JP4021048B2 - Heat exchange element - Google Patents

Heat exchange element Download PDF

Info

Publication number
JP4021048B2
JP4021048B2 JP12987698A JP12987698A JP4021048B2 JP 4021048 B2 JP4021048 B2 JP 4021048B2 JP 12987698 A JP12987698 A JP 12987698A JP 12987698 A JP12987698 A JP 12987698A JP 4021048 B2 JP4021048 B2 JP 4021048B2
Authority
JP
Japan
Prior art keywords
heat
flow path
heat transfer
air flow
transfer plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP12987698A
Other languages
Japanese (ja)
Other versions
JPH11325780A (en
Inventor
拓也 村山
剛 木下
康文 高橋
Original Assignee
松下エコシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 松下エコシステムズ株式会社 filed Critical 松下エコシステムズ株式会社
Priority to JP12987698A priority Critical patent/JP4021048B2/en
Publication of JPH11325780A publication Critical patent/JPH11325780A/en
Application granted granted Critical
Publication of JP4021048B2 publication Critical patent/JP4021048B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、熱交換形換気扇等に使用する積層構造の熱交換素子に関する。
【0002】
【従来の技術】
近年、省エネルギーに効果のある熱交換形換気扇が普及しており、室内空気と室外空気との間で熱交換を行う熱交換素子は、室内空気を換気する際に失われる熱を回収することにより、空調機器の省エネルギー化が図れることで、この種の熱交換素子は、特公昭47−19990号公報に記載されたものが知られている。
【0003】
以下、その熱交換素子について図15〜19を参照しながら説明する。
図に示すように、熱交換素子101は伝熱板102と前記伝熱板102を所定間隔に保持する波形の間隔板103からなり、1次気流(イ)と2次気流(ロ)とが直交するよう流入し、前記伝熱板102を介して熱交換される。
【0004】
ここで、前記熱交換素子101の伝熱面は主に伝熱板102であり、間隔板103は伝熱板102に対しフィン効果があるものの、主に伝熱板102の間隔を保持するものである。前記熱交換素子101の一定容積において、間隔板103の高さピッチhを低くして、伝熱板102の面積を大きくすると熱交換効率は向上するが、その反面に気流の通気抵抗が増大し、気流を換気送風する送風機の消費電力が上がり、省エネルギー機器としての役目を果たさなくなる。
【0005】
前記直交流式の熱交換素子に対して、1次気流(イ)と2次気流(ロ)とが対向して流れる対向流式の熱交換素子を用いれば、同じ伝熱面積ならば前記直交流式の熱交換素子より高い熱交換効率が得られることは一般的に知られており、この種の発明として実開昭57−127188号公報に記載されたものが知られている。図16、17は上記発明の対向流式の熱交換素子の概略構成を示す斜視図および平面図で、図18、19は図16のx−x線およびy−y線垂直断面図である。図に示すように、対向流式熱交換素子104は中央部を平面状106に両端部を波形107a、107bにした成形シート108と、中央部を波形状109に両端部を平面状110に成形したシート111とを交互に積層し、シートの波形と平面によって2種の気流の流路112を形成する。1次気流(イ)と2次気流(ロ)は前記対向流式熱交換素子104の流路112をほぼS字状に流れ、2種の気流は前記対向流式熱交換素子104の両端では直交、または斜交的に流路112を流れ、前記成形シート111の平面状110を介して熱交換され、また中央部においては対向的に流路112を流れ、前記成形シート111の波形状109を主に、一部を前記成形シート108の平面状106を介して熱交換される。
【0006】
【発明が解決しようとする課題】
このような従来の熱交換素子では、図18に示すように前記対向流式熱交換素子104の中央部における1次気流(イ)と2次気流(ロ)は、対向的に流入し、主に前記成形シート111の波形状109を介して熱交換が行われる。また伝熱面が波形状109により、平面に比べ約1.5倍の伝熱面積となることと、対向流方式とが相伴って、前記対向流式熱交換素子104は直交流式熱交換素子に比べ高い熱交換効率が得られる。しかし、前記成形シート108の平面状106の伝熱面は、前記成形シート111の波形状109の頂点部と接する一部で、伝熱面としての寄与は少なく、主に気流を仕切る働きが大きくなり、中央部成形シートが全て伝熱面としての機能を果たせず、更に高い熱交換効率は得られないという課題があり、熱交換素子一定容積内で通気抵抗を維持したまま伝熱面積を大きくし、熱交換効率を高くすることが要求されている。
【0007】
また、図19は前記対向流式熱交換素子104の中央部と両端部とが連接する箇所であるが、前記成形シートをそれぞれ積層してできた、例えば1次気流(イ)の流路112は図から明らかなように、その中央部において、2次気流(ロ)が混入する構成である。この混合面積は前記流路面積の約25%になり、図中の網掛け部113である。室内の汚れた空気を排気し、この空気と熱交換して室外の新鮮な空気を室内へ取り入れる熱交換形換気扇において、2種の気流が混合することは換気効率の低下となり、換気扇としての役目が低減されるという課題があり、熱交換素子製造の積層精度と作業性を良くし、量産性を向上させることができ、2種の気流の混合を抑制し、高い換気効率が得られる熱交換素子が要求されている。
【0008】
本発明は、このような従来の課題を解決するものであり、熱交換素子容積一定内で通気抵抗を維持して伝熱面積を増すことができ、熱交換効率を向上させることができ、また熱交換素子製造の積層精度と作業性を良くし、量産性を向上させることができ、2種の気流の混合を抑制し、高い換気効率が得られることができる熱交換素子の提供を目的としている。
【0011】
【課題を解決するための手段】
本発明の換気装置は上記目的を達成するために、平板状の伝熱板Cと、この伝熱板Cを所定間隔に保持しかつ二つの気流の仕切板となる波形の伝熱板Aとが、1次気流と2次気流の周囲を隣接し合うよう流路を形成し、その流路の流入、吐出部において流路の両端部に設けた波形の山と谷がなす高さの1〜99%の範囲で、波形を横断する線と、この線と波形の伝熱板Aの山の頂点側および谷の低点側とで囲まれる前記流路の両端面を塞いだ単位素子を、一段おきに上下方向に180度回転させて交互に積層し、1次気流と2次気流とが対向して前記伝熱板を介して熱交換させる熱交換器Aと、前記熱交換器Aの両端に配され前記熱交換器Aの熱交換すべき1次気流と2次気流を交互に熱交換しつつ、気流を分配する熱交換器Bを備えて構成され、前記熱交換器Aの流路の両端面で前記熱交換器Aの1次気流の流路と2次気流の流路とが各々前記熱交換器Aの両端に配された前記熱交換器Bの1次気流の流路と2次気流の流路に連通するようにしたものである。
【0012】
そして本発明によれば、熱交換素子容積一定内で通気抵抗を維持して伝熱面積を増すことができ、熱交換効率を向上させることができ、また熱交換素子製造の積層精度と作業性を良くし、量産性を向上させることができ、2種の気流の混合を抑制し、高い換気効率の熱交換素子が得られる。
【0013】
また他の手段は、単位素子を同一方向に積層したものである。
本発明によれば、熱交換素子容積一定内で通気抵抗を維持して伝熱面積を増すことができ、熱交換効率を向上させることができ、また熱交換素子製造の積層精度と作業性を良くし、量産性を向上させることができ、2種の気流の混合を抑制し、高い換気効率の熱交換素子が得られる。
【0019】
【発明の実施の形態】
本発明は、平板状の伝熱板Cと、この伝熱板Cを所定間隔に保持しかつ二つの気流の仕切板となる波形の伝熱板Aとが、1次気流と2次気流の周囲を隣接し合うよう流路を形成し、その流路の流入、吐出部において流路の両端部に設けた波形の山と谷がなす高さの1〜99%の範囲で、波形を横断する線と、この線と波形の伝熱板Aの山の頂点側および谷の低点側とで囲まれる前記流路の両端面を塞いだ単位素子を、一段おきに上下方向に180度回転させて交互に積層し、または、前記単位素子を、同一方向に積層し、1次気流と2次気流とが対向して前記伝熱板を介して熱交換させる熱交換器Aと、前記熱交換器Aの両端に配され前記熱交換器Aの熱交換すべき1次気流と2次気流を交互に熱交換しつつ、気流を分配する熱交換器Bを備えて構成され、前記熱交換器Aの流路の両端面で前記熱交換器Aの1次気流の流路と2次気流の流路とが各々前記熱交換器Aの両端に配された前記熱交換器Bの1次気流の流路と2次気流の流路に連通するようにしたものであり、前記平板状の伝熱板Cと波形の伝熱板Aとからなる単位素子を積層し、熱交換素子を成形することにより、熱交換素子の工法が簡素化し、量産性と積層精度を向上させることができる。
【0021】
以下、本発明の実施例について図面を参照しながら説明する。
【0022】
【実施例】
(実施例1)
図1〜5を参照しながら説明する。
【0023】
図1は本発明の実施例1の熱交換素子4の分解概略斜視図である。
図に示すように、熱交換器A2は伝熱性と透湿性または伝熱性のみを有する波形の伝熱板A1aが、1次気流(イ)―――(○印)と2次気流(ロ)―――(×印)の周囲を隣接し合うよう流路5a、5bを形成し、この流路5a、5bの流入、吐出部において1次気流(イ)と2次気流(ロ)とを一段ごとに分離するための分離手段7を設けた構成である。
【0024】
図2により素子構成枠8は、波形の伝熱板A1aで構成される流路5a、5bの形状保持と伝熱板A1aを分離手段7へ接合または接着するための支持枠9と、前記流路5a、5bの流入、吐出部において1次気流(イ)と2次気流(ロ)とを一段ごとに分離する分離手段7と、流路5a、5bと並行に気流の両端を遮蔽するための遮蔽リブ10で構成し、前記分離手段7は、流路5a、5bの両端部に設けた波形の支持枠9の波形の山と谷がなす高さの1〜99%の範囲で、好ましくは50%で、波形を横断する線と、この線と波形の伝熱板Aの山の頂点側および谷の低点側とで囲まれる前記流路の両端面を塞いだ構成で、前記支持枠9に波形の伝熱板A1aを接合または接着した単位素子12を一段おきに上下に180度回転させて交互に積層して熱交換器A2を成形する。
【0025】
熱交換器B3は、前記熱交換器A2において伝熱板A1aを介して1次気流(イ)と2次気流(ロ)が対向的に熱交換し、前記分離手段7により1次気流(イ)と2次気流(ロ)を交互に熱交換しつつ気流を分配する構成である。例えば前記熱交換器B3は、二等辺三角形平板状の伝熱板B1bの表面に2辺が等しい1辺を遮蔽する遮蔽リブ13aとその遮蔽リブ13aと並行に所定間隔に複数本の間隔リブ14aを設け、それらの高さを前記流路5aの気流導入出口の高さiと等しくした単位素子15aと、前記伝熱板B1bの表面に2辺が等しい前記単位素子15aの反対側の1辺を遮蔽する遮蔽リブ13bとその遮蔽リブ13bと並行に所定間隔に複数本の間隔リブ14bを設け、それらの高さを前記流路5bの気流導入出口の高さjと等しくした単位素子15bとを交互に積層した構成である。この熱交換器B3は前記伝熱板B1bと遮蔽リブ13a、13bおよび間隔リブ14a、14bにより1次気流(イ)の流路16aと2次気流(ロ)の流路16bが直交または斜交するように形成され、1次気流(イ)と2次気流(ロ)は伝熱板B1bを介して熱交換しつつ2つの気流を分配する。
【0026】
図3により熱交換素子4は中央部を対向流式の熱交換器A2と、その熱交換器A2の1次気流(イ)の流路5aと、2次気流(ロ)の流路5bとが各々熱交換器B3の1次気流(イ)の流路16aと2次気流(ロ)の流路16bに連通するように接合または接着した構成である。
【0027】
上記構成により1次気流(イ)は熱交換器B3の流路16aより流入し、中央部の熱交換器A2の分離手段7により2次気流(ロ)の流路5bと周囲を隣接するようにした流路5aを通り、流路5aの吐出口側に設けられた分離手段7によって、もう一方の熱交換器B3の流路16aへ導かれ、熱交換器B3から吐出する。一方、2次気流(ロ)は前記1次気流(イ)が吐出した側の熱交換器B3の流路16bより前記1次気流(イ)とは直交または斜交するように流入し、中央部の熱交換器A2の分離手段7により1次気流(イ)の流路5aと周囲を隣接するようにした流路5bを前記1次気流(イ)とは対向的に通り、流路5bの吐出口側に設けられた分離手段7によって、もう一方の熱交換器B3の流路16bへ導かれ、熱交換器B3から吐出する。この時、1次気流(イ)と2次気流(ロ)は熱交換器B3では伝熱板B1bを介し、熱交換器A2では伝熱板A1aを介して温度と湿度または温度の交換をする。
【0028】
図4は図3の熱交換器A2のa−a線垂直断面図であるが、伝熱板A1aは1次気流(イ)と2次気流(ロ)の2つの気流の仕切と伝熱面を兼ね備え、かつ2つの気流が周囲を隣接し合うよう熱交換することで熱交換素子容積一定内での伝熱面積が増すことと、熱交換効率の高い対向流方式とが相伴って、熱交換素子容積一定内で通気抵抗を維持したまま、熱交換効率を向上することができる。また中央部の熱交換器A2とその両端に配する熱交換器B3とを連通する1次気流(イ)および2次気流(ロ)の流路5a、5bが、中央部熱交換器A2の分離手段7によって、2種の気流の混合を抑制し、高い換気効率を得ることができる。
【0029】
なお、実施例では、素子構成枠8の流路をほぼ三角形の構成で、その素子構成枠8と波形の伝熱板A1aを接合または接着した単位素子12を一段おきに上下に180度回転させて交互に積層して熱交換器A2を成形すると説明したが、図5に示すように前記素子構成枠8とそれを上下に180度回転させて合わせた形状の素子構成枠17としてもよく、その作用効果に差異を生じない。
【0030】
また、前記素子構成枠8は形状が形成できる材質であればいかなる材質でもよい。
【0031】
また、熱交換器A2の気流の流路5a、5bはほぼ四角形で説明したが、流路5a、5b形状は三角形以上の多角形、円または楕円でもよく、1次気流(イ)および2次気流(ロ)が通る流路5a、5bの周囲を隣接するようにし、更に流路5a、5bの流入、吐出部に設けた分離手段7によって1次気流(イ)および2次気流(ロ)を1段ごとに分離させる構成であればよい。
【0032】
また、熱交換器B3は二等辺三角形の三角柱で説明したが、1次気流(イ)および2次気流(ロ)を交互に熱交換しつつ2つの気流を分配し、前記熱交換器B3の1次気流(イ)の流路16aの高さが熱交換器A2の流路5aの気流導入出口の高さiと等しく、前記熱交換器B3の2次気流(ロ)の流路16bの高さが熱交換器A2の流路5bの気流導入出口の高さjと等しくした構成であればよい。
【0033】
(実施例2)
図6、7を参照しながら説明する。なお実施例1と同一箇所には同一番号を付し、その詳細な説明は省略する。
【0034】
図6により素子構成枠8の支持枠9に波形の伝熱板A1aを接合または接着し、更に平板状の伝熱板C1cを遮蔽リブ10および波形の前記伝熱板A1aとで所定間隔に保持し、前記素子構成枠8の前記遮蔽リブ10および波形の前記伝熱板A1a、または前記素子構成枠8の前記遮蔽リブ10と接合または接着した単位素子18を一段おきに上下に180度回転させて交互に積層して図7の熱交換器A2を成形する。
【0035】
上記構成により平板状の伝熱板C1cと波形の伝熱板A1aとからなる単位素子18を積層して熱交換器A2を成形することにより、熱交換素子の工法が簡素化し、量産性と積層精度を向上させることができる。
【0036】
(実施例3)
図8、9を参照しながら説明する。なお実施例1および2と同一箇所には同一番号を付し、その詳細な説明は省略する。
【0037】
図8に示すように前記単位素子18を同一方向に積層して、図9に示すように熱交換器A2を成形する。
【0038】
上記構成により平板状の伝熱板C1cと波形の伝熱板A1aとからなる単位素子18を積層して熱交換器A2を成形することにより、熱交換素子の工法が簡素化し、量産性と積層精度を向上させることができる。
【0039】
参考
図10、11、12を参照しながら説明する。なお実施例1、2および3と同一箇所には同一番号を付し、その詳細な説明は省略する。
【0040】
図に示すように、ほぼ六角形の伝熱板D1dの表面は、両端部を遮蔽する遮蔽リブ19aと、両端部の1次気流(イ)の流入口および吐出口近傍の流路20aを形成するために前記遮蔽リブ19aと並行に所定間隔に複数本の間隔リブ21aを設ける。一方、前記伝熱板D1dの裏面は、前記伝熱板D1d表面の前記間隔リブ21aと遮蔽リブ19aを裏返すように間隔リブ21bと遮蔽リブ19bを設けて両端部の2次気流(ロ)の流入口および吐出口近傍の流路20bを形成する。また中央部において、前記伝熱板D1d表面側に波形の前記伝熱板A1aと前記分離手段7を有し、前記伝熱板A1aと伝熱板D1d、両端は前記遮蔽リブ19a、19bと前記伝熱板A1aと前記伝熱板D1dとが1次気流(イ)と2次気流(ロ)の周囲を隣接し合うよう流路22a、22bを形成する。前記分離手段7は中央部流路22a、22bの流入、吐出部に波形の山と谷がなす高さの1〜99%の範囲で、好ましくは50%で、波形を横断する線と、この線と波形の伝熱板Aの山の頂点側および谷の低点側とで囲まれる前記流路の端面を塞いだ構成である。また前記伝熱板D1d表面両端部の前記遮蔽リブ19aと前記間隔リブ21aの高さは、前記仕切面11と前記伝熱板A1aの波形の谷の高さに等しく、前記伝熱板D1d裏面両端部の前記遮蔽リブ19bと前記間隔リブ21bの高さは、前記仕切面11と前記伝熱板A1aの波形の山の高さに等しくし、伝熱板A1aと伝熱板D1dを介して遮蔽リブ19a、19b、間隔リブ21a、21bと分離手段7を樹脂にて一体成形した単位素子23と、両端部でほぼ三角形の伝熱板E1eとを交互に複数枚積層し熱交換素子24を成形する。この熱交換素子24は1次気流(イ)と2次気流(ロ)とが両端部では伝熱板D1dと伝熱板E1e、中央部では伝熱板A1aと伝熱板D1dを介して熱交換する構成としたものである。
【0041】
上記構成により1次気流(イ)は熱交換素子24の流路20aより流入し、中央部の分離手段7により2次気流(ロ)の流路22bと周囲を隣接するようにした流路22aを通り、流路22aの吐出口側に設けられた分離手段7によって、もう一方の流路20aへ導かれ、熱交換素子24から吐出する。
【0042】
一方、2次気流(ロ)は前記1次気流(イ)が吐出した側の流路20bより前記1次気流(イ)とは直交または斜交するように流入し、中央部の分離手段7により1次気流(イ)の流路22aと周囲を隣接するようにした流路22bを前記1次気流(イ)とは対向的に通り、流路22bの吐出口側に設けられた分離手段7によって、もう一方の流路20bへ導かれ、熱交換素子24から吐出する。この時、1次気流(イ)と2次気流(ロ)は熱交換素子24両端部の伝熱板D1dと伝熱板E1eを介し、また中央部では伝熱板A1aと伝熱板D1dを介して温度と湿度または温度の交換をする。
【0043】
1次気流(イ)と2次気流(ロ)の2つの気流が周囲を隣接し合うよう流路を構成することにより熱交換素子容積一定内での伝熱面積が増すことと、熱交換効率の高い対向流方式とが相伴って、熱交換素子容積一定内で通気抵抗を維持して、熱交換効率を向上することができる。また前記伝熱板を介して遮蔽リブ19a、19b、間隔リブ21a、21bと分離手段7を樹脂にて一体成形することにより、熱交換素子24の両端部と中央部との接合性が向上し、1次気流(イ)と2次気流(ロ)の2種の気流の混合を抑制し、量産性を向上させることができる。
【0044】
なお、参考例では熱交換素子を8面体構造で説明したが、熱交換素子中央部において伝熱板が1次気流と2次気流の周囲を隣接し合うよう流路を形成し、その流路の流入、吐出部において1次気流と2次気流とを一段ごとに分離させる分離手段7を有し、1次気流と2次気流とが対向して前記伝熱板を介して熱交換し、熱交換素子の両端では前記熱交換すべき1次気流と2次気流を交互に熱交換しつつ、気流を分配し、熱交換素子中央部とその両端が連接した構成で有ればその形状は何でもよい。
【0045】
参考
図13、14を参照しながら説明する。なお実施例1、2、3および4と同一箇所には同一番号を付し、その詳細な説明は省略する。
【0046】
図13、14において、中央部は波形の前記伝熱板A1a、前記分離手段7と前記遮蔽リブ19a、19bを有し、両端部ではほぼ三角形の伝熱板F1f、前記遮蔽リブ19a、19bと前記間隔リブ21a、21bを有し、前記伝熱板F1fは前記分離手段7の仕切面11に連接した単位素子25と、ほぼ六角形の伝熱板G1gとを交互に複数枚積層し、1次気流(イ)と2次気流(ロ)とが両端部では伝熱板F1fと伝熱板G1g、中央部では伝熱板A1aと伝熱板G1gを介して熱交換する構成としたものである。
【0047】
上記構成により1次気流(イ)と2次気流(ロ)の2つの気流が周囲を隣接し合うよう流路を構成することにより熱交換素子容積一定内での伝熱面積が増すことと、熱交換効率の高い対向流方式とが相伴って、熱交換素子容積一定内で通気抵抗を維持して、熱交換効率を向上することができる。また前記伝熱板G1gを介して遮蔽リブ19a、19b、間隔リブ21a、21bと分離手段7を樹脂にて一体成形することにより、熱交換素子24の両端部と中央部との接合性が向上し、1次気流(イ)と2次気流(ロ)の2種の気流の混合を抑制し、量産性を向上させることができる。
【0048】
【発明の効果】
以上の実施例から明らかなように、本発明によれば、熱交換素子容積一定内で通気抵抗を維持して伝熱面積を増すことができ、熱交換効率を向上させることができる熱交換素子が提供できる。
【0049】
また、熱交換素子製造の積層精度と作業性を良くし、量産性を向上させることができ、2種の気流の混合を抑制し、高い換気効率が得られる熱交換素子が提供できる。
【図面の簡単な説明】
【図1】本発明の実施例1の熱交換素子を示す分解した概略斜視図
【図2】同単位素子の要部斜視図
【図3】同熱交換素子の斜視図
【図4】同熱交換器A中央部(a−a)の垂直断面図
【図5】同単位素子の要部斜視図
【図6】同実施例2の単位素子の要部斜視図
【図7】同熱交換器Aの斜視図
【図8】同実施例3の単位素子の要部斜視図
【図9】同熱交換器Aの斜視図
【図10】参考の単位素子の平面図
【図11】同単位素子の中央部とその連接部の垂直断面図
【図12】同熱交換素子の斜視図
【図13】参考の単位素子の平面図
【図14】同単位素子の中央部とその連接部の垂直断面図
【図15】従来の熱交換素子の斜視図
【図16】同熱交換素子の斜視図
【図17】同熱交換素子の成形シートの平面図
【図18】同熱交換素子の中央部(x−x)の垂直断面図
【図19】同熱交換素子の中央部(y−y)とその連接部の垂直断面図
【符号の説明】
1a 伝熱板A
1b 伝熱板B
1c 伝熱板C
1d 伝熱板D
1e 伝熱板E
1f 伝熱板F
1g 伝熱板G
2 熱交換器A
3 熱交換器B
4 熱交換素子
5a、5b 流路
7 分離手段
8、17 素子構成枠
9 支持枠
10、13a、13b 遮蔽リブ
11 仕切面
12、15a、15b 単位素子
14a、14b 間隔リブ
16a、16b 流路
18、23、25 単位素子
19a、19b 遮蔽リブ
20a、20b 流路
21a、21b 間隔リブ
22a、22b 流路
24 熱交換素子
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a heat exchange element having a laminated structure used for a heat exchange type ventilation fan or the like.
[0002]
[Prior art]
In recent years, heat exchange type ventilation fans that are effective for energy conservation have become widespread, and heat exchange elements that exchange heat between room air and outdoor air can recover heat lost when ventilating room air. Since this type of heat exchange element can save energy in the air conditioner, one described in Japanese Patent Publication No. 47-19990 is known.
[0003]
Hereinafter, the heat exchange element will be described with reference to FIGS.
As shown in the figure, the heat exchange element 101 is composed of a heat transfer plate 102 and a corrugated spacing plate 103 that holds the heat transfer plate 102 at a predetermined interval. A primary air flow (A) and a secondary air flow (B) are generated. It flows in perpendicular to each other, and heat is exchanged through the heat transfer plate 102.
[0004]
Here, the heat transfer surface of the heat exchange element 101 is mainly the heat transfer plate 102, and the interval plate 103 has a fin effect on the heat transfer plate 102, but mainly maintains the interval of the heat transfer plate 102. It is. When the height pitch h of the spacing plate 103 is decreased and the area of the heat transfer plate 102 is increased in a constant volume of the heat exchange element 101, the heat exchange efficiency is improved, but on the other hand, the air flow resistance increases. The power consumption of the blower that ventilates the airflow increases, and it no longer serves as an energy-saving device.
[0005]
If a counter-flow type heat exchange element in which a primary air flow (b) and a secondary air flow (b) flow opposite to the cross-flow type heat exchange element is used, the direct current (b) and It is generally known that a higher heat exchange efficiency can be obtained than an AC heat exchange element, and this type of invention is disclosed in Japanese Utility Model Publication No. 57-127188. FIGS. 16 and 17 are a perspective view and a plan view showing a schematic configuration of the counter-flow heat exchange element of the invention, and FIGS. 18 and 19 are vertical sectional views taken along lines xx and yy of FIG. As shown in the figure, the counter-flow type heat exchange element 104 is formed into a flat sheet 106 at the center and a molded sheet 108 having both ends 107 w and 107 b, and a wavy shape 109 at the center and a flat 110 at both ends. The sheets 111 are alternately stacked, and two kinds of air flow paths 112 are formed by the corrugation and plane of the sheet. The primary airflow (A) and the secondary airflow (B) flow through the flow path 112 of the counterflow heat exchange element 104 in an approximately S shape, and the two types of airflow are at both ends of the counterflow heat exchange element 104. It flows through the flow path 112 orthogonally or obliquely, and heat is exchanged via the planar shape 110 of the molded sheet 111, and flows through the flow path 112 oppositely at the center, and the corrugated shape 109 of the molded sheet 111. Mainly, a part of the heat is exchanged through the planar shape 106 of the molded sheet 108.
[0006]
[Problems to be solved by the invention]
In such a conventional heat exchange element, as shown in FIG. 18, the primary airflow (A) and the secondary airflow (B) in the central portion of the counterflow heat exchange element 104 flow in opposite directions, In addition, heat exchange is performed via the corrugation 109 of the molded sheet 111. In addition, the counter flow type heat exchange element 104 has a cross flow type heat exchange because the heat transfer surface has a heat transfer area of about 1.5 times that of a flat surface due to the wave shape 109 and the counter flow type. High heat exchange efficiency can be obtained compared to the element. However, the heat transfer surface of the flat sheet 106 of the molded sheet 108 is a part in contact with the apex portion of the corrugated shape 109 of the molded sheet 111 and contributes little to the heat transfer surface, and mainly functions to partition the air flow. Therefore, there is a problem that the central molded sheet does not function as a heat transfer surface, and higher heat exchange efficiency cannot be obtained, and the heat transfer area is increased while maintaining the ventilation resistance within a certain volume of the heat exchange element. However, it is required to increase the heat exchange efficiency.
[0007]
FIG. 19 shows a location where the central portion and both end portions of the counter-flow heat exchange element 104 are connected to each other. For example, the flow path 112 of the primary air flow (A) is formed by laminating the molded sheets. As is clear from the figure, the secondary airflow (b) is mixed in the central portion. This mixed area is about 25% of the flow path area, and is the shaded portion 113 in the figure. In a heat exchange type exhaust fan that exhausts dirty air in the room and exchanges heat with this air to take in fresh outdoor air into the room. Mixing the two airflows reduces the ventilation efficiency and serves as a ventilation fan. Heat exchange that improves the stacking accuracy and workability of heat exchange element manufacturing, improves mass productivity, suppresses mixing of the two air streams, and provides high ventilation efficiency An element is required.
[0008]
The present invention solves such a conventional problem, can maintain the ventilation resistance within a constant heat exchange element volume, increase the heat transfer area, improve the heat exchange efficiency, For the purpose of providing a heat exchange element that can improve the laminating accuracy and workability of heat exchange element manufacturing, improve mass productivity, suppress mixing of two kinds of airflow, and obtain high ventilation efficiency. Yes.
[0011]
[Means for Solving the Problems]
For the ventilator of the present invention to achieve the above object, a flat heat transfer plate C, and the heat transfer plate A waveform comprising the heat transfer plate C and the partition plate of the two airflow One only held at a predetermined distance However, the flow path is formed so that the periphery of the primary air flow and the secondary air flow are adjacent to each other, and the height of the corrugated peaks and valleys formed at both ends of the flow path at the inflow and discharge portions of the flow path is 1 A unit element that blocks both end faces of the flow path surrounded by a line traversing the waveform in a range of ˜99% and the peak of the corrugated heat transfer plate A and the low point of the valley of the corrugated heat transfer plate A. The heat exchanger A is rotated alternately by 180 degrees in the vertical direction every other step, and the primary air flow and the secondary air flow face each other and exchange heat through the heat transfer plate, and the heat exchanger A while heat exchanging alternately primary airflow and the secondary airflow to be heat exchange of the heat exchanger a are arranged at both ends, provided with a heat exchanger B to distribute the air flow structure of The heat exchange in which the flow path of the primary air flow and the flow path of the secondary air flow of the heat exchanger A are respectively arranged at both ends of the heat exchanger A on both end surfaces of the flow path of the heat exchanger A flow path of the primary airflow vessels B and is obtained by the so that through communication with the flow path of the secondary air flow.
[0012]
According to the present invention, the heat transfer area can be increased by maintaining the ventilation resistance within a constant heat exchange element volume, the heat exchange efficiency can be improved, and the stacking accuracy and workability of the heat exchange element manufacturing can be improved. The mass productivity can be improved, and mixing of the two airflows can be suppressed, and a heat exchange element with high ventilation efficiency can be obtained.
[0013]
Another means is that unit elements are stacked in the same direction.
According to the present invention, the heat transfer area can be increased by maintaining the ventilation resistance within a constant heat exchange element volume, the heat exchange efficiency can be improved, and the stacking accuracy and workability of the heat exchange element manufacturing can be improved. As a result, mass productivity can be improved, mixing of the two airflows can be suppressed, and a heat exchange element with high ventilation efficiency can be obtained.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
The present invention, plate-like and heat transfer plate C, the waveform comprising the heat transfer plate C and the partition plate of the two airflow One only held at a predetermined interval and the heat transfer plate A, 1 primary airflow and the secondary airflow A flow path is formed so that the surroundings are adjacent to each other, and the waveform is crossed within a range of 1 to 99% of the height formed by the peaks and valleys of the waveform provided at both ends of the flow path at the inflow and discharge portions of the flow path. The unit elements that block the both end faces of the flow path surrounded by the line to be connected and the apex side of the peak and the low point side of the valley of the corrugated heat transfer plate A are rotated 180 degrees vertically every other step. The heat exchanger A , wherein the unit elements are stacked in the same direction, and the primary airflow and the secondary airflow face each other to exchange heat via the heat transfer plate, and the heat while being disposed at opposite ends of the exchanger a heat exchanger alternately primary airflow and the secondary airflow to be heat exchange of the heat exchanger a, Bei heat exchanger B to distribute the air flow The flow path of the primary air flow and the flow path of the secondary air flow of the heat exchanger A are respectively arranged at both ends of the heat exchanger A on both end surfaces of the flow path of the heat exchanger A. is obtained by the so that through communication with the flow path of the flow path and the secondary airflow in the primary air flow of the heat exchanger B, and the unit element consisting of a heat transfer plate a of said plate-like heat transfer plate C and the waveform By laminating and forming the heat exchange element, the heat exchange element construction method can be simplified, and mass productivity and lamination accuracy can be improved.
[0021]
Embodiments of the present invention will be described below with reference to the drawings.
[0022]
【Example】
Example 1
This will be described with reference to FIGS.
[0023]
FIG. 1 is an exploded schematic perspective view of a heat exchange element 4 according to Embodiment 1 of the present invention.
As shown in the figure, the heat exchanger A2 has a corrugated heat transfer plate A1a having only heat transfer and moisture permeability or heat transfer, and the primary air flow (b) and the secondary air flow (b) -Channels 5a and 5b are formed so as to be adjacent to each other around (x mark), and the primary airflow (A) and the secondary airflow (B) are generated at the inflow and discharge portions of the channels 5a and 5b. It is the structure which provided the isolation | separation means 7 for isolate | separating for every step.
[0024]
As shown in FIG. 2, the element configuration frame 8 includes a support frame 9 for maintaining the shape of the flow paths 5 a and 5 b configured by the corrugated heat transfer plate A 1 a, and joining or bonding the heat transfer plate A 1 a to the separation unit 7. In order to shield both ends of the airflow in parallel with the flow paths 5a and 5b, and the separating means 7 that separates the primary airflow (b) and the secondary airflow (b) in each stage at the inflow and discharge portions of the channels 5a and 5b. The separating means 7 is preferably in the range of 1 to 99% of the height formed by the corrugated peaks and troughs of the corrugated support frame 9 provided at both ends of the flow paths 5a and 5b. Is 50%, and is configured to block both end faces of the flow path surrounded by a line crossing the corrugation and the peak side of the corrugated heat transfer plate A and the low point side of the trough. The unit elements 12 having the corrugated heat transfer plate A1a joined or adhered to the frame 9 are alternately rotated by rotating 180 degrees up and down every other stage. Laminated to molding the heat exchanger A2.
[0025]
In the heat exchanger B3, the primary airflow (A) and the secondary airflow (B) exchange heat in the heat exchanger A2 via the heat transfer plate A1a so that the primary airflow (I) ) And the secondary airflow (b) are exchanged alternately, and the airflow is distributed. For example, the heat exchanger B3 includes a shielding rib 13a that shields one side having two equal sides on the surface of a heat transfer plate B1b having an isosceles triangular plate shape, and a plurality of spacing ribs 14a at predetermined intervals in parallel with the shielding rib 13a. And a unit element 15a whose height is equal to the height i of the air flow inlet / outlet of the flow path 5a, and one side opposite to the unit element 15a, the two sides of which are equal to the surface of the heat transfer plate B1b. And a unit element 15b having a plurality of spacing ribs 14b at predetermined intervals in parallel with the shielding rib 13b and having a height equal to the height j of the air flow inlet / outlet of the flow path 5b. It is the structure which laminated | stacked alternately. In this heat exchanger B3, the flow path 16a of the primary air flow (b) and the flow path 16b of the secondary air flow (b) are orthogonal or obliquely crossed by the heat transfer plate B1b, the shielding ribs 13a and 13b, and the spacing ribs 14a and 14b. The primary airflow (A) and the secondary airflow (B) are distributed so as to exchange heat through the heat transfer plate B1b.
[0026]
As shown in FIG. 3, the heat exchange element 4 has a counterflow-type heat exchanger A2 at the center, a flow path 5a for the primary air flow (A) and a flow path 5b for the secondary air flow (B) of the heat exchanger A2. Are joined or bonded so as to communicate with the flow path 16a of the primary air flow (A) and the flow path 16b of the secondary air flow (B) of the heat exchanger B3.
[0027]
With the above configuration, the primary airflow (A) flows in from the flow path 16a of the heat exchanger B3, and the secondary airflow (B) flow path 5b is adjacent to the periphery by the separation means 7 of the heat exchanger A2 at the center. The separation means 7 provided on the discharge port side of the flow path 5a is guided to the flow path 16a of the other heat exchanger B3 and discharged from the heat exchanger B3. On the other hand, the secondary air flow (b) flows from the flow path 16b of the heat exchanger B3 on the side from which the primary air flow (b) is discharged so as to be orthogonal or oblique to the primary air flow (b). The flow path 5b passes through the flow path 5b that is adjacent to the flow path 5a of the primary air flow (b) by the separation means 7 of the heat exchanger A2 in the opposite direction to the primary air flow (b). The separation means 7 provided on the discharge outlet side of the heat exchanger B3 guides the flow path 16b of the other heat exchanger B3 and discharges it from the heat exchanger B3. At this time, the primary air flow (A) and the secondary air flow (B) exchange temperature and humidity or temperature through the heat transfer plate B1b in the heat exchanger B3 and through the heat transfer plate A1a in the heat exchanger A2. .
[0028]
4 is a vertical cross-sectional view taken along the line aa of the heat exchanger A2 in FIG. 3, but the heat transfer plate A1a has two air flow partitions and a heat transfer surface of a primary air flow (A) and a secondary air flow (B). Heat exchange so that the two airflows are adjacent to each other in the vicinity, and the heat transfer area within the constant volume of the heat exchange element is increased, and the counter flow system with high heat exchange efficiency is combined with the heat flow. Heat exchange efficiency can be improved while maintaining ventilation resistance within a constant exchange element volume. In addition, the flow paths 5a and 5b of the primary air flow (A) and the secondary air flow (B) communicating the heat exchanger A2 in the central portion and the heat exchanger B3 disposed at both ends thereof are provided in the central heat exchanger A2. The separation means 7 can suppress mixing of the two types of air currents and obtain high ventilation efficiency.
[0029]
In the embodiment, the flow path of the element component frame 8 has a substantially triangular structure, and the unit elements 12 to which the element component frame 8 and the corrugated heat transfer plate A1a are bonded or bonded are rotated 180 degrees up and down every other stage. However, as shown in FIG. 5, the element component frame 8 and the element component frame 17 having a shape obtained by rotating it up and down by 180 degrees may be used. There is no difference in the effect.
[0030]
The element component frame 8 may be made of any material as long as it can form a shape.
[0031]
Moreover, although the flow paths 5a and 5b of the air flow of the heat exchanger A2 have been described as being substantially square, the shapes of the flow paths 5a and 5b may be polygons, circles, or ellipses of triangles or more, and the primary air flow (A) and the secondary air flow. The surroundings of the flow paths 5a and 5b through which the air flow (b) passes are adjacent to each other, and further the primary air flow (b) and the secondary air flow (b) by the separating means 7 provided in the inflow and discharge portions of the flow paths 5a and 5b. Any structure may be used as long as it is separated for each stage.
[0032]
In addition, although the heat exchanger B3 has been described as an isosceles triangular triangular prism, the two air streams are distributed while alternately exchanging the primary air stream (b) and the secondary air stream (b), and the heat exchanger B3 The height of the flow path 16a of the primary air flow (A) is equal to the height i of the air flow inlet / outlet of the flow path 5a of the heat exchanger A2, and the height of the flow path 16b of the secondary air flow (B) of the heat exchanger B3 is increased. It is sufficient if the height is equal to the height j of the air flow inlet / outlet of the flow path 5b of the heat exchanger A2.
[0033]
(Example 2)
This will be described with reference to FIGS. In addition, the same number is attached | subjected to the same location as Example 1, and the detailed description is abbreviate | omitted.
[0034]
As shown in FIG. 6, the corrugated heat transfer plate A1a is joined or bonded to the support frame 9 of the element component frame 8, and the flat heat transfer plate C1c is held at a predetermined interval by the shielding rib 10 and the corrugated heat transfer plate A1a. Then, the shielding rib 10 of the element component frame 8 and the corrugated heat transfer plate A1a or the unit element 18 joined or bonded to the shielding rib 10 of the element component frame 8 are rotated 180 degrees up and down every other step. Then, the heat exchanger A2 in FIG.
[0035]
By forming the heat exchanger A2 by laminating the unit elements 18 composed of the plate-shaped heat transfer plate C1c and the corrugated heat transfer plate A1a with the above configuration, the heat exchange element construction method is simplified, and mass productivity and lamination are improved. Accuracy can be improved.
[0036]
(Example 3)
This will be described with reference to FIGS. In addition, the same number is attached | subjected to the same location as Example 1 and 2, and the detailed description is abbreviate | omitted.
[0037]
As shown in FIG. 8, the unit elements 18 are stacked in the same direction, and a heat exchanger A2 is formed as shown in FIG.
[0038]
By forming the heat exchanger A2 by laminating the unit elements 18 composed of the plate-shaped heat transfer plate C1c and the corrugated heat transfer plate A1a with the above configuration, the heat exchange element construction method is simplified, and mass productivity and lamination are improved. Accuracy can be improved.
[0039]
( Reference Example 1 )
This will be described with reference to FIGS. In addition, the same number is attached | subjected to the same location as Example 1, 2, and 3, and the detailed description is abbreviate | omitted.
[0040]
As shown in the figure, the surface of the substantially hexagonal heat transfer plate D1d forms a shielding rib 19a that shields both ends, and a flow path 20a in the vicinity of the inlet and outlet of the primary airflow (A) at both ends. In order to do this, a plurality of spacing ribs 21a are provided in parallel with the shielding ribs 19a at predetermined intervals. On the other hand, the back surface of the heat transfer plate D1d is provided with a spacing rib 21b and a shielding rib 19b so as to turn over the spacing rib 21a and the shielding rib 19a on the surface of the heat transfer plate D1d. A flow path 20b in the vicinity of the inflow port and the discharge port is formed. Further, in the center portion, the heat transfer plate A1a and the separation means 7 are provided on the surface side of the heat transfer plate D1d, the heat transfer plate A1a and the heat transfer plate D1d, both ends of the shield ribs 19a and 19b and the The flow paths 22a and 22b are formed so that the heat transfer plate A1a and the heat transfer plate D1d are adjacent to each other around the primary airflow (A) and the secondary airflow (B). The separation means 7 is in the range of 1 to 99%, preferably 50% of the height formed by the ridges and valleys of the corrugations in the inflow and discharge portions of the central flow paths 22a and 22b , The end face of the flow path surrounded by the line and the peak side of the peak of the corrugated heat transfer plate A and the low point side of the valley is closed. Further, the heights of the shielding ribs 19a and the spacing ribs 21a at both ends of the surface of the heat transfer plate D1d are equal to the height of the corrugated valleys of the partition surface 11 and the heat transfer plate A1a, and the back surface of the heat transfer plate D1d. The heights of the shielding ribs 19b and the spacing ribs 21b at both ends are equal to the heights of the corrugated peaks of the partition surface 11 and the heat transfer plate A1a, and the heat transfer plate A1a and the heat transfer plate D1d are interposed therebetween. A plurality of unit elements 23 in which the shielding ribs 19a and 19b, the spacing ribs 21a and 21b, and the separating means 7 are integrally formed of resin, and a plurality of substantially triangular heat transfer plates E1e are alternately laminated to form a heat exchange element 24. Mold. In this heat exchange element 24, the primary airflow (A) and the secondary airflow (B) are heated via the heat transfer plate D1d and the heat transfer plate E1e at both ends and through the heat transfer plate A1a and the heat transfer plate D1d at the center. It is set as the structure exchanged.
[0041]
With the above configuration, the primary air flow (A) flows in from the flow path 20a of the heat exchange element 24, and the flow path 22a is made adjacent to the flow path 22b of the secondary air flow (B) by the separation means 7 at the center. Then, the separation means 7 provided on the discharge port side of the flow path 22a leads to the other flow path 20a and discharges it from the heat exchange element 24.
[0042]
On the other hand, the secondary airflow (b) flows from the flow path 20b on the side from which the primary airflow (a) is discharged so as to be orthogonal or oblique to the primary airflow (a), and the separation means 7 in the central part. The separation means provided on the discharge port side of the flow path 22b through the flow path 22b of the primary air flow (a) and the flow path 22b adjacent to the primary air flow (b) opposite to the primary air flow (b). 7 is guided to the other flow path 20b and discharged from the heat exchange element 24. At this time, the primary air flow (A) and the secondary air flow (B) are passed through the heat transfer plate D1d and the heat transfer plate E1e at both ends of the heat exchange element 24, and the heat transfer plate A1a and the heat transfer plate D1d at the center. Through the exchange of temperature and humidity or temperature.
[0043]
By configuring the flow path so that the two airflows of the primary airflow (b) and the secondary airflow (b) are adjacent to each other, the heat transfer area within the constant heat exchange element volume is increased, and the heat exchange efficiency In combination with the high counter flow method, the ventilation resistance can be maintained within a constant heat exchange element volume, and the heat exchange efficiency can be improved. Further, by integrally forming the shielding ribs 19a, 19b, the spacing ribs 21a, 21b and the separating means 7 with resin through the heat transfer plate, the joining property between the both end portions and the central portion of the heat exchange element 24 is improved. Mixing of two types of airflows, a primary airflow (I) and a secondary airflow (B), can be suppressed, and mass productivity can be improved.
[0044]
In the reference example, the heat exchange element has been described as an octahedral structure. However, in the central portion of the heat exchange element, a heat transfer plate is formed so that the primary airflow and the secondary airflow are adjacent to each other. And a separation means 7 that separates the primary air flow and the secondary air flow for each stage in the inflow and discharge portions, and the primary air flow and the secondary air flow face each other and exchange heat through the heat transfer plate, The heat exchange element distributes the air flow while alternately exchanging the primary airflow and the secondary airflow to be exchanged at the both ends of the heat exchange element. Anything
[0045]
( Reference Example 2 )
This will be described with reference to FIGS. In addition, the same number is attached | subjected to the same location as Example 1, 2, 3, and 4, and the detailed description is abbreviate | omitted.
[0046]
13 and 14, the central portion has the corrugated heat transfer plate A1a, the separating means 7 and the shielding ribs 19a and 19b, and the substantially triangular heat transfer plate F1f and the shielding ribs 19a and 19b at both ends. The heat transfer plate F1f having the spacing ribs 21a and 21b is formed by alternately laminating a plurality of unit elements 25 connected to the partition surface 11 of the separating means 7 and a substantially hexagonal heat transfer plate G1g. The secondary airflow (b) and the secondary airflow (b) exchange heat through the heat transfer plates F1f and G1g at both ends and through the heat transfer plates A1a and G1g at the center. is there.
[0047]
By configuring the flow path so that the two airflows of the primary airflow (A) and the secondary airflow (B) are adjacent to each other by the above configuration, the heat transfer area within the constant heat exchange element volume is increased, Along with the counter flow system having high heat exchange efficiency, it is possible to maintain the ventilation resistance within a constant heat exchange element volume, thereby improving the heat exchange efficiency. Further, by integrally forming the shielding ribs 19a and 19b, the spacing ribs 21a and 21b, and the separating means 7 with resin through the heat transfer plate G1g, the bonding property between the both end portions and the central portion of the heat exchange element 24 is improved. And mixing of two types of airflows, a primary airflow (I) and a secondary airflow (B), can be suppressed, and mass productivity can be improved.
[0048]
【The invention's effect】
As is clear from the above embodiments, according to the present invention, the heat exchange element that can increase the heat transfer area while maintaining the ventilation resistance within a constant heat exchange element volume, and can improve the heat exchange efficiency. Can be provided.
[0049]
In addition, it is possible to improve the stacking accuracy and workability of the heat exchange element manufacturing, improve the mass productivity, suppress the mixing of the two kinds of air currents, and provide a heat exchange element that can obtain high ventilation efficiency.
[Brief description of the drawings]
FIG. 1 is an exploded schematic perspective view showing a heat exchange element according to a first embodiment of the present invention. FIG. 2 is a perspective view of a main part of the unit element. FIG. 3 is a perspective view of the heat exchange element. FIG. 5 is a perspective view of the main part of the unit element. FIG. 6 is a perspective view of the main part of the unit element of the second embodiment. FIG. FIG. 8 is a perspective view of the main part of the unit element of Example 3. FIG. 9 is a perspective view of the heat exchanger A. FIG. 10 is a plan view of the unit element of Reference Example 1. FIG. FIG. 12 is a perspective view of the heat exchange element. FIG. 13 is a plan view of the unit element of Reference Example 2. FIG. 14 is a central view of the unit element and its connection. Fig. 15 is a perspective view of a conventional heat exchange element. Fig. 16 is a perspective view of the heat exchange element. Fig. 17 is a plan view of a molded sheet of the heat exchange element. Central portion (y-y) and vertical section view of the connection portion of the vertical section 19 the heat exchange element of the central portion (x-x) [Description of symbols]
1a Heat transfer plate A
1b Heat transfer plate B
1c Heat transfer plate C
1d Heat transfer plate D
1e Heat transfer plate E
1f Heat transfer plate F
1g Heat transfer plate G
2 Heat exchanger A
3 Heat exchanger B
4 Heat exchange element 5a, 5b Channel 7 Separating means 8, 17 Element configuration frame 9 Support frame 10, 13a, 13b Shielding rib 11 Partition surface 12, 15a, 15b Unit element 14a, 14b Spacing rib 16a, 16b Channel 18, 23, 25 Unit element 19a, 19b Shielding rib 20a, 20b Channel 21a, 21b Spacing rib 22a, 22b Channel 24 Heat exchange element

Claims (2)

平板状の伝熱板Cと、この伝熱板Cを所定間隔に保持しかつ二つの気流の仕切板となる波形の伝熱板Aとが、1次気流と2次気流の周囲を隣接し合うよう流路を形成し、その流路の流入、吐出部において流路の両端部に設けた波形の山と谷がなす高さの1〜99%の範囲で、波形を横断する線と、この線と波形の伝熱板Aの山の頂点側および谷の低点側とで囲まれる前記流路の両端面を塞いだ単位素子を、一段おきに上下方向に180度回転させて交互に積層し、1次気流と2次気流とが対向して前記伝熱板を介して熱交換させる熱交換器Aと、前記熱交換器Aの両端に配され前記熱交換器Aの熱交換すべき1次気流と2次気流を交互に熱交換しつつ、気流を分配する熱交換器Bを備えて構成され、前記熱交換器Aの流路の両端面で前記熱交換器Aの1次気流の流路と2次気流の流路とが各々前記熱交換器Aの両端に配された前記熱交換器Bの1次気流の流路と2次気流の流路に連通する熱交換素子。A flat heat transfer plate C, and the heat transfer plate A waveform comprising the heat transfer plate C and the partition plate of the two airflow One only held at a predetermined interval, adjacent the periphery of the primary airflow and the secondary airflow Forming a flow path to fit, in the flow-in, discharge portion of the flow path, a line crossing the waveform in the range of 1 to 99% of the height formed by the peaks and troughs of the waveform provided at both ends of the flow path ; The unit elements that block the both end faces of the flow path surrounded by this line and the apex side of the peak of the corrugated heat transfer plate A and the low point side of the valley are alternately rotated by 180 degrees vertically. The heat exchanger A that is laminated and heat-exchanges through the heat transfer plate with the primary air flow and the secondary air flow facing each other, and is arranged at both ends of the heat exchanger A to exchange heat with the heat exchanger A. the primary air flow and with heat exchange alternating secondary air flow to, is configured to include a heat exchanger B to distribute the air flow, the heat exchange at both end faces of the flow path of the heat exchanger a The primary air flow path and the secondary air flow path of the heat exchanger A are respectively connected to the primary air flow path and the secondary air flow path of the heat exchanger B arranged at both ends of the heat exchanger A. heat exchange element that is passed through the communication. 単位素子を、同一方向に積層した請求項記載の熱交換素子。The unit element, the heat exchange element according to claim 1, wherein laminated in the same direction.
JP12987698A 1998-05-13 1998-05-13 Heat exchange element Expired - Fee Related JP4021048B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12987698A JP4021048B2 (en) 1998-05-13 1998-05-13 Heat exchange element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12987698A JP4021048B2 (en) 1998-05-13 1998-05-13 Heat exchange element

Publications (2)

Publication Number Publication Date
JPH11325780A JPH11325780A (en) 1999-11-26
JP4021048B2 true JP4021048B2 (en) 2007-12-12

Family

ID=15020508

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12987698A Expired - Fee Related JP4021048B2 (en) 1998-05-13 1998-05-13 Heat exchange element

Country Status (1)

Country Link
JP (1) JP4021048B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4019879A1 (en) * 2020-12-28 2022-06-29 Zhongshan Fortune Way Environmental Technology Co., Ltd. Heat exchanger

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100975102B1 (en) 2008-04-22 2010-08-11 롯데알미늄 주식회사 The heat exchanger for the ventilation system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4019879A1 (en) * 2020-12-28 2022-06-29 Zhongshan Fortune Way Environmental Technology Co., Ltd. Heat exchanger

Also Published As

Publication number Publication date
JPH11325780A (en) 1999-11-26

Similar Documents

Publication Publication Date Title
JP3577863B2 (en) Counter-flow heat exchanger
JPH0211837B2 (en)
US20170370609A1 (en) Enthalpy Heat Exchanger
JPH09152292A (en) Heat exchanging element
JP4928295B2 (en) Sensible heat exchange element
JP7333875B2 (en) Total heat exchange element and ventilator
JP4021048B2 (en) Heat exchange element
JP2000266480A (en) Heat exchanger and ventilator
JP2008070070A (en) Total heat exchanger
JPH08121986A (en) Heat exchanging element
JP5191877B2 (en) Total heat exchanger
KR20130016586A (en) Heat exchanger for exhaust-heat recovery
KR20140113023A (en) Heat recovery ventilation system with counter-flow heat exchanger
KR100732375B1 (en) Ventilation equipment with heat transfer passages of non-straight line
EP1680638B1 (en) Heat exchanger for ventilator
JPH09287794A (en) Heat exchanger, manufacture of heat exchanger and heat exchanging and ventilation device
KR101276562B1 (en) Total heat exchanger and manufacturing method for the same
KR20100059140A (en) Heat exchange element for ventilating duct
JP2005291618A (en) Total enthalpy heat exchange element and total enthalpy heat exchanger
JP7126617B2 (en) Heat exchange element and heat exchange ventilator
KR101189950B1 (en) Ventilating apparatus and heat exchanger thereof
JPH08145588A (en) Heat exchanging element
KR200274469Y1 (en) Plate structure of heat exchanger for air-conditioning equipments
WO2024053082A1 (en) Heat exchange element and heat exchange ventilation device
JP2001174172A (en) Heat exchanging element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050418

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050512

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070605

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070731

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070828

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070926

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101005

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101005

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101005

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111005

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121005

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131005

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees