JPH10158877A - Method for joining gas diffusion electrode and gas chamber - Google Patents

Method for joining gas diffusion electrode and gas chamber

Info

Publication number
JPH10158877A
JPH10158877A JP8316513A JP31651396A JPH10158877A JP H10158877 A JPH10158877 A JP H10158877A JP 8316513 A JP8316513 A JP 8316513A JP 31651396 A JP31651396 A JP 31651396A JP H10158877 A JPH10158877 A JP H10158877A
Authority
JP
Japan
Prior art keywords
gas
gas diffusion
diffusion electrode
cathode
joining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8316513A
Other languages
Japanese (ja)
Other versions
JP2896767B2 (en
Inventor
Choichi Furuya
長一 古屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Toagosei Co Ltd
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Mitsui Chemicals Inc
Toagosei Co Ltd
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc, Toagosei Co Ltd, Kanegafuchi Chemical Industry Co Ltd filed Critical Mitsui Chemicals Inc
Priority to JP8316513A priority Critical patent/JP2896767B2/en
Publication of JPH10158877A publication Critical patent/JPH10158877A/en
Application granted granted Critical
Publication of JP2896767B2 publication Critical patent/JP2896767B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a manufacture technique capable of making the structure over the entire part of a cathode part inclusive of a gas diffusion electrode compact, lowering an electrolytic voltage down to the extreme limit, suppressing the electrolytic voltage to an extremely low level in spite of an increased in the size of an alkali chloride metal electrolytic cell and securely joining the electrode and a gas chamber. SOLUTION: This method for joining the gas diffusion electrode and the gas chamber consists in joining the gas diffusion electrode 2 and the gas chamber 4 by heating and pressurizing the diffusion layer side surface of the gas diffusion electrode 2 and the surface of the gas permeable porous body 5 packed in the gas chamber at a temp. within a range of 200 to 400 deg.C via a joining member consisting of metal silver or silver alloy at the time of manufacturing the alkali chloride metal electrolytic cell consisting of the gas diffusion electrode, the gas chamber packed with the gas permeable porous body 5 and a cathode outside frame 3.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、低電解電圧で電解
でき、強固に接合できる塩化アルカリ金属電解槽の製作
方法に関し、特にガス拡散電極を有する塩化アルカリ金
属電解槽の陰極側の部材の接合方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an alkali metal chloride electrolytic cell which can be electrolyzed at a low electrolysis voltage and can be strongly bonded, and more particularly to a method for joining a cathode side member of an alkali metal chloride electrolytic cell having a gas diffusion electrode. About the method.

【0002】[0002]

【従来の技術】塩化アルカリ金属水溶液電解槽には、塩
化ナトリウム水溶液(以下「塩水」という。)を用いて
苛性ソーダを製造する際に使用する食塩電解槽が良く知
られているので、以下塩化アルカリ金属水溶液電解槽を
食塩電解槽として説明する。この種の食塩電解槽の構造
の概要は、図7に示すように陽極18を有し塩水を入れ
た陽極室19と、陰極を有し水又は苛性ソーダ水溶液を
入れた陰極室17とを、陽イオン交換能を持つイオン交
換膜15により区画し、その陰極として素材が多孔質体
からなり、酸素含有ガスが供給されるガス拡散電極15
(いわゆる酸素陰極)を用いたものであって、両電極間
に通電して電解する際には、前記ガス拡散電極15に酸
素含有ガスが供給されながら陰極として電解することに
より、陰極液を入れた陰極室(以下「陰極液室」とい
う。)に苛性ソーダを濃厚化した苛性ソーダ水溶液とし
て電解製品を得るものである。この電解槽では、陰極と
して酸素ガス拡散電極を使用しているため、そこで水素
ガスが発生しないので、水素発生型の通常の電解方法に
比べて、極めて低い電解電圧で反応を進行させることが
できるという利点を有する。
2. Description of the Related Art As an alkali metal chloride aqueous solution electrolyzer, a salt electrolyzer used for producing caustic soda using an aqueous sodium chloride solution (hereinafter referred to as "salt water") is well known. The metal aqueous solution electrolyzer will be described as a salt electrolyzer. As shown in FIG. 7, an outline of the structure of this type of salt cell is composed of an anode chamber 19 having an anode 18 and containing salt water and a cathode chamber 17 having a cathode and containing water or an aqueous solution of sodium hydroxide. A gas diffusion electrode 15 which is partitioned by an ion exchange membrane 15 having an ion exchange capacity, whose material is a porous material as a cathode, and to which an oxygen-containing gas is supplied.
(So-called oxygen cathode) is used, and when electricity is supplied between the two electrodes to perform electrolysis, the catholyte is charged by performing electrolysis as a cathode while an oxygen-containing gas is supplied to the gas diffusion electrode 15. An electrolytic product is obtained as a caustic soda aqueous solution obtained by enriching caustic soda in a cathode chamber (hereinafter referred to as a "catholyte chamber"). In this electrolytic cell, since an oxygen gas diffusion electrode is used as a cathode, no hydrogen gas is generated there, so that the reaction can proceed at an extremely low electrolysis voltage as compared with a normal hydrogen generation type electrolysis method. It has the advantage that.

【0003】苛性ソーダの製造費は、可能な限り低減さ
れることが望まれているので、食塩電解法で苛性ソーダ
の製造を行う場合にも電解電圧を低くし、電力消費を少
なくして電解することが必要である。ガス拡散電極を用
いて行う食塩電解では、水素ガスが発生しないので、水
素発生型の通常の電解方法に比べて電解電圧を低くする
ことができるという利点がある。しかし、ガス拡散電極
を用いて行う食塩電解にも以下に示すような改良すべき
点がある。すなわち、通常のガス拡散電極を使用しない
イオン交換膜法食塩電解では、陽極とイオン交換膜との
距離はゼロ、イオン交換膜と陰極との距離は2mm以下
であって、極間距離を極めて小さく抑えることができ
る。これは、両方の電極をガス及び液が通れる部材で構
成し、陽極液及び陰極液が両電極の背面から供給できる
ようになっており、かつ電極表面で発生したガスを電極
の背面に排出できるようになっているため、このように
することができるのであって、これらの構造により特に
陽極とイオン交換膜との距離をゼロとすることなどが可
能になっている。
Since it is desired that the cost of producing caustic soda be reduced as much as possible, even when producing caustic soda by the salt electrolysis method, it is necessary to lower the electrolysis voltage and reduce the power consumption for electrolysis. is required. Since salt gas electrolysis using a gas diffusion electrode does not generate hydrogen gas, there is an advantage that the electrolysis voltage can be reduced as compared with a normal hydrogen generation type electrolysis method. However, salt electrolysis performed using a gas diffusion electrode also has the following points to be improved. That is, in the ion exchange membrane method salt electrolysis without using a normal gas diffusion electrode, the distance between the anode and the ion exchange membrane is zero, the distance between the ion exchange membrane and the cathode is 2 mm or less, and the distance between the electrodes is extremely small. Can be suppressed. This is because both electrodes are composed of members through which gas and liquid can pass, and anolyte and catholyte can be supplied from the back of both electrodes, and gas generated on the electrode surface can be discharged to the back of the electrode. With such a structure, such a structure can be realized. In particular, the distance between the anode and the ion-exchange membrane can be reduced to zero by using such a structure.

【0004】これに対し、ガス拡散電極を用いたイオン
交換膜法食塩電解の場合には、陽極とイオン交換膜との
距離については通常のイオン交換膜法食塩電解の場合と
同様にできるが、ガス拡散電極(酸素陰極)では、イオ
ン交換膜に面した側と反対の側の部分ではガスを供給し
なければならないので、通常の電解技術のように電極の
背面側から電極内部を通して表面側に陰極液を供給する
ようなことはできず、イオン交換膜に面した側のみに液
を供給する必要があり、イオン交換膜と陰極との距離を
短くすることはできない。さらにイオン交換膜に面した
側に液を供給するためには、イオン交換膜とガス拡散電
極との間(陰極液室と呼ばれている。)に陰極液を供給
するための供給口及び排出口を設ける必要があり、イオ
ン交換膜とガス拡散電極(陰極)との間の距離の短縮に
は問題があった。
On the other hand, in the case of salt electrolysis using an ion exchange membrane method using a gas diffusion electrode, the distance between the anode and the ion exchange membrane can be the same as in the case of normal salt electrolysis using an ion exchange membrane method. In a gas diffusion electrode (oxygen cathode), gas must be supplied on the side opposite to the side facing the ion exchange membrane, so from the back side of the electrode to the front side through the inside of the electrode as in normal electrolytic technology. It is not possible to supply the catholyte, it is necessary to supply the liquid only to the side facing the ion exchange membrane, and it is not possible to shorten the distance between the ion exchange membrane and the cathode. Further, in order to supply the liquid to the side facing the ion exchange membrane, a supply port and a drain for supplying the catholyte between the ion exchange membrane and the gas diffusion electrode (referred to as a catholyte chamber). It is necessary to provide an outlet, and there is a problem in shortening the distance between the ion exchange membrane and the gas diffusion electrode (cathode).

【0005】ガス拡散電極をもつ電解槽では、従来、ガ
ス拡散電極への通電はガス拡散電極のガス拡散層内に埋
設された集電体の足部を延長し、その延長部を酸素陰極
の外枠のシール部などから外部に引き出すか、酸素陰極
のガス室に集電体を配設してガス室の該集電体と前記ガ
ス拡散層内の集電体を接続し、ガス室の集電体足部を酸
素陰極の外枠のシール部などから外部に引き出し、陰極
電源端子と接続して電流を流す方式がとられてきた。こ
のような集電体方式ではガス拡散層内に埋設された集電
体やガス室に配設した集電体に電流が流れるので、電解
槽が大型化してガス拡散電極の面積が広くなると、電流
が集電体を流れる距離が長くなり、電解槽の電圧、ひい
ては電解電圧が大きくなるという問題があった。このた
め陰極外枠のシール部からガス拡散電極の中心までの集
電体の線幅を太くして電圧低下を少なくしようとすると
集電体がガス室内のガスの供給を妨げるので電解過電圧
が大きくなりやはり電解電圧が大きくなる。このため、
ガス拡散電極から陰極端子に電気を流すのに集電体を使
用する方式ではガス拡散電極の大型化はできず、その大
きさは30cm角程度までであった。
[0005] In an electrolytic cell having a gas diffusion electrode, conventionally, energization of the gas diffusion electrode extends a foot portion of a current collector embedded in a gas diffusion layer of the gas diffusion electrode, and the extension portion serves as an oxygen cathode. The current collector in the gas chamber and the current collector in the gas diffusion layer are connected to the gas chamber of the oxygen cathode by connecting the current collector in the gas chamber of the oxygen cathode. A method has been adopted in which the current collector foot is pulled out to the outside from a seal portion of an outer frame of the oxygen cathode and connected to a cathode power supply terminal to flow an electric current. In such a current collector system, current flows through the current collector buried in the gas diffusion layer and the current collector disposed in the gas chamber, so that when the electrolytic cell becomes large and the area of the gas diffusion electrode becomes large, There has been a problem that the distance over which the current flows through the current collector is increased, and the voltage of the electrolytic cell, and eventually the electrolytic voltage, is increased. For this reason, when trying to reduce the voltage drop by increasing the line width of the current collector from the seal portion of the cathode outer frame to the center of the gas diffusion electrode, the current collector hinders the supply of gas in the gas chamber, and the electrolytic overvoltage increases. Again, the electrolytic voltage increases. For this reason,
In the method using a current collector to pass electricity from the gas diffusion electrode to the cathode terminal, the size of the gas diffusion electrode could not be increased, and the size was up to about 30 cm square.

【0006】ガス拡散電極は、通常図6に示すように反
応層11とガス拡散層12との2層構造からなる。両層
とも黒鉛質カーボンとテフロン粒子との混合体から形成
される。これら2層の中、反応層11は陰極液室に面し
て電解液に接し、主として親水性カーボンの微粒子と撥
水性カーボン微粒子の混合物からなり、これにフッ素樹
脂微粒子を混合し、さらにカーボン微粒子上には前記白
金などの貴金属系からなる触媒を担持したものである。
また、ガス拡散層12は主としてフッ素樹脂微粒子と撥
水性カーボンの混合物からなり、これに少量の親水性カ
ーボンの微粒子とこれら微粒子を繋ぐ結着剤粒子を混合
し、これらの微粒子を多孔性板状体に成形したものであ
る。前記図6に示したように、反応層11とガス拡散層
12とは、陰極液の側には親水性の反応層11、ガス室
の側に疎水性のガス拡散層12となるように配置・積層
してガス拡散電極2とする。ガス拡散電極内外の導通
は、反応層11とガス拡散層12の層内および層間に挿
入した導体メッシュとカーボンの電導性によって維持さ
れている。ガス拡散電極2の厚みは0.2〜1mm程度
の薄いものである。
The gas diffusion electrode usually has a two-layer structure of a reaction layer 11 and a gas diffusion layer 12, as shown in FIG. Both layers are formed from a mixture of graphitic carbon and Teflon particles. Among these two layers, the reaction layer 11 faces the catholyte compartment and comes into contact with the electrolyte, and is mainly composed of a mixture of hydrophilic carbon fine particles and water-repellent carbon fine particles. On top, a catalyst made of a noble metal system such as platinum is supported.
The gas diffusion layer 12 is mainly composed of a mixture of fluororesin fine particles and water-repellent carbon, and a small amount of hydrophilic carbon fine particles and a binder particle connecting these fine particles are mixed with each other. It is molded into a body. As shown in FIG. 6, the reaction layer 11 and the gas diffusion layer 12 are arranged so that the hydrophilic reaction layer 11 is on the catholyte side and the hydrophobic gas diffusion layer 12 is on the gas chamber side. -Laminated to form the gas diffusion electrode 2. Electrical continuity between the inside and outside of the gas diffusion electrode is maintained by the conductivity of the conductive mesh and carbon inserted in and between the reaction layer 11 and the gas diffusion layer 12. The thickness of the gas diffusion electrode 2 is as thin as about 0.2 to 1 mm.

【0007】前記したように、ガス拡散電極は厚みの薄
い層体であるので、イオン交換膜とガス拡散電極(陰
極)との間隙を狭くし、狭い間隙に多量の陰極液を流す
とすれば、陰極液室内の液にはかなりの液圧が生じ、こ
れによりガス拡散電極の変形が起こり、電気抵抗が増大
して、電解電圧の増加をきたすことになる。これらの問
題に対して、これまでの方法では十分対応できていな
い。
As described above, since the gas diffusion electrode is a thin layered body, if the gap between the ion exchange membrane and the gas diffusion electrode (cathode) is narrowed and a large amount of catholyte flows through the narrow gap, In addition, the liquid in the catholyte compartment generates a considerable liquid pressure, which causes deformation of the gas diffusion electrode and increases the electric resistance, thereby increasing the electrolysis voltage. These problems have not been adequately addressed by these methods.

【0008】ガス拡散電極を補強するために、従来、例
えば図8に示すように、ガス室4内に酸素通路23を設
けるようにして、かつガス拡散電極2を支持した例やガ
ス拡散電極の背面に網状の支持体を設けた例はある。し
かし、その従来技術においては、前記支持体をを挿入す
る目的が、ガス拡散電極の強度が小さいという欠点を補
うため補強する目的を主とするものであるため、ガス拡
散電極中へのガスの流入を部分的に妨げるので、ガスの
流入が不均一になり、またガスの供給が不足するので、
電解電圧の増加をきたすことになる。従って、これまで
の前記補強対策ではガス拡散電極の変形防止の問題に対
し十分対応できるものといえない。また、以前に試みら
れたガス拡散電極支持・補強用の材料は、ガス拡散電極
に接合されていなかったので支持は不完全であり、ま
た、ガス拡散電極の陰極部の組み立てには手数がかかっ
た。また、補強用材料をガス拡散電極に接合しようとし
てもガス拡散電極の機能に障害を与えることなく、適温
で接合し得る接合剤が得られていなかった。
In order to reinforce the gas diffusion electrode, conventionally, as shown in FIG. 8, for example, an oxygen passage 23 is provided in the gas chamber 4 and the gas diffusion electrode 2 is supported. There is an example in which a net-like support is provided on the back surface. However, in the prior art, the purpose of inserting the support is mainly to reinforce the gas diffusion electrode in order to compensate for the drawback that the strength of the gas diffusion electrode is low. Since the gas flow is partially obstructed, the gas flow becomes uneven and the gas supply is insufficient.
This will increase the electrolysis voltage. Therefore, it cannot be said that the above reinforcing measures can sufficiently cope with the problem of preventing the gas diffusion electrode from being deformed. Also, the previously attempted materials for supporting and reinforcing the gas diffusion electrode were not joined to the gas diffusion electrode, so the support was incomplete, and the assembly of the cathode of the gas diffusion electrode was troublesome. Was. Further, even if an attempt is made to join the reinforcing material to the gas diffusion electrode, a bonding agent that can be joined at an appropriate temperature without impairing the function of the gas diffusion electrode has not been obtained.

【0009】ガス拡散電極を用いて行う食塩電解におい
て、電解電圧を低下させること、特に、より大型の食塩
電解装置にガス拡散電極を適用することが望まれてい
る。このために行われてきたガス拡散電極を使用するイ
オン交換膜法電解についての改良は、従来、ガス拡散電
極の製法や性能向上のみに注意が払われており、ガス拡
散電極を使用するイオン交換膜法食塩電解槽の構造上の
改善等についてはほとんど考慮されてこなかった。前記
説明からわかるように、ガス拡散電極の変形防止の問
題、ガス拡散電極と陰極端子間の電気抵抗の増大の問
題、ガス室からガス拡散電極に均一かつ十分のガスを供
給する問題を改善することによって、現状よりさらに電
解電圧を低くでき、より大型の食塩電解装置にガス拡散
電極を適用することが可能になると考えられる。
In salt electrolysis performed using a gas diffusion electrode, it is desired to lower the electrolysis voltage, and particularly to apply the gas diffusion electrode to a larger salt electrolysis apparatus. Improvements in ion exchange membrane method electrolysis using gas diffusion electrodes that have been carried out for this purpose have hitherto focused only on the manufacturing method and performance improvement of gas diffusion electrodes. Almost no consideration has been given to the structural improvement of the membrane electrolytic cell. As can be seen from the above description, the problem of preventing deformation of the gas diffusion electrode, the problem of increasing the electric resistance between the gas diffusion electrode and the cathode terminal, and the problem of supplying a uniform and sufficient gas from the gas chamber to the gas diffusion electrode are improved. Thus, it is considered that the electrolysis voltage can be further reduced from the current state, and the gas diffusion electrode can be applied to a larger salt electrolysis apparatus.

【0010】本発明者は、ガス拡散電極を用いて行う食
塩電解について、電解電圧を低下させ、電解装置の大型
化を可能にすることについて、主としてイオン交換膜法
食塩電解槽の構造上の改善について鋭意検討した結果、
ガス拡散電極のガス室内に導電性の剛性ガス透過性多孔
体、好ましくは金属製の剛性ガス透過性多孔体を図5に
示すような態様で充填することにより、ガス拡散電極の
変形の防止、ガス供給室からガス拡散電極へのガス供給
の均一性の向上、(陰極液の供給手段を改良して従来の
陰極枠に設ける陰極室に接続する供給口及び排出口を除
くことによる)イオン交換膜とガス拡散電極との間隙の
縮小およびガス拡散電極から陰極端子までの距離の短縮
が可能になり、食塩電解における電解電圧の大幅な低下
を実現することができ、従って電解装置を1m角以上と
いう実用ソーダ電解槽にガス拡散電極を適用できる可能
性が見出された。
The inventor of the present invention has been mainly concerned with improving the structure of a salt electrolyzer for an ion-exchange membrane method by reducing the electrolysis voltage and increasing the size of the electrolyzer in salt electrolysis using a gas diffusion electrode. After careful examination of
By filling the gas chamber of the gas diffusion electrode with a conductive rigid gas permeable porous body, preferably a metal rigid gas permeable porous body in a manner as shown in FIG. 5, the deformation of the gas diffusion electrode can be prevented. Improving the uniformity of gas supply from the gas supply chamber to the gas diffusion electrode, ion exchange (by removing the supply port and discharge port connected to the cathode chamber provided in the conventional cathode frame by improving the catholyte supply means) The gap between the membrane and the gas diffusion electrode can be reduced, and the distance from the gas diffusion electrode to the cathode terminal can be reduced, so that the electrolysis voltage in salt electrolysis can be greatly reduced. It has been found that a gas diffusion electrode can be applied to a practical soda electrolyzer.

【0011】[0011]

【発明が解決しようとする課題】本発明は、ガス拡散電
極を用いるイオン交換膜法電解槽において、ガス拡散電
極を含めた陰極部全体の構造をコンパクト化し、電解電
圧を極限にまで低下させ、さらに食塩電解槽の準備作業
の効率化をはかり、ひいては、装置を大型化しても電解
電圧の増大が抑制され、装置の準備作業性、操作性が維
持できるイオン交換膜法電解槽(食塩電解槽)を提供す
ることを目的とするものである。特に前記目的のため、
前記ガス室内に充填した剛性のガス透過性多孔体とガス
拡散電極とをガス拡散機能を維持しつつ強固に接合し
て、装置の準備作業性および操作性を向上することを課
題とするものである。
SUMMARY OF THE INVENTION The present invention provides an ion exchange membrane electrolytic cell using a gas diffusion electrode, in which the entire structure of the cathode section including the gas diffusion electrode is made compact, and the electrolysis voltage is reduced to the limit. Further, the efficiency of the preparation work of the salt electrolyzer is improved, and the increase in the electrolysis voltage is suppressed even if the apparatus is enlarged, so that the ion exchange membrane method electrolyzer (salt electrolyzer) can maintain the operability and operability of the apparatus. ). Especially for the above purpose,
It is an object to improve the preparation workability and operability of the apparatus by firmly joining a rigid gas-permeable porous body filled in the gas chamber and a gas diffusion electrode while maintaining a gas diffusion function. is there.

【0012】[0012]

【課題を解決するための手段】前記課題は、本発明のガ
ス拡散電極とガス室との接合方法、より詳しくは、ガス
拡散電極とガス室に充填した剛性のガス透過性多孔体と
の以下に示す本発明の接合方法によって達成される。ガ
ス拡散電極、ガス透過性導電性多孔体が充填されている
ガス室および陰極外枠からなる塩化アルカリ金属電解槽
の製作に際して、前記ガス拡散電極の拡散層側表面とガ
ス室に充填される前記導電性多孔体の表面とを金属銀ま
たは銀合金からなる接合部材を介して、200℃から4
00℃の範囲内で加熱・加圧して接合することを特徴と
するガス拡散電極とガス室との接合方法。ガス室に充填
されるガス透過性導電性多孔体は、剛性導体であれば良
いが、優れた電導性を有する金属製のガス透過性多孔体
であることが好ましい。
The object of the present invention is to provide a method for joining a gas diffusion electrode and a gas chamber according to the present invention, and more particularly, to a method for forming a gas diffusion electrode and a rigid gas-permeable porous body filled in the gas chamber. Are achieved by the bonding method of the present invention shown in FIG. When manufacturing an alkali metal chloride electrolytic cell comprising a gas diffusion electrode, a gas chamber filled with a gas-permeable conductive porous body, and a cathode outer frame, the gas diffusion electrode is filled in the diffusion layer side surface and the gas chamber. The surface of the conductive porous body is heated from 200 ° C. to 4 ° C. through a joining member made of metallic silver or a silver alloy.
A method for joining a gas diffusion electrode and a gas chamber, wherein the joining is performed by heating and pressing within a temperature range of 00 ° C. The gas permeable conductive porous body filled in the gas chamber may be a rigid conductor, but is preferably a metal gas permeable porous body having excellent conductivity.

【0013】[0013]

【発明の実施の形態】本発明をより具体的に説明する。
しかしながら本発明は以下の具体的説明によって制限さ
れるものではない。本発明において好ましく使用される
ガス拡散電極は、すでに前記した図6に示した反応層1
1とガス拡散層12を積層した二層構造のものが典型的
なガス拡散電極である。本発明のガス拡散電極とガス透
過性導電性多孔体(以下、簡単のため「ガス透過性多孔
体」ともいう)との接合のための準備としては、前記二
層構造のガス拡散電極のガス拡散層の表面(ガス拡散電
極の裏面)に、図4に示すように接合部材としての銀製
の網13または線を予め接合しておく。ガス拡散層12
への銀製の網13(又は線)の接合は、例えばガス拡散
層12をプレス成形する際に支持骨格に使用するメッシ
ュ材を利用してガス拡散層に強固に接合するなどの方法
が良い。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described more specifically.
However, the present invention is not limited by the following specific description. The gas diffusion electrode preferably used in the present invention is the reaction layer 1 shown in FIG.
A typical gas diffusion electrode has a two-layer structure in which a gas diffusion layer 1 and a gas diffusion layer 12 are stacked. Preparation for joining the gas diffusion electrode of the present invention to a gas-permeable conductive porous body (hereinafter also referred to as “gas-permeable porous body” for simplicity) includes preparing the gas of the two-layer gas diffusion electrode. As shown in FIG. 4, a silver net 13 or a wire as a joining member is joined in advance to the surface of the diffusion layer (the back surface of the gas diffusion electrode). Gas diffusion layer 12
The method of joining the silver net 13 (or wire) to the gas diffusion layer 12 is preferably a method of firmly joining the gas diffusion layer 12 using a mesh material used for a support frame when press-molding the gas diffusion layer 12.

【0014】ここで使用する接合部材としての網13
は、銀網、銀被覆ニッケル網(例:ニッケル網に銀メッ
キしたもの)が望ましく、網の形状は以下のものが適す
る。網の線幅は0.3mm以下で、網目幅は3mm以下
で、開口率は80〜90%がよい。線幅が大きくなる、
或いは開口率が小さくなると、ガスの透過が妨げられ、
開口率が95%以上では導電性が問題となる。図9に示
すように、網13の線の断面形状は、厚さ方向に長いも
のが導電性の点から好ましい。開口率が同一ならば網の
形状は正方形より菱型がよい。また、網の一部はガス拡
散電極のガス供給層内部に埋没していてもよい。
The mesh 13 as a joining member used here
Is preferably a silver net or a silver-coated nickel net (eg, a nickel net plated with silver), and the following net shape is suitable. The line width of the mesh is 0.3 mm or less, the mesh width is 3 mm or less, and the aperture ratio is preferably 80 to 90%. Line width increases,
Or, if the aperture ratio is small, gas permeation is hindered,
If the aperture ratio is 95% or more, conductivity becomes a problem. As shown in FIG. 9, the cross-sectional shape of the line of the net 13 is preferably long in the thickness direction from the viewpoint of conductivity. If the aperture ratios are the same, the shape of the net is preferably a rhombus rather than a square. Further, a part of the net may be buried inside the gas supply layer of the gas diffusion electrode.

【0015】またガス室側の準備としては、ガス室のス
ペース(図5の陰極外枠3からなるガス室フレーム)内
に発泡ニッケル(スポンジニッケル)からあるいは金属
網をコルゲート加工して製作したガス透過性多孔体5を
充填し、好ましくは該ガス透過性多孔体5をガス室フレ
ーム3に溶接して、固定する。次に、ガス室に充填した
ガス透過性多孔体5の表面を(ガス透過性を維持し
て、)銀メッキする。この銀メッキ部分も接合部材とな
る。接合材は銀合金でも良い。
As a preparation for the gas chamber side, a gas chamber made of foamed nickel (sponge nickel) or a metal net manufactured by corrugating a metal net in a space of the gas chamber (a gas chamber frame including the cathode outer frame 3 in FIG. 5). The permeable porous body 5 is filled, and preferably, the gas permeable porous body 5 is fixed to the gas chamber frame 3 by welding. Next, the surface of the gas-permeable porous body 5 filled in the gas chamber is plated with silver (while maintaining gas permeability). This silver-plated portion also serves as a joining member. The joining material may be a silver alloy.

【0016】前記表面銀メッキされたガス透過性多孔体
5の表面とガス拡散電極(図4の12)の裏面の銀網1
3を重ね加熱、圧着すると、図3のようになる。接合温
度は200℃から400℃まであるが、ガス拡散電極が
空気中で酸化劣化しない温度である250℃付近の温度
が望ましい。また、圧力は10kg/cm2 以上が良好
である。この工程により、ガス拡散電極の裏面の銀線と
ガス透過性多孔体5の表面の銀メッキ部分とが接合部を
形成し、ガス拡散電極の裏面とガス透過性多孔体5の表
面とがこの接合部により接合されることになる。なお、
この製作工程について、ガス透過性多孔体5を先にガス
室フレームに溶接せずに、ガス拡散電極の裏面とガス透
過性多孔体5の表面とを接合した後、ガス透過性多孔体
5をガス室フレームに溶接するようにすることもでき
る。これにより、図3において、金属製の陰極外枠3
(電解槽フレーム)からガス拡散電極の反応層11に最
短距離でかつ低い電気抵抗の部分で通電できるようにな
り、電解電圧の低下を実現することができる。また、ガ
ス拡散電極2、ガス透過性多孔体5および陰極外枠3が
一体化できるので電解装置が大型化しても装置の準備作
業性、操作性が簡便になる。
The silver mesh 1 on the front surface of the gas-permeable porous body 5 plated with the surface silver and the back surface of the gas diffusion electrode (12 in FIG. 4).
3 is heated and pressed, as shown in FIG. The joining temperature is from 200 ° C. to 400 ° C., but a temperature around 250 ° C., which is a temperature at which the gas diffusion electrode does not deteriorate by oxidation in air, is desirable. The pressure is preferably 10 kg / cm 2 or more. By this step, the silver wire on the back surface of the gas diffusion electrode and the silver-plated portion on the surface of the gas-permeable porous body 5 form a joint, and the back surface of the gas diffusion electrode and the surface of the gas-permeable porous body 5 It will be joined by the joint. In addition,
In this manufacturing process, the back surface of the gas diffusion electrode and the surface of the gas permeable porous body 5 were joined without first welding the gas permeable porous body 5 to the gas chamber frame. It can also be welded to the gas chamber frame. As a result, in FIG.
It is possible to conduct electricity from the (electrolysis tank frame) to the reaction layer 11 of the gas diffusion electrode at the shortest distance and at a portion with low electric resistance, and it is possible to realize a reduction in electrolysis voltage. Further, since the gas diffusion electrode 2, the gas-permeable porous body 5 and the cathode outer frame 3 can be integrated, even if the electrolysis apparatus is enlarged, the preparation workability and operability of the apparatus become simple.

【0017】ガス拡散電極とガス室に充填した多孔体と
を、ガス拡散電極の機能に損傷を与えず、ガス拡散電極
および多孔体のガス透過性に大きな変化を与えることな
く、簡単にかつ強固に接合することは技術的に非常に難
しいことである。すでに前記したようにガス拡散電極、
特にそのガス拡散層に使用されている構成材料であるフ
ッ素樹脂微粒子および微粒子を繋ぐ結着剤粒子はその耐
熱性が高い材料ではなく、400℃以上の高温にさらさ
れると分解し、微粒子間が塞がれるのでガス透過性が失
われる。このためガス拡散電極と多孔体との接合のため
に適している接合温度は200℃から400℃であっ
て、特にガス拡散電極を空気中で接合する場合には白金
触媒が酸化されるという問題があるので、250℃付近
までの温度で接合するようにするのが好ましく、条件に
よっては300℃までの温度が許容される。
The gas diffusion electrode and the porous body filled in the gas chamber can be easily and firmly combined with each other without damaging the function of the gas diffusion electrode and without significantly changing the gas permeability of the gas diffusion electrode and the porous body. It is very technically difficult to join them. Gas diffusion electrodes, as already mentioned above,
In particular, the fluorine resin fine particles and the binder particles connecting the fine particles, which are constituent materials used in the gas diffusion layer, are not materials having high heat resistance, and are decomposed when exposed to a high temperature of 400 ° C. or more, and the space between the fine particles is reduced. The gas permeability is lost because it is blocked. Therefore, the bonding temperature suitable for bonding the gas diffusion electrode and the porous body is 200 ° C. to 400 ° C., and particularly when the gas diffusion electrode is bonded in air, the platinum catalyst is oxidized. Therefore, it is preferable that the bonding be performed at a temperature of up to about 250 ° C., and a temperature of up to 300 ° C. is allowable depending on conditions.

【0018】また、接合媒体として使用する材料は、接
合時においても、電解中においても、電解反応に影響を
与えないのみならず、接合剤自身腐食をうけることがな
い材料で、かつ電気伝導性が良く、電気抵抗を増大させ
ることがない材料でなければならない。このような材料
として、鋭意研究の結果銀および銀の合金が選択され
た。銀はすべての温度で空気によって酸化されることが
なく、苛性ソーダ水溶液中の陰極で酸化されることがな
い。さらに、前記銀または銀の合金で接合部を形成させ
るためには、ガス拡散電極のガス拡散層には細い線を使
用しこれらを格子状に、あるいは平行線状に配置して固
着させ、多孔体の接着側表面には多孔性を失わせないよ
うにメッキして接合面とする。前記接合材料に適する銀
合金としては次のような材料を挙げることができる。す
なわち、銀−銅合金、銀−スズ合金、銀−スズ−鉛合
金、銀−鉛合金などである。
The material used as the joining medium is a material which does not affect the electrolytic reaction at the time of joining or during electrolysis, and which is not susceptible to corrosion of the joining agent itself, and which has an electric conductivity. It must be a material that does not increase electrical resistance. As such materials, silver and silver alloys were selected as a result of intensive studies. Silver is not oxidized by air at all temperatures and is not oxidized at the cathode in aqueous sodium hydroxide solution. Furthermore, in order to form a joint with the silver or silver alloy, a thin wire is used for the gas diffusion layer of the gas diffusion electrode, these are arranged in a grid or parallel lines, and fixed, and a porous The bonding side surface of the body is plated so as not to lose porosity to form a bonding surface. The following materials can be given as silver alloys suitable for the joining material. That is, it is a silver-copper alloy, a silver-tin alloy, a silver-tin-lead alloy, a silver-lead alloy, or the like.

【0019】本発明の電解槽の陰極における好ましいガ
ス室の形態について説明する。すなわち、本発明の電解
槽の陰極のガス室に、3次元的にガスの流通が可能な多
孔体を充填して、ガス拡散電極のガス拡散層側へのガス
の供給を均一化すると共にこれによってガス拡散電極の
変形を防止するものである。本発明において、前記「ガ
ス室に多孔体を充填する」とは、この場合「ガス室に多
孔体を詰める」のが目的ではなく、ガス拡散電極の表面
に接するまで設けるという意味であって、本発明の目的
がガス拡散電極の表面にガスを均一に供給することにあ
るから、ガスの流通を阻害するように密に充填してはな
らず、「挿入する」とか「設ける」という意味であって
もよいことを理解すべきである。
The preferred form of the gas chamber in the cathode of the electrolytic cell of the present invention will be described. That is, the gas chamber of the cathode of the electrolytic cell of the present invention is filled with a porous body through which gas can flow three-dimensionally, so that the gas is uniformly supplied to the gas diffusion layer side of the gas diffusion electrode. This prevents deformation of the gas diffusion electrode. In the present invention, the term "filling the gas chamber with a porous body" does not mean "filling the gas chamber with a porous body" in this case, but means that the gas chamber is provided until it comes into contact with the surface of the gas diffusion electrode. Since the object of the present invention is to uniformly supply the gas to the surface of the gas diffusion electrode, the gas must not be densely packed so as to hinder the flow of the gas, and it means “insert” or “provide”. It should be understood that there may be.

【0020】本発明の食塩電解槽のガス室に充填する3
次元的にガスの流通が可能な多孔体は金属製のものでな
くても電気伝導性のものでガス拡散電極中にガスを均一
に流入させるうるものであれば良いが、金属製のもので
あることが好ましい。すなわち、充填する多孔体を金属
製のものとすれば、前記金属製の多孔体は全面でガス拡
散電極に接触しているで、前記多孔性材料に陰極端子を
接続することにより前記多孔体は広い集電体となり、従
来使用されていた集電体よりも電流分布の均一化を図る
ことができる。更に、前記金属製の多孔体とガス拡散電
極とを接合して一体に成形するならば特別に従来のよう
な集電体は不要になる。またこの時、ガス拡散電極に負
荷される電流も、従来のようにガス拡散電極の周辺端に
設けた端子から負荷されるようにした場合に流れる電流
に比べ、ガス拡散電極全面に均一に負荷することができ
る。
Filling the gas chamber of the salt cell of the present invention with 3
The porous body through which gas can flow in a three-dimensional manner is not limited to a metal but may be an electrically conductive one that can uniformly flow gas into the gas diffusion electrode. Preferably, there is. That is, if the porous body to be filled is made of metal, the porous body made of metal is in contact with the gas diffusion electrode on the entire surface.By connecting a cathode terminal to the porous material, the porous body becomes The current collector is wide, and the current distribution can be made more uniform than that of a conventionally used current collector. Furthermore, if the metal porous body and the gas diffusion electrode are joined to be integrally formed, a conventional current collector is not required. At this time, the current applied to the gas diffusion electrode is also uniformly applied to the entire surface of the gas diffusion electrode as compared with the current flowing when the current is applied from a terminal provided at the peripheral end of the gas diffusion electrode. can do.

【0021】電解槽の陰極部のガス室に3次元的にガス
を均一に供給可能な剛体の多孔体を充填するように構成
した陰極部を図2として示す。図2において、(a)は
その陰極部をガス拡散電極側から見た正面図を示し、
(b)はその縦断側面図を示す。2はガス拡散電極、4
はガス室、5は多孔体、6は陰極端子である。
FIG. 2 shows a cathode section configured to fill a gas porous chamber capable of uniformly supplying gas three-dimensionally into the gas chamber of the cathode section of the electrolytic cell. In FIG. 2, (a) shows a front view of the cathode portion viewed from the gas diffusion electrode side,
(B) shows the longitudinal side view. 2 is a gas diffusion electrode, 4
Is a gas chamber, 5 is a porous body, and 6 is a cathode terminal.

【0022】前記剛体の多孔体としては、種々の形態の
ものを取りうるが、その中で金網やエキスパンドメッシ
ュのような形態のもの、あるいは発泡ニッケルのような
多孔性金属のものが好ましい。金網類や発泡ニッケルの
ような多孔性金属は3次元的にガスを通すことができ、
また金属製であるから集電体としての機能も併せもって
いる。このような金属製多孔体を使用すれば、従来の集
電体は不要である。図2に示すように、酸素ガス室4に
金属製多孔体5を充填した電解槽の陰極部1を作成した
ところ、セル電圧が低下し、さらに空気を使用しても電
圧が上がらず、低い電圧で安定に電解を継続できること
を見いだした。
The rigid porous body may take various forms, and among these, a form such as a wire mesh or an expanded mesh or a porous metal such as foamed nickel is preferable. Porous metals such as wire mesh and foamed nickel can pass gas three-dimensionally,
In addition, since it is made of metal, it also has a function as a current collector. When such a metal porous body is used, a conventional current collector is unnecessary. As shown in FIG. 2, when the cathode portion 1 of the electrolytic cell in which the metal porous body 5 was filled in the oxygen gas chamber 4 was formed, the cell voltage was lowered, and even when air was used, the voltage did not increase and was low. It has been found that electrolysis can be stably continued at a voltage.

【0023】金網類としては、各種の織り方の金網とか
エキスパンドメッシュなどが適している。平面性に関し
ては織ったまま、伸展したままのものから、ロール掛け
によりある程度平滑化処理を施したもの、逆に波形板に
加圧成形したもの(コルゲート材)の使用が可能であ
る。過度に平滑化したものは平面方向へのガスの通過を
妨げるので好ましくない。金網の短径(密な方向)ピッ
チとしては、0.5ないし5mm程度のものが適してい
る。1枚単独で使用することもできるし、複数枚重ねて
使用することもできる。厚みとしては0.2mmないし
2mmのものが使用できる。縦と横にピッチが異なる金
網を重ねる場合、ガスの通過を妨げないように方向を変
えて重ねることが好ましい。電気の導通を確実にするた
めにも重ねた金網はスポット溶接などで互いに溶接し、
さらにガス容器本体と溶接するのが好ましい。ガス拡散
電極との接触を確実にするために、金網の銀メッキ化は
良好な結果をもたらす。また、金網の重ね合わせにも銀
の接合が使用できる。
As wire meshes, wire meshes of various weaves, expanded meshes, and the like are suitable. Regarding the flatness, it is possible to use a material that has been woven and stretched, a material that has been subjected to a certain degree of smoothing treatment by rolling, and a material that has been formed by pressing a corrugated plate (corrugated material). Excessive smoothing is not preferred because it hinders the passage of gas in the plane direction. The pitch of the short diameter (dense direction) of the wire mesh is preferably about 0.5 to 5 mm. One sheet can be used alone, or a plurality of sheets can be used. A thickness of 0.2 mm to 2 mm can be used. When wire meshes having different pitches in the vertical and horizontal directions are stacked, it is preferable to change the directions so as not to hinder the passage of gas. To ensure electrical continuity, the superimposed wire meshes are welded together by spot welding, etc.
Further, it is preferable to weld to the gas container body. In order to ensure contact with the gas diffusion electrode, silver plating of the wire mesh gives good results. Also, silver bonding can be used for laminating wire meshes.

【0024】ガス室の厚みも重要である。電解槽の大き
さによって適当な厚みは異なるが、通常の大きさの電解
槽では0.5mmないし3mm程度が好ましい。0.5
mmより薄いとガスの通過に伴う圧力損失が増大し、3
mmより厚いと電極への酸素の供給が悪化し過電圧の上
昇を招く。ガス室は厚み1mm程度で、金網によって完
全に充填された構造である。このような構成の電解槽を
使用することによって、セル電圧を2V以下にできる。
また、酸素源として空気を使用しても電圧の上昇を0.
1V以下に抑えることができる。
The thickness of the gas chamber is also important. Although the appropriate thickness varies depending on the size of the electrolytic cell, it is preferably about 0.5 mm to 3 mm for a normal-sized electrolytic cell. 0.5
mm, the pressure loss associated with the passage of gas increases,
If the thickness is larger than 0 mm, supply of oxygen to the electrode is deteriorated, and an overvoltage is increased. The gas chamber has a thickness of about 1 mm and is completely filled with a wire mesh. By using the electrolytic cell having such a configuration, the cell voltage can be reduced to 2 V or less.
Further, even if air is used as the oxygen source, the rise in voltage is reduced to 0.1.
It can be suppressed to 1 V or less.

【0025】これら多孔体の充填効果は次のように理解
される。ガス室の酸素は水蒸気、窒素により希釈され、
ガス拡散電極のガス層表面では酸素濃度の極めて低い境
膜ができると考えられる。充填物の存在により、酸素含
有気体の流れが乱流化し、境膜が薄くなり、酸素の供給
が促進され、過電圧を低下させるものと考えられる。従
って、単純な溝状の通路よりも金網等空隙率が大きく、
乱流化効果の大きいものを充填した方が適していると考
えられる。
The effect of filling these porous bodies is understood as follows. The oxygen in the gas chamber is diluted with steam and nitrogen,
It is considered that a boundary film having an extremely low oxygen concentration is formed on the gas layer surface of the gas diffusion electrode. It is considered that the presence of the filler causes the flow of the oxygen-containing gas to be turbulent, the film to be thinned, the supply of oxygen to be promoted, and the overvoltage to be reduced. Therefore, the porosity of a wire mesh is larger than that of a simple groove-shaped passage,
It is considered that filling with a material having a large turbulence effect is more suitable.

【0026】[0026]

【実施例】以下、実施例により本発明を具体的に説明す
る。ただし、本発明はこの実施例のみに限定されるもの
ではない。 実施例1 ニッケル製の陰極側エンドプレートにニッケル製の厚さ
0.3mm、線幅0.3mm、開き幅1.5mmのエキ
スパンドメタルを高さ1mm、ピッチ1mmのコルゲー
ト材にした後、銀メッキを10ミクロン施し、深さ1m
mのガス室にスポットウエルダーで溶接し、図5に示す
ガス室を製作した。前記多孔体付きエンドプレート上に
網の線幅が0.1mm、網目の幅が1mmである銀網付
きガス拡散電極を載せ270℃、10kg/cm2 の圧
力で加熱・圧着し図3の酸素陰極を得た。この電極付き
エンドプレートを用い、イオン交換膜型電解槽を組み、
イオン交換膜と酸素陰極との間隔を2mm、32%Na
OHの陰極室供給液、80℃、純酸素を供給し、電解槽
を運転した結果、30A/dm2 で槽電圧は2.10V
であった。
The present invention will be described below in detail with reference to examples. However, the present invention is not limited to only this embodiment. Example 1 A nickel end plate made of nickel having a thickness of 0.3 mm, a line width of 0.3 mm, and an opening width of 1.5 mm was formed into a corrugated material having a height of 1 mm and a pitch of 1 mm on a nickel-side cathode end plate, followed by silver plating. 10 microns, depth 1m
m was welded with a spot welder to produce a gas chamber shown in FIG. A gas diffusion electrode with a silver mesh having a mesh line width of 0.1 mm and a mesh width of 1 mm is placed on the end plate with a porous body and heated and pressed at 270 ° C. and a pressure of 10 kg / cm 2 , and the oxygen of FIG. A cathode was obtained. Using this end plate with electrodes, an ion exchange membrane type electrolytic cell is assembled,
The distance between the ion exchange membrane and the oxygen cathode is 2 mm, 32% Na
As a result of supplying the OH cathode solution supply solution, 80 ° C. and pure oxygen, and operating the electrolytic cell, the cell voltage was 30 A / dm 2 and the cell voltage was 2.10 V
Met.

【0027】比較例1 ニッケル製の陰極側エンドプレートにニッケル製の厚さ
0.3mm、線幅0.3mm、開き幅1.5mmのエキ
スパンドメタルを高さ1mm、ピッチ1mmのコルゲー
ト材にした後、銀メッキを10ミクロン施し、深さ1m
mのガス室にスポトウエルダーで溶接し、図5に示すガ
ス室を製作した。前記多孔体付きエンドプレート上に従
来のガス拡散電極を挟み込み、銀製の集電体で電解槽周
囲から通電した場合に、イオン交換膜と酸素陰極間を2
mm、32%NaOH、80℃、純酸素を供給する実施
例1と同一条件で、電解槽を運転した結果、30A/d
2 で槽電圧は2.30Vであった。
Comparative Example 1 A nickel-made expanded metal having a thickness of 0.3 mm, a line width of 0.3 mm, and an opening width of 1.5 mm was formed on a nickel cathode-side end plate into a corrugated material having a height of 1 mm and a pitch of 1 mm. , Silver plating 10 microns, depth 1m
m was welded with a spot welder to produce a gas chamber shown in FIG. When a conventional gas diffusion electrode is sandwiched on the end plate with a porous body and a current collector made of silver is applied from around the electrolytic cell, a gap between the ion exchange membrane and the oxygen cathode is reduced by two.
As a result of operating the electrolytic cell under the same conditions as in Example 1 in which mm, 32% NaOH, 80 ° C., and pure oxygen were supplied, 30 A / d was obtained.
The cell voltage was 2.30 V at m 2 .

【0028】[0028]

【発明の効果】例えば、背面から陰極液を供給できるよ
うにした陰極外枠に背面からガスを供給できるようにし
たガス室を設け、該ガス室に例えばコルゲート加工の金
網や発泡ニッケルのようなガス透過性導電性多孔体を充
填し、該多孔体の表面に銀メッキを施ごし、前記銀メッ
キされた多孔体の上に銀あるいは銀合金製網あるいは線
を裏打したガス拡散電極を載せて加熱・圧着する、とい
う方法によって、陰極にガス拡散電極を有する塩化アル
カリ金属水溶液電解槽のガス拡散電極の拡散層側表面と
ガス室に充填された前記金属多孔体の表面とを金属銀ま
たは銀合金からなる接合部を介して、電気伝導性とガス
透過性を良好に保持しながら、強固に接着したので、陰
極端子を有する陰極外枠とガス拡散電極までの電気抵抗
が極限まで低くでき、ガス透過性も均一化され、イオン
交換膜とガス拡散電極との間の距離も極限まで短くで
き、ガス拡散電極を有する塩化アルカリ金属水溶液電解
装置の電解性能が十分発揮できるようになった。さら
に、塩化アルカリ金属水溶液電解装置を大型化しても電
解電圧の増大も極限まで少なくでき、装置の準備作業
性、操作性が簡便になるので、1m角の実用電解装置に
ガス拡散電極を有する電解装置を適用できる可能性が見
出された。
For example, a gas chamber capable of supplying gas from the rear surface is provided in a cathode outer frame capable of supplying catholyte from the rear surface, and the gas chamber is made of, for example, a corrugated metal mesh or nickel foam. A gas-permeable conductive porous body is filled, silver plating is performed on the surface of the porous body, and a gas diffusion electrode lined with silver or silver alloy net or wire is placed on the silver-plated porous body. By heating and pressing, the diffusion layer side surface of the gas diffusion electrode of the alkali metal chloride aqueous solution electrolysis tank having a gas diffusion electrode on the cathode and the surface of the porous metal body filled in the gas chamber with metallic silver or Through the joint made of silver alloy, while maintaining good electrical conductivity and gas permeability, and firmly adhered, the electrical resistance between the cathode outer frame having the cathode terminal and the gas diffusion electrode is extremely low. , Gas permeability is uniform, the distance between the ion exchange membrane and the gas diffusion electrode can also shortened to the limit, now electrolysis performance of alkali metal chloride aqueous solution electrolysis device having a gas diffusion electrode can be sufficiently exhibited. Furthermore, even if the size of the alkali metal chloride aqueous solution electrolysis apparatus is increased, the increase in electrolysis voltage can be minimized, and the preparation workability and operability of the apparatus become simple. It has been found that the device can be applied.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のガス拡散電極を有する陰極部をイオン
交換膜と組み立てたものの一例を示す断面説明図であ
る。
FIG. 1 is an explanatory cross-sectional view showing an example in which a cathode portion having a gas diffusion electrode of the present invention is assembled with an ion exchange membrane.

【図2】本発明のガス拡散電極を有する陰極部をイオン
交換膜と組み立てたものの一例を示すものであり、
(a)がガス拡散電極側からみた正面図であり、(b)
が縦断側面図である。
FIG. 2 shows an example in which a cathode section having a gas diffusion electrode of the present invention is assembled with an ion exchange membrane;
(A) is a front view seen from the gas diffusion electrode side, (b)
Is a longitudinal sectional side view.

【図3】本発明のガス拡散電極を有する陰極部の一例を
示す断面説明図である。
FIG. 3 is an explanatory sectional view showing an example of a cathode section having a gas diffusion electrode of the present invention.

【図4】裏面に銀網を裏打ちした本発明のガス拡散電極
の一例を示す断面説明図である。
FIG. 4 is a cross-sectional explanatory view showing an example of the gas diffusion electrode of the present invention in which a silver mesh is lined on the back surface.

【図5】本発明の多孔体を充填したガス室の一例を示す
断面説明図である。
FIG. 5 is an explanatory sectional view showing an example of a gas chamber filled with a porous body of the present invention.

【図6】本発明のガス拡散電極の一例を示す断面説明図
である。
FIG. 6 is an explanatory sectional view showing an example of the gas diffusion electrode of the present invention.

【図7】ガス拡散電極を有する従来のイオン交換膜法電
解槽の典型例を示す断面説明図である。
FIG. 7 is an explanatory cross-sectional view showing a typical example of a conventional ion exchange membrane electrolytic cell having a gas diffusion electrode.

【図8】従来、ガス室内に設けられたガス拡散電極支持
体の例を示す説明図である。
FIG. 8 is an explanatory view showing an example of a conventional gas diffusion electrode support provided in a gas chamber.

【図9】本発明のガス拡散電極内における銀網の配置状
況を示すガス拡散電極の縦断面図である。
FIG. 9 is a longitudinal sectional view of the gas diffusion electrode showing an arrangement state of the silver mesh in the gas diffusion electrode of the present invention.

【符号の説明】[Explanation of symbols]

1 陰極部 2 ガス拡散電極 3 陰極外枠 4 ガス室 5 多孔体 6 陰極導線 7 陰極液供給路 8 陰極液排出路 9 酸素供給路 10 酸素排出路 11 反応層 12 ガス拡散層 13 銀網 15 イオン交換膜 17 陰極液室 18 陽極 19 陽極室 20 電解槽 21 塩水供給路 22 塩水排出路 DESCRIPTION OF SYMBOLS 1 Cathode part 2 Gas diffusion electrode 3 Cathode outer frame 4 Gas chamber 5 Porous body 6 Cathode conductor 7 Catholyte supply path 8 Catholyte discharge path 9 Oxygen supply path 10 Oxygen discharge path 11 Reaction layer 12 Gas diffusion layer 13 Silver net 15 Ion Exchange membrane 17 Catholyte compartment 18 Anode 19 Anode compartment 20 Electrolyzer 21 Salt water supply path 22 Salt water discharge path

フロントページの続き (72)発明者 古屋 長一 山梨県甲府市中村町2−14Continued on the front page (72) Inventor Choichi Furuya 2-14 Nakamuracho, Kofu City, Yamanashi Prefecture

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 ガス拡散電極、導電性多孔体が充填され
ているガス室および陰極外枠からなる塩化アルカリ金属
電解槽の製作に際して、前記ガス拡散電極の拡散層側表
面とガス室に充填される前記導電性多孔体の表面とを金
属銀または銀合金からなる接合部材を介して、200℃
から400℃の範囲内で加熱・加圧して接合することを
特徴とするガス拡散電極とガス室との接合方法。
When producing an alkali metal chloride electrolytic cell comprising a gas diffusion electrode, a gas chamber filled with a conductive porous material, and a cathode outer frame, the gas diffusion electrode is filled in the gas diffusion chamber side surface and the gas chamber. The surface of the conductive porous body at 200 ° C. via a joining member made of metallic silver or a silver alloy.
A method of joining a gas diffusion electrode and a gas chamber, wherein the joining is performed by heating and pressurizing within a temperature range of from 400 to 400 ° C.
JP8316513A 1996-11-27 1996-11-27 Joining method of gas diffusion electrode and gas chamber Expired - Fee Related JP2896767B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8316513A JP2896767B2 (en) 1996-11-27 1996-11-27 Joining method of gas diffusion electrode and gas chamber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8316513A JP2896767B2 (en) 1996-11-27 1996-11-27 Joining method of gas diffusion electrode and gas chamber

Publications (2)

Publication Number Publication Date
JPH10158877A true JPH10158877A (en) 1998-06-16
JP2896767B2 JP2896767B2 (en) 1999-05-31

Family

ID=18077952

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8316513A Expired - Fee Related JP2896767B2 (en) 1996-11-27 1996-11-27 Joining method of gas diffusion electrode and gas chamber

Country Status (1)

Country Link
JP (1) JP2896767B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000011242A1 (en) * 1998-08-25 2000-03-02 Toagosei Co., Ltd. Soda electrolytic cell provided with gas diffusion electrode
WO2000050668A1 (en) * 1999-02-25 2000-08-31 Toagosei Co., Ltd. Gas diffusion electrode and brine electrolytic bath
JP2013144853A (en) * 2006-04-12 2013-07-25 Industrie De Nora Spa Electrochemical percolation cell
US8986533B2 (en) 2009-01-29 2015-03-24 Princeton University Conversion of carbon dioxide to organic products

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000011242A1 (en) * 1998-08-25 2000-03-02 Toagosei Co., Ltd. Soda electrolytic cell provided with gas diffusion electrode
US6368473B1 (en) 1998-08-25 2002-04-09 Nagakazu Furuya Soda electrolytic cell provided with gas diffusion electrode
WO2000050668A1 (en) * 1999-02-25 2000-08-31 Toagosei Co., Ltd. Gas diffusion electrode and brine electrolytic bath
US6423194B1 (en) * 1999-02-25 2002-07-23 Nagakazu Furuya Gas diffusion electrode and brine electrolytic bath
JP2013144853A (en) * 2006-04-12 2013-07-25 Industrie De Nora Spa Electrochemical percolation cell
US8986533B2 (en) 2009-01-29 2015-03-24 Princeton University Conversion of carbon dioxide to organic products

Also Published As

Publication number Publication date
JP2896767B2 (en) 1999-05-31

Similar Documents

Publication Publication Date Title
CA1258443A (en) Electrolysis apparatus with horizontally disposed electrodes
US6368473B1 (en) Soda electrolytic cell provided with gas diffusion electrode
JPS6143436B2 (en)
GB2028371A (en) Electrolysis of aqueous alkali metal halides in a cell having catalytic electrodes bondes to the surface of a porous hydraulically permeable membrane/ separator
NL2023775B1 (en) Compact electrochemical stack using corrugated electrodes
JP5437651B2 (en) Ion exchange membrane electrolytic cell and method for producing the same
JPS60218490A (en) Electrode and electrolytic cell
JP2896767B2 (en) Joining method of gas diffusion electrode and gas chamber
JP4881511B2 (en) Feeder
US4832805A (en) Multi-layer structure for electrode membrane-assembly and electrolysis process using same
JP2004027267A (en) Salt electrolytic cell provided with gas diffusion cathode
JP4355828B2 (en) Porous gas diffuser and reversible cell using the same
JP2896768B2 (en) Alkali metal chloride aqueous solution electrolyzer using oxygen cathode gas diffusion electrode
JP3110720B2 (en) Gas-liquid separation method in an ion exchange membrane electrolytic cell
JP2805458B2 (en) Manufacturing method of gas diffusion electrode
JP2923635B2 (en) Aqueous alkali metal chloride electrolytic cell using gas diffusion electrode
JP2857110B2 (en) Alkali metal chloride aqueous solution electrolysis tank using gas diffusion electrode and electrolysis method
JP3373140B2 (en) Gas diffusion electrode
JP3924545B2 (en) Method for discharging gas diffusion electrode
JP6152054B2 (en) Method for incorporating oxygen-consuming electrode into electrochemical cell, and electrochemical cell
JP7202759B2 (en) Elastic mat and electrolytic bath
JP4115319B2 (en) Gas diffusion electrode joining method and gas diffusion electrode
JPH116092A (en) Feeder part of gas diffusion electrode and its production
CN117026247A (en) Membrane electrode, preparation method and application
JP2022152820A (en) Electrolytic cell of two chamber process for brine electrolysis using gas diffusion electrode, and utilization thereof

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees