JP2857110B2 - Alkali metal chloride aqueous solution electrolysis tank using gas diffusion electrode and electrolysis method - Google Patents

Alkali metal chloride aqueous solution electrolysis tank using gas diffusion electrode and electrolysis method

Info

Publication number
JP2857110B2
JP2857110B2 JP8264596A JP26459696A JP2857110B2 JP 2857110 B2 JP2857110 B2 JP 2857110B2 JP 8264596 A JP8264596 A JP 8264596A JP 26459696 A JP26459696 A JP 26459696A JP 2857110 B2 JP2857110 B2 JP 2857110B2
Authority
JP
Japan
Prior art keywords
gas
gas diffusion
diffusion electrode
oxygen
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP8264596A
Other languages
Japanese (ja)
Other versions
JPH10110285A (en
Inventor
長一 古屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Toagosei Co Ltd
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Mitsui Chemicals Inc
Toagosei Co Ltd
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc, Toagosei Co Ltd, Kanegafuchi Chemical Industry Co Ltd filed Critical Mitsui Chemicals Inc
Priority to JP8264596A priority Critical patent/JP2857110B2/en
Publication of JPH10110285A publication Critical patent/JPH10110285A/en
Application granted granted Critical
Publication of JP2857110B2 publication Critical patent/JP2857110B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ガス拡散電極を酸
素陰極として用いるイオン交換膜法による塩化アルカリ
金属水溶液電解における電解槽に関し、特に酸素の供給
効率を高め、電圧を低下し、また空気など希薄酸素の使
用を可能ならしめる電解槽に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrolytic cell for electrolysis of an aqueous solution of an alkali metal chloride by an ion exchange membrane method using a gas diffusion electrode as an oxygen cathode, and more particularly to an improvement in oxygen supply efficiency, a reduction in voltage, and the use of air. The present invention relates to an electrolytic cell that enables use of diluted oxygen.

【0002】[0002]

【従来の技術】陽極、陽イオン交換膜とガス拡散電極
(酸素陰極)を備えた塩化アルカリ金属水溶液電解槽に
おいて、塩化アルカリ金属水溶液(以下塩化ナトリウム
水溶液あるいは塩水という。)を陽極室に、希薄苛性ナ
トリウム水溶液を陰極液室に、酸素を含んだガスを酸素
室に供給し、電解することによって濃厚苛性ソーダ水溶
液と塩素を取得する方法は公知である。この電解方法の
大要は、陽イオン交換膜により陽極を有し塩水を入れた
陽極室と、陰極を有し水または苛性ソーダ水溶液を入れ
た陰極部とに区画し、両電極間に通電して電解する際
に、陰極として、素材が多孔質体からなり酸素含有ガス
を供給しつつ電解するガス拡散電極を用いて電解するこ
とにより、陰極室に苛性ソーダ水溶液を、また陽極室に
塩素ガスを得るものである。陰極が酸素ガス拡散電極で
あり(以下単に酸素陰極ということもある。)、従って
電解中陰極部で水素ガスが発生しないため、水素発生型
の通常の電解方法に比べて、極めて低い電圧で反応を進
行させることが可能になり、大きな省エネルギー効果が
期待できることも公知である。
2. Description of the Related Art In an alkali metal chloride aqueous solution electrolytic cell equipped with an anode, a cation exchange membrane and a gas diffusion electrode (oxygen cathode), an aqueous solution of an alkali metal chloride (hereinafter referred to as an aqueous solution of sodium chloride or saline) is diluted in an anode chamber. It is known to obtain a concentrated aqueous caustic soda solution and chlorine by supplying an aqueous caustic solution to the catholyte compartment and supplying a gas containing oxygen to the oxygen compartment and performing electrolysis. The outline of this electrolysis method is divided into an anode chamber having an anode with a cation exchange membrane and containing salt water, and a cathode section having a cathode and containing water or an aqueous solution of caustic soda. At the time of electrolysis, a cathode is used to obtain an aqueous caustic soda solution and a cathode gas is obtained by performing electrolysis using a gas diffusion electrode that performs electrolysis while supplying an oxygen-containing gas, using a porous material as a cathode. Things. Since the cathode is an oxygen gas diffusion electrode (hereinafter sometimes simply referred to as an oxygen cathode), and no hydrogen gas is generated at the cathode during electrolysis, the reaction is performed at an extremely low voltage as compared with a normal electrolysis method of the hydrogen generation type. It is also known that it is possible to make the process progress and a large energy saving effect can be expected.

【0003】この製造方法を開示した特許文献として
は、例えば特開昭54−97600号、同56−447
84号、56−130482号、同57−152479
号、同59−133386号、同61−266591
号、特公昭58−44156号、同58−49639
号、同60−9595号及び同61−20634号など
の公報が挙げられる。
Patent documents disclosing this production method include, for example, JP-A-54-97600 and JP-A-56-4747.
No. 84, No. 56-130482, No. 57-152479
No. 59-133386, No. 61-266591
No., JP-B-58-44156, 58-49639
And Japanese Patent Publication Nos. 60-9595 and 61-20634.

【0004】電解槽は陽イオン交換膜により、陽極を有
する陽極室とガス拡散電極を有する陰極部に分けられ、
陰極部は、さらにガス拡散電極により陰極液室と酸素ガ
ス室(単に「ガス室」ともいう)に分離されている。こ
のような構成の電解槽では、(陰極である)ガス拡散電
極上で次の反応が進行する。 1/4O2 +1/2H2 O+e- →OH- ・・・・(1) 陰極部に設けた酸素陰極は、反応層とガス拡散層とを張
り合わせた構造をしており、反応層もガス拡散層も多孔
性の導体を主体とした薄層で構成されている。ガス拡散
電極は、全体として通気性を有し、ガス拡散電極の電解
液側の反応層には主としてカーボンブラックが使用さ
れ、その微細孔には前記白金などの貴金属系からなる触
媒が担持されており、親水性で電解液が浸透し得るもの
であり、一方ガス供給室側の拡散層は、ガスが通過し得
るが電解液の漏洩が起こらない撥水性の多孔性の薄層で
構成されている。
[0004] The electrolytic cell is divided by a cation exchange membrane into an anode chamber having an anode and a cathode section having a gas diffusion electrode.
The cathode part is further separated into a catholyte chamber and an oxygen gas chamber (also simply referred to as a “gas chamber”) by a gas diffusion electrode. In the electrolytic cell having such a configuration, the following reaction proceeds on the gas diffusion electrode (which is a cathode). 1 / 4O 2 + 1 / 2H 2 O + e → OH (1) The oxygen cathode provided in the cathode portion has a structure in which a reaction layer and a gas diffusion layer are bonded to each other, and the reaction layer also performs gas diffusion. The layer is also composed of a thin layer mainly composed of a porous conductor. The gas diffusion electrode has air permeability as a whole, mainly carbon black is used for a reaction layer on the electrolyte side of the gas diffusion electrode, and a catalyst made of a noble metal system such as platinum is supported in its fine pores. The diffusion layer on the gas supply chamber side is composed of a water-repellent porous thin layer through which gas can pass but no leakage of the electrolyte occurs. I have.

【0005】反応層は苛性ソーダ水溶液と、ガス拡散層
は酸素ガスと接触している。苛性ソーダ水溶液からの水
は反応層側から親水性相に侵入し、疎水性相との界面で
反応し、更に一部の水は水蒸気の形態でガス拡散層へ侵
入し、酸素室(ガス室)へ通過する。その為、酸素室へ
純酸素を供給しても、水蒸気との混合気体となってしま
う。一方酸素はガス拡散層側から供給され、水と酸素が
出会う界面で前記式(1)の反応が進行する。ガス拡散
電極では、前記反応を効率良く、低電圧で進行させるた
めに、水蒸気の流れに逆らって酸素を十分にに反応層ま
で供給することが重要と予想される。
The reaction layer is in contact with an aqueous solution of caustic soda, and the gas diffusion layer is in contact with oxygen gas. Water from the aqueous caustic soda solution enters the hydrophilic phase from the reaction layer side, reacts at the interface with the hydrophobic phase, and a part of the water enters the gas diffusion layer in the form of water vapor, and the oxygen chamber (gas chamber) Pass to. Therefore, even if pure oxygen is supplied to the oxygen chamber, it becomes a mixed gas with water vapor. On the other hand, oxygen is supplied from the gas diffusion layer side, and the reaction of the formula (1) proceeds at the interface where water and oxygen meet. In the gas diffusion electrode, it is expected that it is important to sufficiently supply oxygen to the reaction layer against the flow of water vapor in order to allow the reaction to proceed efficiently at a low voltage.

【0006】上記多孔性の反応層およびガス拡散層は、
電解液に接する親水性面からガス供給室側の撥水性の多
孔性薄層へと特性が段階的に変わるように、親水性カー
ボン、撥水性カーボン、フッ素樹脂微粒子などの素材を
混合成形し一体化している。従って多孔性の酸素陰極
は、酸素含有ガス供給側面から電解液に接する側面へ効
率よく酸素含有ガスを供給することができ、また電解液
に接する側面からは、電解液は電極内に容易に浸透拡散
するがガス供給室に液体として漏洩することはない。か
くして、この酸素陰極内で電解液に接する側面から供給
されたナトリウムイオンと触媒の存在下で、水は酸化さ
れ水酸基となり、苛性ソーダが生成する。従来の酸素陰
極を使用しないイオン交換膜法による塩化ナトリウム水
溶液の電解において陰極で発生していた水素は、酸素陰
極を使用した本法においては発生せず、電解電圧の低下
が可能となる。
[0006] The porous reaction layer and gas diffusion layer include:
Mix and mold materials such as hydrophilic carbon, water-repellent carbon, and fluororesin microparticles so that the characteristics gradually change from the hydrophilic surface in contact with the electrolyte to the water-repellent porous thin layer on the gas supply chamber side. Is becoming Therefore, the porous oxygen cathode can efficiently supply the oxygen-containing gas from the oxygen-containing gas supply side to the side in contact with the electrolyte, and the electrolyte easily penetrates into the electrode from the side in contact with the electrolyte. It diffuses but does not leak to the gas supply chamber as a liquid. Thus, in the oxygen cathode, in the presence of the sodium ion and the catalyst supplied from the side in contact with the electrolytic solution, the water is oxidized to a hydroxyl group, and caustic soda is generated. Hydrogen generated at the cathode in the conventional electrolysis of an aqueous solution of sodium chloride by an ion exchange membrane method without using an oxygen cathode is not generated by the present method using an oxygen cathode, and the electrolysis voltage can be reduced.

【0007】従来のガス拡散電極は、液部に接している
側は、液体の浸透できる微細な孔を有する親水性層、ガ
ス供給室側は、液体が洩れずガスは浸透できる微細な孔
を有する撥水性層とし、これらを金網などでつくられた
補強材又は集電体を介して積層してなるものであった。
最近のガス拡散電極の酸素陰極では、触媒活性を有する
多孔性の薄層の親水性層から撥水性層への変化は、段階
的に、好ましくは連続的に変わるように、液部に接して
液体の浸透できる微細な孔を有する親水性部(通路)と
気体部に接して気体の出入が可能な微細な孔を有する撥
水部(通路)が入り組み接し合って混在している層と撥
水性層を張り合わせたものとなってきている。しかしな
がら、なおガス拡散電極へのガスの供給方法は改良され
ておらず、酸素の供給は充分であるといえない。
In the conventional gas diffusion electrode, the side in contact with the liquid portion has a hydrophilic layer having fine holes through which liquid can penetrate, and the gas supply chamber side has fine holes through which gas can penetrate without leaking liquid. And a water-repellent layer, which is formed by laminating these layers via a reinforcing material or a current collector made of a wire mesh or the like.
In a recent gas diffusion electrode oxygen cathode, the change from a hydrophilic thin layer of a catalytically active porous layer to a water-repellent layer changes stepwise, preferably continuously, in contact with the liquid part. A layer in which a hydrophilic portion (passage) having fine pores through which liquid can penetrate and a water-repellent portion (passage) having fine pores in contact with the gas portion and through which gas can enter and exit intermingle and intermingle; Water-repellent layers have been laminated. However, the method of supplying the gas to the gas diffusion electrode has not been improved, and the supply of oxygen cannot be said to be sufficient.

【0008】[0008]

【発明が解決しようとする課題】前記説明した通り、従
来ガス拡散電極の酸素陰極では、多孔性の電極膜中を電
解液や空気が拡散し易く、特に電解液がガス供給室に漏
洩することがないようにすることなどについての改良は
関心をもって行われているが、ガス供給室からガス拡散
電極のガス拡散層にガスを供給する際のガス分布の均一
性やガス拡散電極への電流の負荷方法による電極内の電
流分布の変化などについては充分に検討されていない。
また、ガス拡散電極に供給するガスの性質と電極過電圧
との関係についても充分に検討されていない。例えばガ
スとして、炭酸ガスを除去した空気を供給した場合のよ
うに、酸素が窒素によって希釈された状態で供給され、
酸素の供給が不充分な条件下で陰極反応を進行させた場
合には、電極過電圧が上昇し、高い電解電圧が必要と考
えられる。しかしながら、従来実際にガス拡散電極を使
用する電解において、酸素の供給が不充分な条件下で陰
極反応が実用レベルで行われたことはない。そのため、
酸素の供給不足に関わる過電圧はいかほどか、また酸素
の供給不足に関わる過電圧を下げるためにどのような工
夫が必要なのか系統的な検討がなされたこともない。
As described above, in the oxygen cathode of the conventional gas diffusion electrode, the electrolyte or air is easily diffused in the porous electrode film, and particularly, the electrolyte leaks into the gas supply chamber. Improvements such as eliminating gas flow are of interest, but the uniformity of gas distribution when supplying gas from the gas supply chamber to the gas diffusion layer of the gas diffusion electrode, Changes in the current distribution in the electrode due to the loading method have not been sufficiently studied.
Further, the relationship between the property of the gas supplied to the gas diffusion electrode and the electrode overvoltage has not been sufficiently studied. For example, as in the case of supplying air from which carbon dioxide gas has been removed, oxygen is supplied in a state where oxygen is diluted with nitrogen,
When the cathodic reaction is allowed to proceed under conditions where the supply of oxygen is insufficient, the electrode overvoltage increases and a high electrolysis voltage is considered necessary. However, in the conventional electrolysis using a gas diffusion electrode, the cathodic reaction has never been performed at a practical level under the condition of insufficient oxygen supply. for that reason,
There has been no systematic study on how much the overvoltage related to the insufficient supply of oxygen is, and what measures are required to reduce the overvoltage related to the insufficient supply of oxygen.

【0009】[0009]

【課題を解決するための手段】本発明者らは、鋭意検討
の結果、酸素の陰極反応における電極過電圧を少なくす
るには、ガス供給室からガス拡散電極のガス拡散層にガ
スを供給する際のガス供給の均一性、ガスの品質および
ガス拡散電極への電流の負荷方法などとの関連を検討し
たところ、ガス室の構造が極めて重要であることを見出
し、本発明をするに到った。すなわち、 (1)陽極室と陰極液室とがイオン交換膜によって区画
され、前記陰極液室とガス室とがガス拡散電極によって
区画された形式のガス拡散電極を用いた塩化アルカリ金
属水溶液電解槽において、前記ガス室内に3次元的にガ
スの流通が可能な、短径ピッチが0.5mm以上5mm
以下の多孔性材料が充填されてなることを特徴とする塩
化アルカリ金属水溶液電解槽。 (2)前記多孔性材料が金属製であり、該金属製多孔性
材料を介して陰極端子とガス拡散電極とが電気的に接続
されいることを特徴とする前記(1)に記載の塩化アル
カリ金属水溶液電解槽。 (3)前記ガス室内にガスの流通が可能な前記多孔性材
料を充填したガス拡散電極を有する前記(1)あるいは
(2)に記載の塩化アルカリ金属水溶液電解槽を使用し
て、全ガス拡散電極表面で酸素ガスの流量を14ENリ
ットル/m2 /分以上の条件として電解を行うことを特
徴とする塩化アルカリ金属水溶液電解方法。ただし、E
はガス拡散電極を流れる電流密度をkA/m2 の単位で
表示した数値である。
Means for Solving the Problems As a result of intensive studies, the present inventors have found that in order to reduce the electrode overvoltage in the cathodic reaction of oxygen, it is necessary to supply gas from the gas supply chamber to the gas diffusion layer of the gas diffusion electrode. After examining the relationship between the uniformity of gas supply, the quality of the gas and the method of applying a current to the gas diffusion electrode, it was found that the structure of the gas chamber was extremely important, and the present invention was reached. . That is, (1) an alkali metal chloride aqueous solution electrolytic cell using a gas diffusion electrode in which an anode compartment and a catholyte compartment are partitioned by an ion exchange membrane, and the catholyte compartment and the gas compartment are partitioned by a gas diffusion electrode. In the above, the short-diameter pitch is 0.5 mm or more and 5 mm that allows gas to flow three-dimensionally in the gas chamber.
An alkaline metal chloride aqueous solution electrolysis tank characterized by being filled with the following porous material. (2) The alkali chloride as described in (1) above, wherein the porous material is made of metal, and the cathode terminal and the gas diffusion electrode are electrically connected through the metal porous material. Metal aqueous solution electrolyzer. (3) All gas diffusion is performed by using the alkali metal chloride aqueous solution electrolytic cell according to (1) or (2) having a gas diffusion electrode filled with the porous material through which gas can flow in the gas chamber. An electrolysis method for an aqueous solution of an alkali metal chloride, characterized in that electrolysis is performed on the electrode surface at a flow rate of oxygen gas of 14 EN liter / m 2 / min or more. Where E
Is a numerical value representing the current density flowing through the gas diffusion electrode in the unit of kA / m 2 .

【0010】以下に本発明を詳細に説明する。まず、本
発明の電解槽において使用される多孔性材料が接するガ
ス拡散電極について説明する。本発明において、塩水の
電解に使用するのに適したガス拡散電極は、反応層とガ
ス拡散層との2層構造からなり、両層とも黒鉛質カーボ
ンとテフロン粒子との混合体から形成されたものであ
る。前記反応層は、主として親水性カーボンの微粒子と
撥水性カーボン微粒子の混合物からなり、これにフッ素
樹脂微粒子を混合し、さらにカーボン微粒子上には白金
などの貴金属系からなる触媒が担持され、これらの微粒
子を多孔性板状体に成形して1層の反応層とする。
Hereinafter, the present invention will be described in detail. First, the gas diffusion electrode in contact with the porous material used in the electrolytic cell of the present invention will be described. In the present invention, a gas diffusion electrode suitable for use in the electrolysis of salt water has a two-layer structure of a reaction layer and a gas diffusion layer, and both layers are formed from a mixture of graphitic carbon and Teflon particles. Things. The reaction layer is mainly composed of a mixture of hydrophilic carbon fine particles and water-repellent carbon fine particles, mixed with fluororesin fine particles, and further supported on the carbon fine particles is a catalyst made of a noble metal such as platinum. The fine particles are formed into a porous plate to form a single reaction layer.

【0011】これに対し、ガス拡散層は、主としてフッ
素樹脂微粒子と撥水性カーボンとの混合物からなり、こ
れらの微粒子を多孔性板状体に成形して1層のガス拡散
層とする。これらの前記反応層用多孔性板状体およびガ
ス拡散層多孔性板状体を、好ましくは導体からなるメッ
シュ状の支持体を各多孔性板状体の間に挟んで、陰極液
に近い層に親水性多孔性板状体からなる反応層がくるよ
うに、またガス室に近い層に疎水性多孔性板状からなる
ガス拡散層がくるように配置・積層してガス拡散電極と
する。
On the other hand, the gas diffusion layer is mainly composed of a mixture of fluororesin fine particles and water-repellent carbon, and these fine particles are formed into a porous plate to form a single gas diffusion layer. These reaction layer porous plate and gas diffusion layer porous plate, preferably a mesh-like support made of a conductor sandwiched between each porous plate, a layer close to the catholyte A gas diffusion electrode is formed by arranging and laminating a reaction layer formed of a hydrophilic porous plate and a gas diffusion layer formed of a hydrophobic porous plate near a gas chamber.

【0012】さらに、このようなガス拡散電極におい
て、性能がより優れた高性能反応層については、例えば
特開平6−66142号公報に記載されているように、
親水性部分と疎水性部分が混在した構造のものとしてい
る。この電極では、水は陰極液側から反応層の親水性部
分を通って拡散し、一方酸素はガス室側からガス拡散層
を通り、反応層の疎水性部分を通って拡散し、水と酸素
が出会う界面で水酸基を生成する反応(1)が進行す
る。生成した水酸基は親水性部分を通って反応点を離
れ、陰極液中へ拡散する。ガス拡散層表面が結露などに
より液に覆われガス供給を妨害するのを防ぐため表面を
さらにテフロンのような撥水性樹脂でコーティングする
こともある。
Further, in such a gas diffusion electrode, a high-performance reaction layer having higher performance is disclosed in, for example, JP-A-6-66142.
It has a structure in which a hydrophilic part and a hydrophobic part are mixed. In this electrode, water diffuses from the catholyte side through the hydrophilic part of the reaction layer, while oxygen diffuses from the gas chamber side through the gas diffusion layer, through the hydrophobic part of the reaction layer, and water and oxygen The reaction (1) for generating a hydroxyl group at the interface where meets occurs. The generated hydroxyl group leaves the reaction site through the hydrophilic part and diffuses into the catholyte. The surface of the gas diffusion layer may be further coated with a water-repellent resin such as Teflon in order to prevent the gas diffusion layer surface from being covered with liquid due to dew condensation and obstructing gas supply.

【0013】ガス拡散電極(酸素陰極)を用いた塩化ア
ルカリ金属水溶液電解においても、陽極では通常の電極
の場合と同じ反応が進行する。 Cl- →1/2・Cl2 +e- ・・・・(2) (1)、(2)の反応を推進するのに必要な熱力学的エ
ネルギーは0.96Vであるが、他に0.5ないし0.
7Vの電気抵抗分、0.7ないし0.9Vの酸素陰極反
応の過電圧分、その他が加わり、トータルで2.2ない
し2.6Vの電圧が必要であった。
[0013] In the electrolysis of an aqueous solution of an alkali metal chloride using a gas diffusion electrode (oxygen cathode), the same reaction takes place at the anode as in a normal electrode. Cl → 1 / · Cl 2 + e (2) The thermodynamic energy required to promote the reactions of (1) and (2) is 0.96 V, but the other value is 0.96 V. 5 to 0.
An electric resistance of 7 V, an overvoltage of the oxygen cathode reaction of 0.7 to 0.9 V, and others were added, and a total voltage of 2.2 to 2.6 V was required.

【0014】ガス拡散電極(酸素陰極)のこのように大
きな過電圧が何に由来するのか従来不明であった。本発
明者らは、陰極部のガス室の集電体の構造を検討する過
程で、酸素通路の構造が酸素過電圧に重大な影響を及ぼ
すことを見出した。従来、ガス室は図4のようにガス室
の上に金網を張り、その上にガス拡散電極を載せるか、
図3に示すように、電解槽の陰極部にガス室として酸素
通路を形成するのが通常であった。このような酸素室構
造を使用し、酸素源として純酸素を使用した場合、電圧
は前記のように2.2ないし2.6Vであった。酸素陰
極反応の酸素源として空気が使用できることが好ましい
が、酸素が窒素などの不活性ガスで希釈されると酸素陰
極の過電圧はさらに増大し、空気の使用は困難であっ
た。
[0014] It has not been previously known what causes such a large overvoltage of the gas diffusion electrode (oxygen cathode). The present inventors have found in the course of studying the structure of the current collector in the gas chamber of the cathode part that the structure of the oxygen passage has a significant effect on the oxygen overvoltage. Conventionally, as shown in FIG. 4, the gas chamber is provided with a wire mesh over the gas chamber, and a gas diffusion electrode is placed on the wire mesh.
As shown in FIG. 3, it was usual to form an oxygen passage as a gas chamber in the cathode portion of the electrolytic cell. When using such an oxygen chamber structure and using pure oxygen as the oxygen source, the voltage was 2.2 to 2.6 V as described above. It is preferable that air can be used as an oxygen source for the oxygen cathode reaction. However, when oxygen is diluted with an inert gas such as nitrogen, the overvoltage of the oxygen cathode further increases, and it is difficult to use air.

【0015】本発明の電解槽ではこの酸素過電圧を低下
させるための手段として次のような手段を開発したもの
である。すなわち、本発明の電解槽では、ガス拡散電極
のガス拡散層側のガス室に、3次元的にガスの流通が可
能な多孔性材料を充填して、ガス拡散電極のガス拡散層
側にガスを均一に供給するものである。言い換えればガ
ス拡散電極の背面側に、前記多孔性材料を充填するもの
である。その際、ガス拡散電極において14ENリット
ル/m2 /分以上の酸素流をガス拡散電極のガス拡散層
表面に送ることができるようにすることが好ましい。
In the electrolytic cell of the present invention, the following means have been developed as means for reducing the oxygen overvoltage. That is, in the electrolytic cell of the present invention, the gas chamber on the gas diffusion layer side of the gas diffusion electrode is filled with a porous material through which gas can flow three-dimensionally, and the gas is supplied to the gas diffusion layer side of the gas diffusion electrode. Is supplied uniformly. In other words, the back side of the gas diffusion electrode is filled with the porous material. At this time, it is preferable that an oxygen flow of 14 EN liter / m 2 / min or more can be sent to the gas diffusion layer surface of the gas diffusion electrode in the gas diffusion electrode.

【0016】従来、ガス拡散電極のガス室内に剛体のガ
ス透過性多孔体を挿入した例はある。しかし、その従来
技術においては、ガス透過性多孔体を挿入する目的が、
ガス拡散電極の強度が小さいという欠点を補うため、そ
のガス拡散電極を補強する目的のものであり、ガス拡散
電極をガス拡散電極の背面から支えようとするものであ
るため、例えば第3図に示すように部分的に補強する作
用があるものであればよく、そのために剛体であること
が必要で、その多孔体のガス透過性は電極へのガスの供
給を阻害しないものであればよかった。このような関係
から、挿入される剛体のガス透過性多孔体によっては却
ってガス拡散電極中へのガスの流入を部分的に妨げ、ガ
スの流入を不均一にしかねないものであった。これに比
して、本発明における多孔性材料は、その多孔性の構造
がガス拡散電極へのガスの供給が均一にかつ抵抗が少な
く行われるようなものであることが第1条件となる。
Conventionally, there is an example in which a rigid gas-permeable porous body is inserted into a gas chamber of a gas diffusion electrode. However, in the prior art, the purpose of inserting the gas-permeable porous body,
The purpose is to reinforce the gas diffusion electrode in order to compensate for the disadvantage that the strength of the gas diffusion electrode is small, and to support the gas diffusion electrode from the back of the gas diffusion electrode. As shown in the figure, it is sufficient that the material has a function of partially reinforcing the material. For that purpose, the material must be rigid, and the gas permeability of the porous material may be any as long as it does not hinder the gas supply to the electrode. From such a relationship, depending on the inserted rigid gas-permeable porous body, the inflow of gas into the gas diffusion electrode may be partially prevented and the inflow of gas may be uneven. In contrast, the first condition of the porous material according to the present invention is that the porous structure of the porous material is such that the supply of gas to the gas diffusion electrode is performed uniformly and with low resistance.

【0017】本発明の塩化アルカリ金属電解槽の前記ガ
ス室に充填する3次元的にガスの流通が可能な多孔性材
料は電気伝導性のものでなくても、ガス拡散電極中にガ
スを均一に流入させるうるものであれば良いが、電気伝
導性のものであることが好ましい。すなわち、ガス拡散
電極のガス拡散層側のガス室に充填する多孔性材料を金
属製のものとすれば、前記金属製の多孔性材料は全面で
ガス拡散電極に接触しているで、前記多孔性材料に陰極
端子を接続することにより前記多孔性材料は広い集電体
となり、従来使用されていた集電体よりも電流分布の均
一化を図ることができる。更に、前記金属製の多孔性材
料とガス拡散電極とを接合して一体に成形するならば特
別に従来のような集電体は不要になる。またこの時、ガ
ス拡散電極に負荷される電流も、従来のようにガス拡散
電極の周辺端に設けた端子から負荷されるようにした場
合に流れる電流に比べ、ガス拡散電極全面に均一に負荷
することができる。
The porous material capable of three-dimensionally circulating a gas filled in the gas chamber of the alkali metal chloride electrolysis cell of the present invention is not limited to an electrically conductive material, but the gas is uniformly dispersed in the gas diffusion electrode. Any material may be used as long as it can be flowed into the device, but it is preferable that the material be electrically conductive. That is, if the porous material to be filled in the gas chamber on the gas diffusion layer side of the gas diffusion electrode is made of metal, the metal porous material is in contact with the gas diffusion electrode on the entire surface. By connecting the cathode terminal to the conductive material, the porous material becomes a wide current collector, and the current distribution can be made more uniform than that of a conventionally used current collector. Furthermore, if the metal porous material and the gas diffusion electrode are joined and integrally formed, a conventional current collector is unnecessary. At this time, the current applied to the gas diffusion electrode is also uniformly applied to the entire surface of the gas diffusion electrode as compared with the current flowing when the current is applied from a terminal provided at the peripheral end of the gas diffusion electrode. can do.

【0018】電解槽の陰極部のガス室に3次元的にガス
の流通が可能な多孔性材料を充填するように構成した陰
極部の側縦断面図を図2として示す。図2において、1
0はガス拡散電極、11はガス室、12はそれに充填す
る多孔性材料、15は陰極端子である。なお、上記にお
いては、ガス室に多孔性材料を「充填する」と説明して
いるが、この場合はその充填は詰めるのが目的ではな
く、ガス拡散電極の表面に接するまで設けるという意味
であって、本発明の目的がガス拡散電極の表面にガスを
均一に供給することにあるから、ガスの流通を阻害する
ように密に充填してはならず、「挿入する」とか「設け
る」という意味であってもよいことを理解すべきであ
る。また、前記多孔性材料が電気伝導性でない場合に
は、陰極の外枠を利用するか、別に集電体を設けると
か、陰極端子とガス拡散電極との電気的接続を図れば良
い。
FIG. 2 is a side longitudinal sectional view of a cathode portion configured to fill a gas material in a cathode portion of an electrolytic cell with a porous material through which gas can flow three-dimensionally. In FIG. 2, 1
0 is a gas diffusion electrode, 11 is a gas chamber, 12 is a porous material to be filled therein, and 15 is a cathode terminal. Note that, in the above description, the porous material is "filled" in the gas chamber, but in this case, the filling is not intended to be filled, but means that the gas chamber is provided until it comes into contact with the surface of the gas diffusion electrode. Therefore, since the object of the present invention is to uniformly supply the gas to the surface of the gas diffusion electrode, the gas should not be densely packed so as to hinder the flow of the gas, and is referred to as “insert” or “provide”. It should be understood that this may be meaningful. If the porous material is not electrically conductive, the outer frame of the cathode may be used, a separate current collector may be provided, or the cathode terminal may be electrically connected to the gas diffusion electrode.

【0019】前記多孔性材料としては、種々の形態のも
のを取りうるが、その中で金網の形態のものが最も好ま
しい。また、エキスパンドメッシュ等の形も取りうる。
酸素を含むガスは巨視的にはガス電極に平行に流す。し
たがって、多孔性材料は3次元方向、特に面に平行な方
向に通気性があることが重要である。その意味で過度に
平滑化したエキスパンドメッシュ等は重ねたとき、面に
平行な方向へガス通気性が悪く、本発明の多孔性材料と
しては不適当である。ところで、金網類はそれ自身多孔
性であり、3次元的にガスを通すことができ、また金属
製であるから集電体としての機能も併せもっている。こ
の金網を使用すれば、溝構造の集電体は不要である。図
1に示すように、酸素ガス室11に金網(多孔性材料1
2)を充填した電解槽1を作成してみたところセル電圧
が低下し、さらに空気を使用しても電圧が上がらず、低
い電圧で安定に電解を継続できることを見いだした。
The porous material may take various forms, and among them, a wire mesh is most preferable. Further, it may take a form such as an expanded mesh.
The gas containing oxygen flows macroscopically parallel to the gas electrode. Therefore, it is important that the porous material has air permeability in a three-dimensional direction, particularly in a direction parallel to the plane. In that sense, an excessively smoothed expanded mesh or the like has a poor gas permeability in the direction parallel to the surface when superposed, and is unsuitable as the porous material of the present invention. By the way, wire mesh itself is porous, can pass gas three-dimensionally, and also has a function as a current collector because it is made of metal. If this wire mesh is used, a current collector having a groove structure is unnecessary. As shown in FIG. 1, a wire mesh (porous material 1) is
When an electrolytic cell 1 filled with 2) was prepared, it was found that the cell voltage was lowered, and that the voltage did not increase even when air was used, and that the electrolysis could be stably continued at a low voltage.

【0020】好ましい形態をさらに詳細に述べる。金網
としては、各種の織り方の金網とかエキスパンドメッシ
ュなどが適している。平面性に関しては織ったまま、伸
展したままのものから、ロール掛けによりある程度平滑
化処理を施したもの、逆に波形板に加圧成形したものの
使用が可能である。過度に平滑化したものは平面方向へ
のガスの通過を妨げるので好ましくない。金網の短径
(密な方向)ピッチとしては、0.5ないし5mm程度
のものが適している。1枚単独で使用することもできる
し、複数枚重ねて使用することもできる。厚みとしては
0.2mmないし2mmのものが使用できる。縦と横に
ピッチが異なる金網を重ねる場合、ガスの通過を妨げな
いように方向を変えて重ねることが好ましい。電気の導
通を確実にするためにも重ねた金網はスポット溶接など
で互いに溶接し、さらにガス容器本体と溶接するのが好
ましい。ガス拡散電極との接触を確実にするために、金
網のAgメッキ化は良好な結果をもたらす。さらに電極
を、その主成分であるPTFEの融点近くまで加熱し、
金網に圧着、一体化することにより最善の接触状態が得
られる。その場合、接着性を高めるために金網の表面を
フッ素樹脂処理することも行われる。
The preferred embodiment will be described in more detail. As a wire netting, a wire netting of various weaves or an expanded mesh is suitable. With respect to the flatness, it is possible to use those that are woven and stretched, those that have been subjected to some degree of smoothing treatment by rolling, and those that are pressed and formed on a corrugated plate. Excessive smoothing is not preferred because it hinders the passage of gas in the plane direction. The pitch of the short diameter (dense direction) of the wire mesh is preferably about 0.5 to 5 mm. One sheet can be used alone, or a plurality of sheets can be used. A thickness of 0.2 mm to 2 mm can be used. When wire meshes having different pitches in the vertical and horizontal directions are stacked, it is preferable to change the directions so as not to hinder the passage of gas. In order to ensure electrical continuity, it is preferable that the overlapped wire meshes are welded to each other by spot welding or the like, and furthermore, to the gas container body. Ag plating of the wire mesh gives good results to ensure contact with the gas diffusion electrode. Further, the electrode is heated to a temperature close to the melting point of the main component PTFE,
The best contact state can be obtained by crimping and integrating with a wire mesh. In this case, the surface of the wire mesh is treated with a fluororesin in order to enhance the adhesiveness.

【0021】ガス室の厚みも重要である。電解槽の大き
さによって適当な厚みは異なるが、通常の大きさの電解
槽では0.5mmないし3mm程度が好ましい。0.5
mmより薄いとガスの通過に伴う圧力損失が増大し、3
mmより厚いと電極への酸素の供給が悪化し過電圧の上
昇を招く。ガス室は厚み1mm程度で、金網によって完
全に充填された構造は極めて良好である。このような構
成の電解槽を使用することによって、セル電圧を2V以
下にできる。また、酸素源として空気を使用しても電圧
の上昇を0.1V以下に抑えることができる。これら多
孔性充填体の効果は次のように理解される。ガス室の酸
素は水蒸気、窒素により希釈され、ガス拡散電極表面で
は酸素濃度の極めて低い境膜ができると考えられる。充
填物の存在により、酸素含有気体の流れが乱流化し、境
膜が薄くなり、酸素の供給が促進され、過電圧を低下さ
せるものと考えられる。従って、単純な溝状の通路より
も金網等空隙率が大きく、乱流化効果の大きいものを充
填した方が適していると考えられる。
The thickness of the gas chamber is also important. Although the appropriate thickness varies depending on the size of the electrolytic cell, it is preferably about 0.5 mm to 3 mm for a normal-sized electrolytic cell. 0.5
mm, the pressure loss associated with the passage of gas increases,
If the thickness is larger than 0 mm, supply of oxygen to the electrode is deteriorated, and an overvoltage is increased. The gas chamber has a thickness of about 1 mm, and the structure completely filled with a wire mesh is extremely good. By using the electrolytic cell having such a configuration, the cell voltage can be reduced to 2 V or less. Further, even if air is used as the oxygen source, the rise in voltage can be suppressed to 0.1 V or less. The effects of these porous fillers are understood as follows. It is considered that oxygen in the gas chamber is diluted with water vapor and nitrogen, and a film having an extremely low oxygen concentration is formed on the surface of the gas diffusion electrode. It is considered that the presence of the filler causes the flow of the oxygen-containing gas to be turbulent, the film to be thinned, the supply of oxygen to be promoted, and the overvoltage to be reduced. Therefore, it is considered that it is more suitable to fill a passage having a larger porosity such as a wire mesh and a greater turbulence effect than a simple groove-shaped passage.

【0022】[0022]

【実施例】以下、実施例により本発明を具体的に説明す
る。ただし、本発明はこれらの実施例によって限定され
るものではない。
The present invention will be described below in detail with reference to examples. However, the present invention is not limited by these examples.

【0023】実施例1 図1の電解槽1を組み立てた。ガス拡散電極10は特開
昭63−245863号公報の記載に従って作成した。
反応層100μm、ガス拡散層400μmの2層構造の
電極である。反応層は親水性部分と撥水性部分がからま
りあった構造をしている。反応層には触媒として白金が
担持されている。ガス室(この例では「酸素室」とい
う)11の多孔性材料(金網)12として板厚0.2m
m、横ピッチ2mm、縦ピッチ1.5mm、ストランド
0.2mm、厚み0.4mmのニッケル製エキスパンド
メタルを使用した。縦横が直交するように3枚重ねてと
してガス室背面のニッケル板にスポット溶接した。3枚
重ねた金網全体の厚みは1.2mmであった。この酸素
室兼集電体構造物に350℃の温度で、前記ガス拡散電
極10を200kg/cm2 の圧力で融着接合した。ガ
ス室の空隙率は65%であった。
Example 1 An electrolytic cell 1 shown in FIG. 1 was assembled. The gas diffusion electrode 10 was prepared according to the description in JP-A-63-245863.
This is a two-layer electrode having a reaction layer of 100 μm and a gas diffusion layer of 400 μm. The reaction layer has a structure in which a hydrophilic portion and a water-repellent portion are entangled. The reaction layer supports platinum as a catalyst. As a porous material (wire mesh) 12 of a gas chamber (referred to as an “oxygen chamber” in this example) 11, a plate thickness of 0.2 m
m, a horizontal pitch of 2 mm, a vertical pitch of 1.5 mm, a strand of 0.2 mm and a thickness of 0.4 mm were used. The three sheets were overlapped so that their length and width were orthogonal to each other, and were spot-welded to a nickel plate on the back of the gas chamber. The total thickness of the three superposed wire nets was 1.2 mm. The gas diffusion electrode 10 was fusion bonded to the oxygen chamber / collector structure at a temperature of 350 ° C. at a pressure of 200 kg / cm 2 . The porosity of the gas chamber was 65%.

【0024】DSA(登録商標)と呼ばれる陽極2、フ
ッ素系陽イオン交換膜6、前記集電体一体型ガス拡散電
極10を重ねて電解槽1を構成した。陽極2とガス拡散
電極10間の距離は2mmとした。各電極及びイオン交
換膜6の有効面積はそれぞれ10×10cm2 である。
陽極室3には、310g/リットルの精製食塩水を加温
して供給し、陰極液室7(イオン交換膜と陰極の間)へ
は32%の水酸化ナトリウム水溶液を加温して、200
ml/分の流量で供給した。酸素室11へは酸素と窒素
の混合ガスを流量を変えて供給した。電解槽全体の温度
を90℃に調節しながら電流を変えて電解を行った。そ
の時の端子間電圧(酸素室背板からの陽極室間の電圧)
は次の第1表の通りである。
The electrolytic cell 1 was constructed by stacking an anode 2 called DSA (registered trademark), a fluorine-based cation exchange membrane 6, and the above-mentioned current collector-integrated gas diffusion electrode 10. The distance between the anode 2 and the gas diffusion electrode 10 was 2 mm. The effective area of each electrode and the ion exchange membrane 6 is 10 × 10 cm 2 respectively.
310 g / l of purified saline solution is heated and supplied to the anode chamber 3, and a 32% aqueous sodium hydroxide solution is heated to the catholyte chamber 7 (between the ion exchange membrane and the cathode) to obtain a solution of 200 g / l.
It was supplied at a flow rate of ml / min. A mixed gas of oxygen and nitrogen was supplied to the oxygen chamber 11 at a varied flow rate. While controlling the temperature of the entire electrolytic cell to 90 ° C., the electrolysis was performed while changing the current. Voltage between terminals at that time (voltage between anode chamber from back plate of oxygen chamber)
Is as shown in Table 1 below.

【0025】[0025]

【表1】 [Table 1]

【0026】電圧についてオーム損、過電圧分析を行っ
たところ、オーム損は全て0.13V/(kA/m2
と一定であり、従って、第1表に示されている電圧の変
化は過電圧の変化に基づくものである。酸素の流量を変
えた場合の電圧は第2表に示す通りである。
When the ohmic loss and overvoltage analysis were performed on the voltage, all the ohmic losses were 0.13 V / (kA / m 2 ).
Therefore, the change in voltage shown in Table 1 is based on the change in overvoltage. The voltage when the flow rate of oxygen was changed is as shown in Table 2.

【0027】[0027]

【表2】 [Table 2]

【0028】比較例1 ガス拡散電極としては、実施例1と同等の電極を使用し
た。酸素室として、図4の構造の酸素室を使用した。酸
素室の厚みは1mmであった。酸素室の容器材質はニッ
ケル製である。実施例1で使用した金網1枚とガス電極
を実施例1と同様にして融着接合し、酸素室容器にセッ
トした。この場合、酸素室内には金網は設けられていな
い。電解の実験の電圧は第3表に示す通りである。
Comparative Example 1 An electrode equivalent to that of Example 1 was used as a gas diffusion electrode. The oxygen chamber having the structure shown in FIG. 4 was used as the oxygen chamber. The thickness of the oxygen chamber was 1 mm. The container material of the oxygen chamber is made of nickel. One wire netting and a gas electrode used in Example 1 were fusion-bonded in the same manner as in Example 1 and set in an oxygen chamber container. In this case, no wire mesh is provided in the oxygen chamber. The voltages for the electrolysis experiments are as shown in Table 3.

【0029】[0029]

【表3】 [Table 3]

【0030】電圧についてオーム損、過電圧分析を行っ
たところ、オーム損は全て0.13V/(kA/m2
と一定であり、第3表に示されている電圧の変化は過電
圧の変化に基づくものである。 比較例2 ガス拡散電極として実施例1と同等の電極を使用した。
酸素室として図3の構造の酸素室を使用した。深さは1
mm、凸部巾1mm、ピッチ15mmの溝状酸素室をニ
ッケルで作成した。その上に実施例1と同様にしてガス
拡散電極を融着接合した。電解実験の電圧は第4表に示
す通りであった。
When ohmic loss and overvoltage analysis were performed on the voltage, all the ohmic losses were 0.13 V / (kA / m 2 ).
The change in the voltage shown in Table 3 is based on the change in the overvoltage. Comparative Example 2 An electrode equivalent to that of Example 1 was used as a gas diffusion electrode.
The oxygen chamber having the structure shown in FIG. 3 was used as the oxygen chamber. Depth 1
A groove-shaped oxygen chamber having a width of 1 mm, a convex portion width of 1 mm, and a pitch of 15 mm was made of nickel. A gas diffusion electrode was fusion-bonded thereon in the same manner as in Example 1. The voltage of the electrolysis experiment was as shown in Table 4.

【0031】[0031]

【表4】 [Table 4]

【0032】実施例1および比較例1、2の電解電流密
度が3kA/m2 の場合の電解槽の陽極と陰極との端子
間にかかる電圧を、ガス拡散電極に供給するガス中の酸
素の濃度を変えて測定した結果を図5に示した。図5よ
り陰極部の酸素室に導電性多孔体を挿入し、酸素を含む
ガスの乱流化を促進した場合には、ガス拡散電極へのガ
スの供給速度が増加し、電解槽の端子間電圧が低下する
ことが良くわかる。
In Example 1 and Comparative Examples 1 and 2, when the electrolytic current density was 3 kA / m 2 , the voltage applied between the anode and cathode terminals of the electrolytic cell was changed to the oxygen concentration in the gas supplied to the gas diffusion electrode. FIG. 5 shows the results of measurement at different concentrations. As shown in FIG. 5, when a conductive porous material is inserted into the oxygen chamber of the cathode to promote turbulence of the gas containing oxygen, the gas supply speed to the gas diffusion electrode increases, and It can be clearly seen that the voltage drops.

【0033】[0033]

【発明の効果】本発明により、酸素ガス拡散電極のガス
室内に3次元的に酸素ガスの流通が可能な、短径ピッチ
0.2mm以上5mm以下の多孔性材料を充填して、酸
素ガスの流量が全ガス拡散電極表面で14ENリットル
/m2 /分以上とすることにより、酸素の濃度が不充分
な条件下、例えば、脱炭酸ガス空気を供給する条件下で
あっても、酸素の陰極反応における電極過電圧を極小化
できる。
According to the present invention, the gas chamber of the oxygen gas diffusion electrode is filled with a porous material capable of flowing oxygen gas three-dimensionally and having a short diameter pitch of 0.2 mm or more and 5 mm or less. By setting the flow rate to 14 EN liter / m 2 / min or more on the entire gas diffusion electrode surface, even if the oxygen concentration is insufficient, for example, even under the condition of supplying decarbonated gas air, the cathode of oxygen Electrode overvoltage in the reaction can be minimized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の塩化アルカリ金属電解槽の1例の断面
説明図を示す。
FIG. 1 is a sectional explanatory view of one example of an alkali metal chloride electrolytic cell of the present invention.

【図2】本発明の塩化アルカリ金属電解槽の陰極部の1
例の断面説明図を示す。
FIG. 2 shows one of the cathode portions of the alkali metal chloride electrolytic cell of the present invention.
FIG. 4 shows a cross-sectional explanatory view of an example.

【図3】従来の塩化アルカリ金属電解槽の陰極部の1例
の断面説明図を示す。
FIG. 3 is a sectional explanatory view of one example of a cathode portion of a conventional alkali metal chloride electrolytic cell.

【図4】従来の塩化アルカリ金属電解槽の陰極部の他の
1例の断面説明図を示す。
FIG. 4 shows a cross-sectional explanatory view of another example of the cathode portion of the conventional alkali metal chloride electrolytic cell.

【図5】ガス拡散電極に供給する酸素の濃度と電解槽の
陽極と陰極との端子間電圧の関係を示すグラフである。
FIG. 5 is a graph showing a relationship between the concentration of oxygen supplied to a gas diffusion electrode and a voltage between terminals of an anode and a cathode of an electrolytic cell.

【符号の説明】[Explanation of symbols]

1 電解槽 2 陽極 3 陽極室 4 塩水入口 5 塩素ガス出口 6 イオン交換膜 7 陰極液室 8 苛性ソーダ水出口 9 苛性ソーダ水入口 10 ガス拡散電極 11 ガス室 12 多孔性材料 13 酸素入口 14 酸素出口 15 陰極端子 16 酸素通路 17 集電体 DESCRIPTION OF SYMBOLS 1 Electrolyzer 2 Anode 3 Anode chamber 4 Salt water inlet 5 Chlorine gas outlet 6 Ion exchange membrane 7 Catholyte chamber 8 Caustic soda water outlet 9 Caustic soda water inlet 10 Gas diffusion electrode 11 Gas chamber 12 Porous material 13 Oxygen inlet 14 Oxygen outlet 15 Cathode Terminal 16 Oxygen passage 17 Current collector

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) C25B 1/00 - 15/08──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int. Cl. 6 , DB name) C25B 1/00-15/08

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 陽極室と陰極液室とがイオン交換膜によ
って区画され、前記陰極液室とガス室とがガス拡散電極
によって区画された形式のガス拡散電極を用いた塩化ア
ルカリ金属水溶液電解槽において、前記ガス室内に3次
元的にガスの流通が可能な、短径ピッチが0.5mm以
上5mm以下の多孔性材料が充填されてなることを特徴
とする塩化アルカリ金属水溶液電解槽。
1. An alkaline metal chloride aqueous solution electrolytic cell using a gas diffusion electrode in which an anode compartment and a catholyte compartment are partitioned by an ion exchange membrane, and wherein the catholyte compartment and the gas compartment are partitioned by a gas diffusion electrode. 3. The alkaline metal chloride aqueous solution electrolysis tank according to claim 1, wherein the gas chamber is filled with a porous material capable of three-dimensionally flowing gas and having a short diameter pitch of 0.5 mm or more and 5 mm or less.
【請求項2】 前記多孔性材料が金属製であり、該金属
製多孔性材料を介して陰極端子とガス拡散電極とが電気
的に接続されいることを特徴とする請求項1に記載の塩
化アルカリ金属水溶液電解槽。
2. The chloride according to claim 1, wherein the porous material is made of metal, and the cathode terminal and the gas diffusion electrode are electrically connected through the metal porous material. Alkali metal aqueous solution electrolyzer.
【請求項3】 前記ガス室内にガスの流通が可能な前記
多孔性材料を充填したガス拡散電極を有する請求項1あ
るいは請求項2に記載の塩化アルカリ金属水溶液電解槽
を使用して、全ガス拡散電極表面で酸素ガスの流量を1
4ENリットル/m2 /分以上の条件として電解を行う
ことを特徴とする塩化アルカリ金属水溶液電解方法。た
だし、Eはガス拡散電極を流れる電流密度をkA/m2
の単位で表示した数値である。
3. The method according to claim 1, further comprising a gas diffusion electrode filled with the porous material through which gas can flow in the gas chamber. The flow rate of oxygen gas at the surface of the diffusion electrode is 1
An electrolysis method of an aqueous solution of an alkali metal chloride, wherein electrolysis is performed under a condition of 4 EN liter / m 2 / min or more. Here, E represents the current density flowing through the gas diffusion electrode in kA / m 2.
It is a numerical value displayed in the unit of.
JP8264596A 1996-10-04 1996-10-04 Alkali metal chloride aqueous solution electrolysis tank using gas diffusion electrode and electrolysis method Expired - Fee Related JP2857110B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8264596A JP2857110B2 (en) 1996-10-04 1996-10-04 Alkali metal chloride aqueous solution electrolysis tank using gas diffusion electrode and electrolysis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8264596A JP2857110B2 (en) 1996-10-04 1996-10-04 Alkali metal chloride aqueous solution electrolysis tank using gas diffusion electrode and electrolysis method

Publications (2)

Publication Number Publication Date
JPH10110285A JPH10110285A (en) 1998-04-28
JP2857110B2 true JP2857110B2 (en) 1999-02-10

Family

ID=17405510

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8264596A Expired - Fee Related JP2857110B2 (en) 1996-10-04 1996-10-04 Alkali metal chloride aqueous solution electrolysis tank using gas diffusion electrode and electrolysis method

Country Status (1)

Country Link
JP (1) JP2857110B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6368473B1 (en) 1998-08-25 2002-04-09 Nagakazu Furuya Soda electrolytic cell provided with gas diffusion electrode

Also Published As

Publication number Publication date
JPH10110285A (en) 1998-04-28

Similar Documents

Publication Publication Date Title
US6368473B1 (en) Soda electrolytic cell provided with gas diffusion electrode
US5618392A (en) Gas diffusion electrode
JP2003041388A (en) Electrolysis cell with ion exchange membrane and electrolysis method
GB2073251A (en) Anode for reducing oxygen generation in the electrolysis of hydrogen chloride
US20100314261A1 (en) Oxygen-Consuming Zero-Gap Electrolysis Cells With Porous/Solid Plates
US20070056847A1 (en) Electrochemical liquid treatment equipments
JP3888183B2 (en) Electrolytic hydrogen dissolved water generator
EP0560740B1 (en) Apparatus and process for electrolytic ozone generation
JPH03182052A (en) Porous electrode and its usage
JP2002275670A (en) Ion exchange membrane electrolytic cell and electrolysis method
JPH06212469A (en) Gas diffusion electrode and electrochemical reactor using the electrode
WO2023038116A1 (en) Carbon dioxide reduction electrolysis tank, carbon dioxide reduction device, electrolysis method using said carbon dioxide reduction device, and method for manufacturing carbon monoxide or ethylene
JP2857110B2 (en) Alkali metal chloride aqueous solution electrolysis tank using gas diffusion electrode and electrolysis method
JP2013545898A (en) Electrolyzer with coiled inlet hose
JP2004027267A (en) Salt electrolytic cell provided with gas diffusion cathode
CA2864219A1 (en) Method and apparatus for producing gas
JP5298358B2 (en) Fuel cell
JP2896767B2 (en) Joining method of gas diffusion electrode and gas chamber
JP3625633B2 (en) Gas diffusion electrode structure and manufacturing method thereof
JP2896768B2 (en) Alkali metal chloride aqueous solution electrolyzer using oxygen cathode gas diffusion electrode
JP2923635B2 (en) Aqueous alkali metal chloride electrolytic cell using gas diffusion electrode
JP3536054B2 (en) How to start operation of electrolytic cell
JP2857111B2 (en) Gas diffusion electrode with gas lift pump
JP2006175384A (en) Radical oxygen water generating device and system
JPH0941180A (en) Gas diffusion electrode for electrolysis and its production

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081127

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091127

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091127

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101127

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees