plate thereof and partition plate of heat exchanger
JP2008122042A (en) Ventilator
JP4221708B2 (en) Heat exchanger
KR20100119583A (en) Heat exchange element and air conditioner or heating/cooling device using the same
JPH08313186A (en) Heat exchanger
JP2005140362A (en) Heat exchanger
KR20090102460A (en) Sensible heat exchange element
US20030178189A1 (en) Stacked heat exchanger
JP2006071150A (en) Heat exchanging element
JP2006002982A (en) Heat exchanging element
JP4021048B2 (en) Heat exchange element
WO2022172339A1 (en) Partition plate for countercurrent total heat exchange elements, countercurrent total heat exchange element and heat exchange ventilation device
JP5790600B2 (en) Heat exchange element
JP7126617B2 (en) Heat exchange element and heat exchange ventilator

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081031

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091031

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091031

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091031

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091031

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101031

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111031

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121031

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131031

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees