JPH10159640A - Diagnostic device for abnormality of air-fuel ratio sensor - Google Patents
Diagnostic device for abnormality of air-fuel ratio sensorInfo
- Publication number
- JPH10159640A JPH10159640A JP32156396A JP32156396A JPH10159640A JP H10159640 A JPH10159640 A JP H10159640A JP 32156396 A JP32156396 A JP 32156396A JP 32156396 A JP32156396 A JP 32156396A JP H10159640 A JPH10159640 A JP H10159640A
- Authority
- JP
- Japan
- Prior art keywords
- air
- fuel ratio
- ratio sensor
- abnormality diagnosis
- abnormality
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/40—Engine management systems
Landscapes
- Combined Controls Of Internal Combustion Engines (AREA)
- Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
Abstract
Description
【発明の属する技術分野】本発明は、所謂広域空燃比セ
ンサの異常診断を行う装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for diagnosing abnormality of a so-called wide-range air-fuel ratio sensor.
【従来の技術】従来から所謂広域空燃比センサとして
は、例えば、図2に示すようなものがある。このもの
は、図2に示すように、ヒータ部2を備えた本体(例え
ば酸素イオン伝導性を有するジルコニアZr2 O3 等の
耐熱性多孔質絶縁材料等で形成される)1内に、大気
(標準ガス)と連通する大気導入孔3を設けると共に、
検出対象ガス(例えば内燃機関の排気等)と検出対象ガ
ス導入孔4、保護層5等を介して連通するガス拡散層
(或いはガス拡散ギャップ)6が設けられている。セン
シング部電極7A、7Bは大気導入孔3とガス拡散層6
に臨んで設けられると共に、酸素ポンプ電極8A、8B
はガス拡散層6と、これに対応する本体1の周囲と、に
設けられるようになっている。なお、センシング部電極
7A、7B(センサ部)は、ガス拡散層6内の酸素イオ
ン濃度(酸素分圧)によって影響されるセンシング部電
極間の酸素分圧比に応じて発生する電圧を検出するよう
になっている。一方、酸素ポンプ電極8A、8B(特定
成分ポンプ部)には、所定電圧が印加されるようになっ
ている。つまり、センシング部電極7A、7Bはセンシ
ング部電極間の酸素分圧比によって発生する電圧を検出
して、空燃比が理論空燃比(換言すると、空気過剰率λ
=1)に対してリッチであるかリーンであるかを検出す
ることができるようになっている。一方、図3のような
モデル図で示すことができる酸素ポンプ電極部8A、8
Bにおいては、所定の電圧が印加されると、これに応じ
てガス拡散層6内の酸素イオンが移動され、酸素ポンプ
電極部8A、8B間に電流が流れるようになっている。
なお、酸素ポンプ電極部8A、8B間に、所定電圧を印
加したときに該電極間を流れる電流値(限界電流)Ip
は、ガス拡散層6内の酸素イオン濃度に影響されるの
で、電流値(限界電流)Ipを検出すれば、検出対象ガ
スの空燃比(換言すれば、空気過剰率λ)を検出できる
ことになる。従って、例えば、図3のテーブルAに示す
ような酸素ポンプ電極間の電流・電圧と、検出対象ガス
の空燃比(換言すれば、空気過剰率λ)と、の相関関係
が得られることになる。なお、センシング部電極7A、
7Bのリッチ・リーン出力に基づいて、酸素ポンプ電極
部8A、8Bに対する電圧の印加方向を反転させること
で、リーン領域とリッチ領域との両方の空燃比領域にお
いて、酸素ポンプ電極部8A、8B間を流れる電流値
(限界電流)Ipに基づく広範囲な空燃比の検出を可能
にしているものである。以上のような空燃比検出原理に
より、酸素ポンプ電極部間の電流値Ipを検出して、例
えば図3のテーブルBを参照すれば、広範囲に亘って検
出対象ガスの実際の空燃比(空気過剰率λ)を検出する
ことができることになる。なお、センサ検出値Ipは、
例えば次式により求めることもできる。 Ip=Do2・P・S/(T・L)・ln{1/(1−P
o2/P)} Do2:酸素ガスの多孔質層の拡散係数 S:陰極の電極面積 L:多孔質層の厚さ P:全圧力 Po2:酸素分圧 T:温度2. Description of the Related Art Conventionally, as a so-called wide-range air-fuel ratio sensor, for example, there is one as shown in FIG. As shown in FIG. 2, this material is placed in a body (formed of, for example, a heat-resistant porous insulating material such as zirconia Zr 2 O 3 having oxygen ion conductivity) provided with a heater portion 2, (Atmosphere introduction hole 3) communicating with (standard gas)
A gas diffusion layer (or gas diffusion gap) 6 that communicates with a gas to be detected (for example, exhaust gas from an internal combustion engine) via a gas introduction hole 4 to be detected, a protective layer 5, and the like is provided. The sensing portion electrodes 7A and 7B are composed of the air introduction hole 3 and the gas diffusion layer 6.
And oxygen pump electrodes 8A, 8B
Are provided on the gas diffusion layer 6 and the periphery of the main body 1 corresponding thereto. The sensing unit electrodes 7A and 7B (sensor units) detect a voltage generated according to the oxygen partial pressure ratio between the sensing unit electrodes which is affected by the oxygen ion concentration (oxygen partial pressure) in the gas diffusion layer 6. It has become. On the other hand, a predetermined voltage is applied to the oxygen pump electrodes 8A and 8B (specific component pump sections). That is, the sensing portion electrodes 7A and 7B detect the voltage generated by the oxygen partial pressure ratio between the sensing portion electrodes and change the air-fuel ratio to the stoichiometric air-fuel ratio (in other words, the excess air ratio λ).
= 1), it is possible to detect whether it is rich or lean. On the other hand, the oxygen pump electrode portions 8A, 8
In B, when a predetermined voltage is applied, oxygen ions in the gas diffusion layer 6 are moved in response to this, and a current flows between the oxygen pump electrode portions 8A and 8B.
The current value (limit current) Ip flowing between the oxygen pump electrode portions 8A and 8B when a predetermined voltage is applied between the electrodes is applied.
Is affected by the oxygen ion concentration in the gas diffusion layer 6, and therefore, if the current value (limit current) Ip is detected, the air-fuel ratio of the detection target gas (in other words, the excess air ratio λ) can be detected. . Therefore, for example, a correlation between the current / voltage between the oxygen pump electrodes and the air-fuel ratio of the detection target gas (in other words, the excess air ratio λ) as shown in Table A of FIG. 3 is obtained. . In addition, the sensing unit electrode 7A,
By inverting the application direction of the voltage to the oxygen pump electrode units 8A and 8B based on the rich / lean output of 7B, the oxygen pump electrode units 8A and 8B can be connected in both the lean and rich air-fuel ratio regions. This enables detection of a wide range of air-fuel ratios based on the current value (limit current) Ip flowing through. By detecting the current value Ip between the oxygen pump electrode portions according to the above-described air-fuel ratio detection principle, and referring to, for example, Table B in FIG. 3, the actual air-fuel ratio (excess air Rate λ) can be detected. The sensor detection value Ip is
For example, it can be obtained by the following equation. Ip = Do2 · PS · / (T · L) · ln (1 / (1-P
o2 / P)} Do2: diffusion coefficient of the porous layer of oxygen gas S: electrode area of the cathode L: thickness of the porous layer P: total pressure Po2: oxygen partial pressure T: temperature
【発明が解決しようとする課題】しかしながら、上記の
ような所謂広域空燃比センサが正常に作動できているか
否か、或いは性能が劣化していないか否か等について診
断する技術が確立されていなかったため、広域空燃比セ
ンサが正しく空燃比を検出できているか否か判らず、例
えば内燃機関の空燃比制御において支障を来すおそれが
あり、以って運転性能、排気性能、燃費性能等を良好に
維持できなくなるおそれがある。本発明は、かかる従来
の実情に鑑みなされたもので、比較的簡単な構成で、高
精度に広域空燃比センサが正常に作動できているか否か
を診断することができる空燃比センサの異常診断装置を
提供することを目的とする。However, no technology has been established for diagnosing whether the so-called wide-range air-fuel ratio sensor is normally operating or whether its performance is degraded. Therefore, it is not known whether or not the wide-range air-fuel ratio sensor can correctly detect the air-fuel ratio, which may hinder, for example, the air-fuel ratio control of the internal combustion engine, thereby improving the driving performance, exhaust performance, fuel consumption performance, and the like. May not be maintained. SUMMARY OF THE INVENTION The present invention has been made in view of such conventional circumstances, and has a relatively simple configuration, and is capable of highly accurately diagnosing whether or not a wide-range air-fuel ratio sensor can normally operate. It is intended to provide a device.
【課題を解決するための手段】このため請求項1に記載
の発明にかかる空燃比センサの異常診断装置は、図1に
示すように、機関排気に臨んで設けられるガス拡散層を
挟んで設けられた電極間に所定電圧を印加したときに該
電極間を流れる電流値に基づいて、機関排気の空燃比を
検出するようにした空燃比センサの異常診断装置であっ
て、機関始動後に所定空燃比で機関が運転されているこ
とを含む異常診断開始条件が成立したか否かを判定する
判定手段と、異常診断開始条件が成立したと判定された
ときに、前記電流値に基づいて空燃比センサの異常診断
を行う異常診断手段と、を含んで構成した。かかる構成
によれば、例えば、機関始動後に異常診断開始条件が成
立したときに(例えば所定空燃比で機関が運転される条
件下となったときに)得られるであろう電流値と、実際
の電流値と、を比較すること等に基づき、空燃比センサ
の異常診断を行うことができるので、従来できなかった
広域空燃比センサの異常の有無を、比較的簡単な構成で
診断することが可能となる。請求項2に記載の発明で
は、前記異常診断開始条件が、機関始動後所定時間経過
したことを含むようにした。かかる構成によれば、機関
始動直後における前記電流値の不安定状態を避けて空燃
比センサの異常診断を行うことができるので、異常診断
精度の向上を図ることができる。請求項3に記載の発明
では、前記異常診断開始条件が、前記空燃比センサが活
性化したことを含むようにした。かかる構成によれば、
前記空燃比センサの不活性状態における前記電流値の不
安定状態を避けて空燃比センサの異常診断を行うことが
できるので、異常診断精度の向上を図ることができる。
請求項4に記載の発明では、前記異常診断開始条件が、
前記空燃比センサの検出値に基づく空燃比フィードバッ
ク制御中であることを含むようにした。前記空燃比セン
サの検出値に基づく空燃比フィードバック制御中は、排
気空燃比を所定値に制御維持しようとして排気空燃比が
比較的安定した状態にあるので、前記電流値も比較的安
定しているはずである。従って、かかる状況下で本来得
られるであろう電流値と、実際に検出された電流値と、
を比較すれば、空燃比センサの異常の有無を高精度に診
断することができる。請求項5に記載の発明では、前記
異常診断開始条件が、機関運転制御用電力供給源の電圧
が所定以上であることを含むようにした。かかる構成に
よれば、機関運転制御用電力供給源の供給電源が低下す
ると、機関排気の空燃比が正常に制御されなくなった
り、前記電流値が不安定となるため、前記電流値に基づ
く異常診断において、誤診断を招く惧れれが高くなる
が、このような惧れを確実に排除することができる。請
求項6に記載の発明では、前記異常診断手段が、前記電
流値が所定範囲内にあるか否かに基づいて、空燃比セン
サの異常診断を行うように構成した。このように構成す
ると、比較的簡単な構成で、高精度に空燃比センサの異
常診断を行うことができる。請求項7に記載の発明で
は、前記所定範囲が、目標空燃比に応じて変更されるよ
うに構成した。かかる構成によれば、運転状態の変化等
により機関の目標空燃比が変化しても(フィードバック
制御、フィードフォワード制御に拘わらず)、それに応
じて異常診断の判定レベルである前記所定範囲を変更す
ることができるので、一層高精度に空燃比センサの異常
診断を行うことができる。According to the first aspect of the present invention, there is provided an abnormality diagnosis apparatus for an air-fuel ratio sensor according to the present invention, as shown in FIG. An abnormality diagnosis device for an air-fuel ratio sensor configured to detect an air-fuel ratio of engine exhaust based on a current value flowing between the electrodes when a predetermined voltage is applied between the electrodes. Determining means for determining whether an abnormality diagnosis start condition including that the engine is operating at a fuel ratio is satisfied; and determining whether the abnormality diagnosis start condition is satisfied, based on the air-fuel ratio based on the current value. Abnormality diagnosis means for performing abnormality diagnosis of the sensor. According to such a configuration, for example, when the abnormality diagnosis start condition is satisfied after the engine is started (for example, when the engine is operated at a predetermined air-fuel ratio), the current value that can be obtained and the actual current value are determined. It is possible to diagnose the abnormality of the air-fuel ratio sensor based on the comparison of the current value with the current value, etc. Becomes In the invention described in claim 2, the abnormality diagnosis start condition includes that a predetermined time has elapsed after the engine is started. According to this configuration, the abnormality diagnosis of the air-fuel ratio sensor can be performed while avoiding the unstable state of the current value immediately after the engine is started, so that the accuracy of the abnormality diagnosis can be improved. In the invention described in claim 3, the abnormality diagnosis start condition includes that the air-fuel ratio sensor is activated. According to such a configuration,
Since the abnormality diagnosis of the air-fuel ratio sensor can be performed while avoiding the unstable state of the current value in the inactive state of the air-fuel ratio sensor, the accuracy of the abnormality diagnosis can be improved.
In the invention according to claim 4, the abnormality diagnosis start condition is:
This includes the fact that the air-fuel ratio feedback control is being performed based on the detection value of the air-fuel ratio sensor. During the air-fuel ratio feedback control based on the detection value of the air-fuel ratio sensor, the exhaust air-fuel ratio is relatively stable in an attempt to maintain the exhaust air-fuel ratio at a predetermined value, so the current value is also relatively stable. Should be. Therefore, in such a situation, the current value that would be originally obtained, the actually detected current value,
By comparison, the presence or absence of an abnormality in the air-fuel ratio sensor can be diagnosed with high accuracy. In the invention described in claim 5, the abnormality diagnosis start condition includes that the voltage of the power supply source for engine operation control is equal to or higher than a predetermined value. According to such a configuration, when the power supply of the engine operation control power supply source is reduced, the air-fuel ratio of the engine exhaust is not normally controlled or the current value becomes unstable, so that abnormality diagnosis based on the current value is performed. In the above, there is a high possibility that a misdiagnosis is caused, but such a fear can be reliably eliminated. In the invention described in claim 6, the abnormality diagnosis means is configured to perform abnormality diagnosis of the air-fuel ratio sensor based on whether the current value is within a predetermined range. With this configuration, it is possible to diagnose the abnormality of the air-fuel ratio sensor with high accuracy with a relatively simple configuration. In the invention described in claim 7, the predetermined range is configured to be changed according to the target air-fuel ratio. According to this configuration, even if the target air-fuel ratio of the engine changes due to a change in the operating state or the like (regardless of feedback control or feedforward control), the predetermined range, which is the determination level of the abnormality diagnosis, is changed accordingly. Therefore, abnormality diagnosis of the air-fuel ratio sensor can be performed with higher accuracy.
【発明の実施の形態】以下に、本発明の一実施形態を、
添付の図面に基づいて説明する。本実施形態では、内燃
機関の排気空燃比を検出する場合に広域空燃比センサを
適用した場合における広域空燃比センサの異常診断方法
を代表して説明することにする。本発明の一実施形態の
全体構成を示す図4において、機関11の吸気通路12には
吸入空気流量Qaを検出するエアフローメータ13及びア
クセルペダルと連動して吸入空気流量Qaを制御する絞
り弁14が設けられ、下流のマニホールド部分には気筒毎
に電磁式の燃料噴射弁15が設けられる。燃料噴射弁15
は、後述するようにしてコントロールユニット50におい
て設定される駆動パルス信号によって開弁駆動し、図示
しない燃料ポンプから圧送されてプレッシャレギュレー
タ(図示せず)により所定圧力に制御された燃料を噴射
供給する。更に、機関11の冷却ジャケット内の冷却水温
度Twを検出する水温センサ16が設けられる。一方、排
気通路17にはマニホールド集合部近傍に、排気中の酸素
濃度に基づいて吸入混合気の空燃比を検出する広域空燃
比センサ18(本発明の広域空燃比センサに相当する。以
下、単に空燃比センサとも言う。)が設けられ、その下
流側に、例えば理論空燃比(λ=1、A/F(空気重量
/燃料重量)≒14.7)近傍において排気中のCO,
HCの酸化とNOX の還元を良好に行って排気を浄化す
る排気浄化触媒としての三元触媒19が介装されている。
なお、排気浄化触媒としては、例えばリーン(希薄空燃
比)領域でNOx を還元する所謂リーンNOx 触媒を採
用しても良いし、一般的な酸化触媒を採用するものであ
っても構わない。ところで、本実施形態において用いる
空燃比センサ18は、図2で示した従来同様のものと同様
の検出原理を利用するものであれば如何なるものであっ
て構わない。また、図4で図示しないディストリビュー
タには、クランク角センサ20が内蔵されており、コント
ロールユニット50では、該クランク角センサ20から機関
回転と同期して出力されるクランク単位角信号を一定時
間カウントして、又は、クランク基準角信号の周期を計
測して機関回転速度Neを検出する。ところで、本発明
にかかるコントロールユニット50は、CPU,ROM,
RAM,A/D変換器及び入出力インタフェイス等を含
んで構成されるマイクロコンピュータからなり、各種セ
ンサからの入力信号を受け、以下のようにして、燃料噴
射弁15の噴射量(即ち、空燃比制御量)を制御する。前
記各種のセンサとしては、前述の空燃比センサ18、エア
フローメータ13、水温センサ16、クランク角センサ20等
がある。即ち、エアフローメータ13からの電圧信号から
求められる吸入空気流量Qaと、クランク角センサ20か
らの信号から求められる機関回転速度Neとから基本燃
料噴射パルス幅(燃料噴射量に相当)Tp=c×Qa/
Ne(cは定数)を演算すると共に、低水温時に強制的
にリッチ側に補正する水温補正係数Kwや、始動及び始
動後増量補正係数Kasや、空燃比フィードバック補正係
数α等により、最終的な有効燃料噴射パルス幅Te=T
p×(1+Kw+Kas+・・・)×α+Tsを演算す
る。Tsは、電圧補正分である。そして、この有効燃料
噴射パルス幅Teが駆動パルス信号として前記燃料噴射
弁15に送られて、所定量に調量された燃料が噴射供給さ
れることになる。上記空燃比フィードバック補正係数α
は、空燃比センサ18が検出する実際の空燃比の目標空燃
比からのズレを補正するための係数であり、これに基づ
きコントロールユニット50では基本燃料パルス幅Tpを
補正し、燃焼用混合気の空燃比が目標空燃比(例えば理
論空燃比)にフィードバック制御されることになる。こ
こで、本実施形態におけるコントロールユニット50によ
り実行される空燃比センサの異常診断制御について、図
5に示すフローチャートに従って説明する。当該フロー
は、例えば始動毎に1回行われる。なお、本発明にかか
る判定手段、異常診断手段としての機能は、以下に示す
ように、本実施形態のコントロールユニット50がソフト
ウェア的に備えるものである。ステップ(図では、Sと
記してある。以下、同様。)1では、異常診断開始条件
成立か否かを判定(判断)する。即ち、例えば、下記
〜の条件が成立するまで、異常診断の開始をディレイ
させるようになっている。例えば、 エンジンスタートキーオン→オフ(Key on→o
ff)後一定時間経過したか(換言すれば始動後所定時
間経過したか)否かを判断し、経過していなければ診断
開始を許可しないようになっている。例えば、始動時増
量、壁流形成の影響による誤診断や、空燃比センサ18の
不活性状態下において診断が行われることによる誤診断
を防止する等のためである。 空燃比センサ(A/Fセンサ)活性判定終了か否かを
判断し、終了していなければ診断開始を許可しないよう
になっている。空燃比センサ18の不活性状態下において
診断が行われることによる誤診断を防止する等のためで
ある。 空燃比フィードバック制御(A/Fコントロール)条
件成立か否かを判断し、成立していなければ診断開始を
許可しないようになっている。空燃比フィードバック制
御により空燃比を所定の目標値に制御していない場合に
おける診断精度の低下を防止するためである。 バッテリ電圧が所定値以上であるか否かを判断し、所
定値以上でなければ診断開始を許可しないようになって
いる。バッテリ電圧の低下に起因する誤診断を防止する
ためである。このようにすると、図6のタイムチャート
に示すように、始動後の空燃比センサ18の不安定な状態
において、異常診断が行われるのが禁止されるので、空
燃比センサの異常診断において誤診断の発生を極力防止
することが可能となる。続くステップ2では、酸素ポン
プ電極部8A,8B間の電流値Ipのモニタを開始す
る。ステップ3では、電流値Ipが、図6に示すような
所定範囲内にあるか否かを判断する。YESであればス
テップ4へ進み、NOであればステップ5へ進む。つま
り、空燃比センサ18が活性状態であり、空燃比フィード
バック制御中であれば、所定の目標空燃比が得られるよ
うに実際の空燃比は制御されているはずであるので、空
燃比センサ18が正常であれば、酸素ポンプ電極部8A,
8B間の電流値Ipはその空燃比に応じた所定範囲内に
収束しているはずである。従って、もし酸素ポンプ電極
部8A,8B間の電流値Ipが所定範囲内に収束してい
ないとすれば、空燃比センサ18に何らかの故障、劣化等
が発生しているおそれが高いと判断できることになる。
本実施形態では、かかる考え方に基づいて、空燃比セン
サ18の診断を行うものである。ステップ4では、電流値
Ipが、目標空燃比に応じて設定される所定範囲内にあ
り、空燃比センサ18は正常であると判断し、OK判定を
して、本フローを終了する。一方、ステップ5では、電
流値Ipが、目標空燃比に応じて設定される所定範囲内
になく、何らかの異常{例えば、酸素ポンプ部やセンシ
ング部の回路故障、ハーネスの断線・ショート、或いは
劣化(ガス拡散層6や保護層5等が目詰まり等)}があ
ると判断し、NG判定をする。そして、このようなNG
判定が、例えば2回(2トリップ)連続して生じた場合
には、ステップ6へ進み、警告灯(MIL)を点灯等し
て運転者等に空燃比センサ18に何らかの異常がある旨を
認知させ修理等の処置を促すようにする。また、運転性
能や排気性能等の悪化を極力避けるべく、空燃比センサ
18の検出結果に基づく空燃比フィードバック制御を禁止
し、特にリーン燃焼制御等を強制的に禁止するようにし
ても良い。このように2回(2トリップ)連続して生じ
た場合にステップ6へ進ませるようにすると、1回目に
NG判定され次のトリップ時にOK判定されたような場
合には、1回目のNG判定が誤判定であったおそれがあ
るが、このような誤判定を考慮に入れなくすることがで
きるので、空燃比センサ18の異常診断精度を一層高める
ことができる。なお、所定回数始動を行った際に、所定
割合でNG判定が行われた場合に、警告灯(MIL)を
点灯等して運転者等に空燃比センサ18に何らかの異常が
ある旨を認知させるようにすることもできる。また、勿
論、NG判定毎に警告灯(MIL)を点灯させても良い
ものである。このように、本実施形態によれば、エンジ
ン始動後所定時間経過し、エンジン回転(運転)中で且
つ空燃比センサ18による空燃比フィードバック制御(ク
ローズ・ループ制御)中であるときに、酸素ポンプ電極
部8A,8B間の電流値Ipが所定範囲内に収束してい
るか否かに基づいて、空燃比センサの異常診断を行うよ
うにしたので、簡単な構成で、迅速かつ高精度に空燃比
センサの異常の有無を診断することができる。従って、
異常のある空燃比センサによる空燃比フィードバック制
御が早期に排除されることになるから、運転性能、排気
性能、燃費性能等の悪化を未然に、或いは迅速に防止す
ることが可能となる。なお、上記実施形態では、酸素ポ
ンプ電極部8A,8B間の電流値Ipが所定範囲内に収
束しているか否かを判断するためのモニター時間を制限
していないが、所定時間に制限する構成としても良い。
また、目標空燃比の切り換えがあったときや、加減速運
転が検出されたような場合には、診断を禁止するように
しても良いし、目標空燃比の切り換えや運転状態の変化
に応じて前記OK,NG判定のための所定範囲を変更す
るようにすることもできる。ところで、本実施形態にお
いては空燃比フィードバック制御が開始された状態で異
常診断を行うものとして説明したが、これに限らず、例
えば始動後所定目標空燃比にフィードフォワード制御さ
れている場合においても、所定以上酸素ポンプ電極部8
A,8B間の電流値Ipが大きかったり、小さかったり
した場合には、空燃比センサに異常が発生している惧れ
もあるので、空燃比フィードバック制御がまだ開始され
ていない状態においても、本発明にかかる異常診断の考
え方を利用して、空燃比センサの異常診断を行うことが
できるものである。即ち、上記の診断開始条件〜の
すべてが成立したことを診断開始条件の成立とするのは
一例であって、これら〜のうちの何れか或いは適宜
組み合わせたものが成立した場合に診断開始条件の成立
とすることができるものである。なお、ヒータ部2やセ
ンシング部電極7A、7Bは、空燃比の検出精度の向上
や空燃比検出範囲の拡大のためのものであるので、これ
らを備えない空燃比センサにおいても、本発明は適用で
きるものである。DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below.
Description will be given based on the attached drawings. In the present embodiment, a method for diagnosing an abnormality of a wide-range air-fuel ratio sensor when a wide-range air-fuel ratio sensor is applied when detecting an exhaust air-fuel ratio of an internal combustion engine will be described as a representative. In FIG. 4 showing the overall configuration of one embodiment of the present invention, an air flow meter 13 for detecting an intake air flow rate Qa and a throttle valve 14 for controlling the intake air flow rate Qa in conjunction with an accelerator pedal are provided in an intake passage 12 of an engine 11. Is provided, and an electromagnetic fuel injection valve 15 is provided for each cylinder in a downstream manifold portion. Fuel injection valve 15
The valve is driven to open by a drive pulse signal set in the control unit 50 as described later, and is supplied by pressure from a fuel pump (not shown) to inject and supply fuel controlled to a predetermined pressure by a pressure regulator (not shown). . Further, a water temperature sensor 16 for detecting a cooling water temperature Tw in the cooling jacket of the engine 11 is provided. On the other hand, a wide area air-fuel ratio sensor 18 (corresponding to a wide-area air-fuel ratio sensor of the present invention, which detects the air-fuel ratio of the intake air-fuel mixture based on the oxygen concentration in the exhaust gas) is provided in the exhaust passage 17 near the manifold assembly. An air-fuel ratio sensor is also provided. On the downstream side, for example, CO, which is in the exhaust gas near the stoichiometric air-fuel ratio (λ = 1, A / F (air weight / fuel weight) ≒ 14.7),
A three-way catalyst 19 is disposed as an exhaust gas purifying catalyst for purifying exhaust gas by oxidizing HC and reducing NO X satisfactorily.
As the exhaust purification catalyst, for example, a so-called lean NOx catalyst that reduces NOx in a lean (lean air-fuel ratio) region may be employed, or a general oxidation catalyst may be employed. Incidentally, the air-fuel ratio sensor 18 used in the present embodiment may be of any type as long as it uses the same detection principle as the conventional one shown in FIG. The distributor (not shown in FIG. 4) has a built-in crank angle sensor 20. The control unit 50 counts a crank unit angle signal output from the crank angle sensor 20 in synchronization with the engine rotation for a certain period of time. Alternatively, the engine rotation speed Ne is detected by measuring the cycle of the crank reference angle signal. Incidentally, the control unit 50 according to the present invention includes a CPU, a ROM,
The microcomputer comprises a microcomputer including a RAM, an A / D converter, an input / output interface, etc., receives input signals from various sensors, and receives an injection amount of the fuel injection valve 15 (that is, an idle amount) as follows. (Fuel ratio control amount). Examples of the various sensors include the air-fuel ratio sensor 18, the air flow meter 13, the water temperature sensor 16, the crank angle sensor 20, and the like. That is, the basic fuel injection pulse width (corresponding to the fuel injection amount) Tp = c × from the intake air flow rate Qa obtained from the voltage signal from the air flow meter 13 and the engine rotation speed Ne obtained from the signal from the crank angle sensor 20. Qa /
Ne (c is a constant) is calculated, and the final temperature is calculated by a water temperature correction coefficient Kw for forcibly correcting to a rich side at a low water temperature, a start and post-start increase correction coefficient Kas, an air-fuel ratio feedback correction coefficient α, and the like. Effective fuel injection pulse width Te = T
Calculate p × (1 + Kw + Kas +...) × α + Ts. Ts is a voltage correction amount. Then, the effective fuel injection pulse width Te is sent to the fuel injection valve 15 as a drive pulse signal, and the fuel adjusted to a predetermined amount is injected and supplied. The air-fuel ratio feedback correction coefficient α
Is a coefficient for correcting the deviation of the actual air-fuel ratio detected by the air-fuel ratio sensor 18 from the target air-fuel ratio. Based on this, the control unit 50 corrects the basic fuel pulse width Tp, and The air-fuel ratio is feedback-controlled to a target air-fuel ratio (for example, a stoichiometric air-fuel ratio). Here, the abnormality diagnosis control of the air-fuel ratio sensor executed by the control unit 50 in the present embodiment will be described with reference to the flowchart shown in FIG. This flow is performed, for example, once every startup. Note that the functions of the determination unit and the abnormality diagnosis unit according to the present invention are provided in the control unit 50 of the present embodiment as software as described below. In step (denoted by S in the figure, the same applies hereinafter), it is determined (determined) whether or not an abnormality diagnosis start condition is satisfied. That is, for example, the start of abnormality diagnosis is delayed until the following conditions are satisfied. For example, engine start key on → off (Key on → o
ff) It is determined whether or not a predetermined time has elapsed since the start (in other words, whether or not a predetermined time has elapsed after the start), and if it has not elapsed, the start of diagnosis is not permitted. For example, this is for preventing an erroneous diagnosis due to the influence of the increase in the starting amount and the formation of the wall flow, and an erroneous diagnosis due to the diagnosis being performed in the inactive state of the air-fuel ratio sensor 18. It is determined whether or not the air-fuel ratio sensor (A / F sensor) activity determination has been completed. If the determination has not been completed, the start of diagnosis is not permitted. This is for preventing erroneous diagnosis due to the diagnosis being performed in the inactive state of the air-fuel ratio sensor 18, and the like. It is determined whether or not the air-fuel ratio feedback control (A / F control) condition is satisfied. If the condition is not satisfied, the start of diagnosis is not permitted. This is to prevent a decrease in diagnostic accuracy when the air-fuel ratio is not controlled to the predetermined target value by the air-fuel ratio feedback control. It is determined whether or not the battery voltage is equal to or higher than a predetermined value. If the battery voltage is not equal to or higher than the predetermined value, the start of diagnosis is not permitted. This is to prevent erroneous diagnosis due to a decrease in battery voltage. In this way, as shown in the time chart of FIG. 6, in the unstable state of the air-fuel ratio sensor 18 after the start, the abnormality diagnosis is prohibited from being performed. Can be prevented as much as possible. In the following step 2, monitoring of the current value Ip between the oxygen pump electrode units 8A and 8B is started. In step 3, it is determined whether or not the current value Ip is within a predetermined range as shown in FIG. If YES, proceed to Step 4; if NO, proceed to Step 5. That is, if the air-fuel ratio sensor 18 is in the active state and the air-fuel ratio feedback control is being performed, the actual air-fuel ratio should be controlled so as to obtain a predetermined target air-fuel ratio. If normal, oxygen pump electrode 8A,
The current value Ip between 8B should converge within a predetermined range corresponding to the air-fuel ratio. Therefore, if the current value Ip between the oxygen pump electrode portions 8A and 8B does not converge within a predetermined range, it can be determined that there is a high possibility that the air-fuel ratio sensor 18 has some sort of failure, deterioration, or the like. Become.
In the present embodiment, the diagnosis of the air-fuel ratio sensor 18 is performed based on such a concept. In step 4, the current value Ip is within a predetermined range set according to the target air-fuel ratio, the air-fuel ratio sensor 18 is determined to be normal, an OK determination is made, and the present flow ends. On the other hand, in step 5, the current value Ip is not within the predetermined range set according to the target air-fuel ratio, and some abnormality {for example, a circuit failure of the oxygen pump unit or the sensing unit, a disconnection / short-circuit of the harness, or a deterioration ( The gas diffusion layer 6 and the protection layer 5 are clogged, etc.), and NG is determined. And such NG
If the determination is made, for example, twice (two trips) consecutively, the process proceeds to step 6, where a warning lamp (MIL) is turned on or the like to recognize that the driver or the like has some abnormality in the air-fuel ratio sensor 18. And encourage them to take measures such as repairs. Also, in order to minimize the deterioration of driving performance and exhaust performance, etc., the air-fuel ratio sensor
The air-fuel ratio feedback control based on the detection result of 18 may be prohibited, and in particular, lean combustion control or the like may be forcibly prohibited. If the process proceeds to step 6 when two consecutive trips (two trips) occur, the first NG decision is made when the NG decision is made for the first trip and the OK decision is made at the next trip. May be an erroneous determination, but such erroneous determination can be omitted, so that the abnormality diagnosis accuracy of the air-fuel ratio sensor 18 can be further improved. When starting is performed a predetermined number of times, if an NG determination is made at a predetermined rate, a warning light (MIL) is turned on to make a driver or the like recognize that the air-fuel ratio sensor 18 has some abnormality. You can also do so. Also, of course, a warning light (MIL) may be turned on every time NG is determined. As described above, according to the present embodiment, when the predetermined time has elapsed after the engine is started, the engine is rotating (operating), and the air-fuel ratio feedback control (closed-loop control) by the air-fuel ratio sensor 18 is being performed, the oxygen pump Since the abnormality diagnosis of the air-fuel ratio sensor is performed based on whether the current value Ip between the electrode portions 8A and 8B converges within a predetermined range, the air-fuel ratio can be quickly and accurately determined with a simple configuration. It is possible to diagnose whether or not the sensor is abnormal. Therefore,
Since the air-fuel ratio feedback control by the abnormal air-fuel ratio sensor is eliminated at an early stage, it is possible to prevent the deterioration of the driving performance, the exhaust performance, the fuel consumption performance, etc. before or promptly. In the above embodiment, the monitoring time for determining whether or not the current value Ip between the oxygen pump electrode units 8A and 8B converges within a predetermined range is not limited, but the monitoring time is limited to the predetermined time. It is good.
Further, when the target air-fuel ratio has been switched or when acceleration / deceleration operation has been detected, the diagnosis may be prohibited. The predetermined range for the OK / NG determination may be changed. By the way, in the present embodiment, it has been described that the abnormality diagnosis is performed in a state where the air-fuel ratio feedback control has been started.However, the present invention is not limited to this. Oxygen pump electrode 8
If the current value Ip between A and 8B is large or small, there is a possibility that an abnormality has occurred in the air-fuel ratio sensor. The abnormality diagnosis of the air-fuel ratio sensor can be performed using the concept of the abnormality diagnosis according to the present invention. That is, it is merely an example that the diagnosis start condition is satisfied when all of the above-described diagnosis start conditions are satisfied, and when any of these or any combination thereof is satisfied, the diagnosis start condition is satisfied. It can be established. Since the heater unit 2 and the sensing unit electrodes 7A and 7B are provided for improving the detection accuracy of the air-fuel ratio and expanding the air-fuel ratio detection range, the present invention is also applied to an air-fuel ratio sensor not provided with them. You can do it.
【発明の効果】以上説明したように、請求項1に記載の
発明によれば、例えば、機関始動後に異常診断開始条件
が成立したときに得られるであろうガス拡散層を挟んで
設けられた電極間の電流値と、実際の電流値と、を比較
すること等に基づき、空燃比センサの異常診断を行うこ
とができるので、従来できなかった広域空燃比センサの
異常の有無を、比較的簡単な構成で診断することが可能
となる。請求項2に記載の発明によれば、機関始動直後
における前記電流値の不安定状態を避けて空燃比センサ
の異常診断を行うことができるので、異常診断精度の向
上を図ることができる。請求項3に記載の発明によれ
ば、前記空燃比センサの不活性状態における前記電流値
の不安定状態を避けて空燃比センサの異常診断を行うこ
とができるので、異常診断精度の向上を図ることができ
る。請求項4に記載の発明によれば、前記空燃比センサ
の検出値に基づく空燃比フィードバック制御中は、排気
空燃比を所定値に制御維持しようとして排気空燃比が比
較的安定した状態にあるので、前記電流値も比較的安定
していると言うことを利用し、かかる状況下で本来得ら
れるであろう電流値と、実際に検出された電流値と、に
基づいて異常診断を行わせるようにしたので、空燃比セ
ンサの異常の有無を高精度に診断することができる。請
求項5に記載の発明によれば、機関運転制御用電力供給
源の供給電源が低下すると、機関排気の空燃比が正常に
制御されなくなったり、前記電流値が不安定となるた
め、前記電流値に基づく異常診断において、誤診断を招
く惧れが高くなるが、このような惧れを確実に排除する
ことができる。請求項6に記載の発明によれば、比較的
簡単な構成で、高精度に空燃比センサの異常診断を行う
ことができる。請求項7に記載の発明によれば、運転状
態の変化等により機関の目標空燃比が変化しても(空燃
比フィードバック制御、空燃比フィードフォワード制御
に拘わらず)、それに応じて異常診断の判定レベルであ
る前記所定範囲を変更することができるので、一層高精
度に空燃比センサの異常診断を行うことができる。As described above, according to the first aspect of the present invention, for example, the gas diffusion layer which is obtained when the abnormality diagnosis start condition is satisfied after the engine is started is provided. Based on a comparison between the current value between the electrodes and the actual current value, etc., it is possible to diagnose an abnormality of the air-fuel ratio sensor. Diagnosis can be made with a simple configuration. According to the second aspect of the present invention, the abnormality diagnosis of the air-fuel ratio sensor can be performed while avoiding the unstable state of the current value immediately after the engine is started, so that the accuracy of the abnormality diagnosis can be improved. According to the third aspect of the present invention, it is possible to perform the abnormality diagnosis of the air-fuel ratio sensor while avoiding the unstable state of the current value in the inactive state of the air-fuel ratio sensor, thereby improving the abnormality diagnosis accuracy. be able to. According to the fourth aspect of the invention, during the air-fuel ratio feedback control based on the detection value of the air-fuel ratio sensor, the exhaust air-fuel ratio is relatively stable in an attempt to maintain the exhaust air-fuel ratio at a predetermined value. Using the fact that the current value is also relatively stable, an abnormality diagnosis is performed based on the current value that would be originally obtained under such circumstances and the actually detected current value. Therefore, it is possible to diagnose with high accuracy whether or not the air-fuel ratio sensor is abnormal. According to the invention as set forth in claim 5, when the supply power of the engine operation control power supply source is reduced, the air-fuel ratio of the engine exhaust is not normally controlled or the current value becomes unstable. In the abnormality diagnosis based on the value, there is a high possibility of causing an erroneous diagnosis, but such a fear can be reliably eliminated. According to the sixth aspect of the present invention, it is possible to diagnose the abnormality of the air-fuel ratio sensor with high accuracy by a relatively simple configuration. According to the invention described in claim 7, even if the target air-fuel ratio of the engine changes due to a change in the operating state or the like (regardless of the air-fuel ratio feedback control or the air-fuel ratio feedforward control), the abnormality diagnosis is determined accordingly. Since the predetermined range, which is the level, can be changed, abnormality diagnosis of the air-fuel ratio sensor can be performed with higher accuracy.
【図1】本発明の構成を示すブロック図FIG. 1 is a block diagram showing the configuration of the present invention.
【図2】広域空燃比センサの構造図FIG. 2 is a structural diagram of a wide area air-fuel ratio sensor.
【図3】広域空燃比センサの空燃比検出原理を説明する
ための図FIG. 3 is a diagram for explaining an air-fuel ratio detection principle of a wide-area air-fuel ratio sensor;
【図4】本発明の一実施形態の全体構成図FIG. 4 is an overall configuration diagram of an embodiment of the present invention.
【図5】同上実施形態における空燃比センサの異常診断
制御を説明するフローチャートFIG. 5 is a flowchart illustrating abnormality diagnosis control of the air-fuel ratio sensor according to the embodiment.
【図6】酸素ポンプ電極部間の電流値Ipの変化の様子
と、判定レベルである所定範囲(HGOPL,HGOP
H)を示すタイムチャートFIG. 6 shows how the current value Ip changes between the oxygen pump electrode portions and a predetermined range (HGOPL, HGOP) which is a determination level.
H) Time chart showing
1 空燃比センサ本体 2 ヒータ部 3 大気導入孔 4 検出対象ガス導入孔 5 保護層 6 ガス拡散層(或いはガス拡散ギャップ) 7A、7B センシング部電極 8A、8B 酸素ポンプ電極 11 内燃機関 13 エアフローメータ 17 排気通路 18 空燃比センサ 20 クランク角センサ 50 コントロールユニット DESCRIPTION OF SYMBOLS 1 Air-fuel ratio sensor main body 2 Heater part 3 Air introduction hole 4 Gas introduction hole to be detected 5 Protective layer 6 Gas diffusion layer (or gas diffusion gap) 7A, 7B Sensing part electrode 8A, 8B Oxygen pump electrode 11 Internal combustion engine 13 Air flow meter 17 Exhaust passage 18 Air-fuel ratio sensor 20 Crank angle sensor 50 Control unit
Claims (7)
挟んで設けられた電極間に所定電圧を印加したときに該
電極間を流れる電流値に基づいて、機関排気の空燃比を
検出するようにした空燃比センサの異常診断装置であっ
て、 機関始動後に所定空燃比で機関が運転されていることを
含む異常診断開始条件が成立したか否かを判定する判定
手段と、 異常診断開始条件が成立したと判定されたときに、前記
電流値に基づいて空燃比センサの異常診断を行う異常診
断手段と、 を含んで構成したことを特徴とする空燃比センサの異常
診断装置。An air-fuel ratio of an engine exhaust is detected based on a value of a current flowing between the electrodes when a predetermined voltage is applied between electrodes provided with a gas diffusion layer provided facing the engine exhaust. An abnormality diagnosis device for an air-fuel ratio sensor configured as described above, comprising: a determination unit configured to determine whether an abnormality diagnosis start condition including that the engine is operating at a predetermined air-fuel ratio after the engine is started is satisfied; An abnormality diagnosis device for an air-fuel ratio sensor, comprising: abnormality diagnosis means for performing an abnormality diagnosis of the air-fuel ratio sensor based on the current value when it is determined that the condition is satisfied.
時間経過したことを含むことを特徴とする請求項1に記
載の空燃比センサの異常診断装置。2. The abnormality diagnosis device for an air-fuel ratio sensor according to claim 1, wherein the abnormality diagnosis start condition includes a condition that a predetermined time has elapsed after the engine is started.
サが活性化したことを含むことを特徴とする請求項1ま
たは請求項2に記載の空燃比センサの異常診断装置。3. The abnormality diagnosis apparatus for an air-fuel ratio sensor according to claim 1, wherein the abnormality diagnosis start condition includes that the air-fuel ratio sensor is activated.
サの検出値に基づく空燃比フィードバック制御中である
ことを含むことを特徴とする請求項1〜請求項3の何れ
か1つに記載の空燃比センサの異常診断装置。4. The apparatus according to claim 1, wherein the abnormality diagnosis start condition includes that air-fuel ratio feedback control is being performed based on a value detected by the air-fuel ratio sensor. Diagnostic device for air-fuel ratio sensor.
電力供給源の電圧が所定以上であることを含むことを特
徴とする請求項1〜請求項4の何れか1つに記載の空燃
比センサの異常診断装置。5. An air conditioner according to claim 1, wherein the abnormality diagnosis start condition includes that a voltage of a power supply source for engine operation control is equal to or higher than a predetermined voltage. Abnormality diagnostic device for fuel ratio sensor.
囲内にあるか否かに基づいて、空燃比センサの異常診断
を行うことを特徴とする請求項1〜請求項5の何れか1
つに記載の空燃比センサの異常診断装置。6. The air-fuel ratio sensor according to claim 1, wherein said abnormality diagnosis means performs an air-fuel ratio sensor abnormality diagnosis based on whether said current value is within a predetermined range. 1
An abnormality diagnosis device for an air-fuel ratio sensor according to any one of the first to third aspects.
されることを特徴とする請求項6に記載の空燃比センサ
の異常診断装置。7. The apparatus according to claim 6, wherein the predetermined range is changed according to a target air-fuel ratio.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP32156396A JPH10159640A (en) | 1996-12-02 | 1996-12-02 | Diagnostic device for abnormality of air-fuel ratio sensor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP32156396A JPH10159640A (en) | 1996-12-02 | 1996-12-02 | Diagnostic device for abnormality of air-fuel ratio sensor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH10159640A true JPH10159640A (en) | 1998-06-16 |
Family
ID=18133974
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP32156396A Pending JPH10159640A (en) | 1996-12-02 | 1996-12-02 | Diagnostic device for abnormality of air-fuel ratio sensor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH10159640A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005108766A1 (en) * | 2004-05-12 | 2005-11-17 | Toyota Jidosha Kabushiki Kaisha | Abnormality detection device for internal combustion engine |
CN105134397A (en) * | 2015-09-02 | 2015-12-09 | 北汽福田汽车股份有限公司 | Oxygen sensor diagnosing method and system and vehicle with system |
JP2017008794A (en) * | 2015-06-19 | 2017-01-12 | 日立オートモティブシステムズ株式会社 | Diagnosis device of internal combustion engine |
-
1996
- 1996-12-02 JP JP32156396A patent/JPH10159640A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005108766A1 (en) * | 2004-05-12 | 2005-11-17 | Toyota Jidosha Kabushiki Kaisha | Abnormality detection device for internal combustion engine |
US7421333B2 (en) | 2004-05-12 | 2008-09-02 | Toyota Jidosha Kabushiki Kaisha | Monitoring system for internal combustion engine |
CN100417800C (en) * | 2004-05-12 | 2008-09-10 | 丰田自动车株式会社 | Abnormality detection device for internal combustion engine |
JP2017008794A (en) * | 2015-06-19 | 2017-01-12 | 日立オートモティブシステムズ株式会社 | Diagnosis device of internal combustion engine |
CN105134397A (en) * | 2015-09-02 | 2015-12-09 | 北汽福田汽车股份有限公司 | Oxygen sensor diagnosing method and system and vehicle with system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR0127495B1 (en) | Failure determination method for o2 sensor | |
US5970967A (en) | Method and apparatus for diagnosing an abnormality in a wide range air-fuel ratio sensor | |
US20110192146A1 (en) | Multicylinder internal combustion engine, inter-cylinder air/fuel ratio imbalance determination apparatus, and method therefor | |
JPH11264340A (en) | Abnormality diagnostic device for wide area air-fuel ratio sensor | |
JPH11107830A (en) | Air-fuel ratio sensor system abnormality diagnostic device for internal combustion engine | |
JPH08271475A (en) | Oxygen concentration detector | |
US7013214B2 (en) | Air-fuel ratio feedback control apparatus and method for internal combustion engine | |
JPH0734934A (en) | Air-fuel ratio controller of internal combustion engine | |
JP3855877B2 (en) | Deterioration detection device for air-fuel ratio detection device | |
US20130192210A1 (en) | Emission control system for internal combustion engine | |
JPH03217637A (en) | Device for judging activity of o2 sensor | |
JP3500976B2 (en) | Abnormality diagnosis device for gas concentration sensor | |
JP3149714B2 (en) | Catalyst deterioration diagnosis device for internal combustion engine | |
JPH0783098A (en) | Abnormality diagnostic device for air-fuel ratio detection device | |
JPH10159640A (en) | Diagnostic device for abnormality of air-fuel ratio sensor | |
JPH10169500A (en) | Output correcting device for air-fuel ratio sensor | |
JPH10169494A (en) | Diagnosing device for exhaust emission control catalyst and abnormality diagnosing device for oxygen sensor | |
JP2001330580A (en) | Heater diagnostic device of oxygen concentration detection device | |
JPH06614Y2 (en) | Fuel sensor abnormality diagnosis device | |
JPH09126012A (en) | Air-fuel ratio control device of internal combustion engine | |
JP2006126218A (en) | Deterioration detector for air-fuel ratio detection device | |
JPH0933478A (en) | Apparatus for diagnosing response of oxygen sensor in internal combustion engine | |
JP2003254049A (en) | Abnormality diagnosis device for exhaust gas sensor | |
JP2696626B2 (en) | Failure determination device for air-fuel ratio sensing system | |
JP2005337213A (en) | Diagnosis device for air fuel ratio sensor |