JPH10158777A - Production of high strength cast iron, and high strength cast iron - Google Patents

Production of high strength cast iron, and high strength cast iron

Info

Publication number
JPH10158777A
JPH10158777A JP33305896A JP33305896A JPH10158777A JP H10158777 A JPH10158777 A JP H10158777A JP 33305896 A JP33305896 A JP 33305896A JP 33305896 A JP33305896 A JP 33305896A JP H10158777 A JPH10158777 A JP H10158777A
Authority
JP
Japan
Prior art keywords
cast iron
amount
added
molten metal
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP33305896A
Other languages
Japanese (ja)
Other versions
JP3959764B2 (en
Inventor
Akira Horie
皓 堀江
Toshinori Kowata
利憲 小綿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP33305896A priority Critical patent/JP3959764B2/en
Publication of JPH10158777A publication Critical patent/JPH10158777A/en
Application granted granted Critical
Publication of JP3959764B2 publication Critical patent/JP3959764B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain high strength and superior machinability without causing precipitation of chilled crystal at the time of casting, by adding specific amounts of manganese and rare earth element or misch metal to a sulfur-containing cast iron. SOLUTION: At the time of producing a cast-iron casting, a cast iron containing 0.02-0.2wt.% S is melted and Mn is added to the resultant molten metal by 1.0-3.0wt.%, and further, rare earth element or misch metal is added to the molten metal by the amount twice the amount of S in the molten metal, that is, 0.04-0.4wt.%, followed by casting. There are no particular limitations on the kind of cast iron as raw material that can be used as long as it has sulfur content 0.02-0.2wt.%) higher than that of ordinary cast iron, and it can contain inevitable impurities in the amounts within the ranges where no adverse effects are exerted on the characteristics of the high strength cast iron. Moreover, because of the formation of a compound sulfide, leading to crystallization of graphite, and the improvement of a graphite matrix structure, a casting of this molten metal has characteristics of high tensile strength (about 260 to 300MPa) and low Brinell hardness (about 100 to 210).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高強度鋳鉄の製造
方法及びその製造物に係り、特に、切削性を確保しつつ
強度特性を改善した高強度鋳鉄の製造方法及びその製造
物に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing high-strength cast iron and a product thereof, and more particularly to a method for producing high-strength cast iron having improved strength characteristics while ensuring machinability, and a product thereof. is there.

【0002】[0002]

【従来の技術】エンジンケーシング用鋳鉄材料として、
例えば片状黒鉛鋳鉄などが用いられているが、最近にお
けるエンジンの高出力化、軽量化、および省エネ化に対
応すべく、強靱な鋳鉄材料が求められている。
2. Description of the Related Art As a cast iron material for an engine casing,
For example, flaky graphite cast iron or the like is used. However, in order to cope with the recent increase in engine output, weight reduction, and energy saving, a tough cast iron material is required.

【0003】エンジンの高出力化の観点からすると、合
金元素の添加などによる鋳鉄材料の高強度化が有効であ
り、この高強度鋳鉄を用いることによってエンジンケー
シングの薄肉・軽量化を図ることができ、延いては、エ
ンジンの軽量化および省エネ化を図ることが可能とな
る。
From the viewpoint of increasing the output of an engine, it is effective to increase the strength of a cast iron material by adding an alloy element or the like. By using this high-strength cast iron, it is possible to reduce the thickness and weight of an engine casing. Thus, it is possible to reduce the weight and energy consumption of the engine.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、合金元
素の添加などによって鋳鉄材料の強度を高めることはで
きるものの、それに伴う硬度の上昇が問題となる。ま
た、エンジンケーシングの薄肉化によって、鋳鉄溶湯が
急冷されるために冷硬組織(チル組織)が析出して著し
く製品を脆化させる。
However, although the strength of the cast iron material can be increased by the addition of an alloying element or the like, there is a problem of the accompanying increase in hardness. Further, due to the thinning of the engine casing, the molten cast iron is rapidly cooled, so that a cold-hardened structure (chill structure) is precipitated and the product is significantly embrittled.

【0005】すなわち、高強度鋳鉄を用いてエンジンの
高出力化、軽量化、および省エネ化を図ると、切削性の
低下という問題がでてくる。切削性の低下は製品の加工
性を悪化させるため、高コスト化の一因となる。
[0005] That is, when high output, light weight, and energy saving of the engine are achieved by using high-strength cast iron, there is a problem that the machinability is reduced. A decrease in machinability deteriorates the workability of the product, which contributes to an increase in cost.

【0006】そこで本発明は、上記課題を解決し、高強
度で、かつ、切削性が良好な高強度鋳鉄の製造方法及び
高強度鋳鉄を提供することにある。
Accordingly, an object of the present invention is to provide a method for manufacturing a high-strength cast iron having high strength and good machinability, and a high-strength cast iron that solves the above-mentioned problems.

【0007】[0007]

【課題を解決するための手段】上記課題を解決するため
に請求項1の発明は、Sを0.02〜0.2wt%含有
した鋳鉄を溶解して溶湯とし、その溶湯中に、Mnを
1.0〜3.0wt%添加すると共に、稀土類元素また
はミッシュメタルを上記溶湯中の上記S量に対して倍量
の0.04〜0.4wt%添加するものである。
Means for Solving the Problems In order to solve the above-mentioned problems, the invention of claim 1 melts cast iron containing 0.02 to 0.2 wt% of S to form a molten metal, and contains Mn in the molten metal. In addition to adding 1.0 to 3.0 wt%, a rare earth element or a misch metal is added in an amount of 0.04 to 0.4 wt%, which is twice the amount of S in the molten metal.

【0008】請求項2の発明は、Sを0.02〜0.2
wt%含有した鋳鉄を溶解してなる溶湯中に、Mnが
1.0〜3.0wt%、稀土類元素またはミッシュメタ
ルが上記溶湯中の上記S量に対して倍量の0.04〜
0.4wt%含有されているものである。
According to a second aspect of the present invention, S is set to 0.02 to 0.2.
In a molten metal obtained by melting a cast iron containing wt%, Mn is 1.0 to 3.0 wt%, and a rare earth element or a misch metal is 0.04 to twice as large as the S amount in the molten metal.
0.4 wt% is contained.

【0009】上記数値を限定した理由を以下に述べる。The reasons for limiting the above numerical values will be described below.

【0010】Sの添加量を0.02〜0.2wt%と限
定したのは、添加量が0.02wt%よりも少ないと、
Mn及び稀土類元素またはミッシュメタルの添加の効果
が少なくなるためであり、添加量が0.2wt%よりも
多いと、材料の脆化を招くためである。
The reason why the addition amount of S is limited to 0.02 to 0.2 wt% is that if the addition amount is less than 0.02 wt%,
This is because the effect of adding Mn and rare earth elements or misch metal is reduced, and if the added amount is more than 0.2 wt%, the material becomes brittle.

【0011】Mnの添加量を1.0〜3.0wt%と限
定したのは、添加量が1.0wt%よりも少ないと、引
張強度向上の効果が少ないためであり、添加量が3.0
wt%よりも多いと、チル組織の析出が材料深部にまで
及び(チル深さが深くなり)、材料硬度が増すためであ
る。
The reason why the amount of Mn added is limited to 1.0 to 3.0 wt% is that if the amount is less than 1.0 wt%, the effect of improving the tensile strength is small, so that the amount of Mn is 3.0 wt%. 0
If the content is more than wt%, the precipitation of the chill structure extends to the deep portion of the material (the chill depth increases), and the material hardness increases.

【0012】稀土類元素またはミッシュメタルの添加量
を溶湯中のS量に対して倍量の0.04〜0.4wt%
と限定したのは、添加量が溶湯中のS量に対して倍量の
時、チル深さ及び引張強度共に良好となるためである。
The amount of the rare earth element or misch metal added is twice the amount of S in the molten metal to 0.04 to 0.4 wt%.
This is because when the amount of addition is twice the amount of S in the molten metal, both the chill depth and the tensile strength are good.

【0013】以上の構成によれば、Sを0.02〜0.
2wt%含有した鋳鉄を溶解して溶湯とし、その溶湯中
に、Mnを1.0〜3.0wt%添加すると共に、稀土
類元素またはミッシュメタルを上記溶湯中の上記S量に
対して倍量の0.04〜0.4wt%添加したため、高
強度で、かつ、切削性が良好な高強度鋳鉄を得ることが
できる。
According to the above configuration, S is set to 0.02 to 0.
Molten cast iron containing 2 wt% is melted, Mn is added in an amount of 1.0 to 3.0 wt%, and a rare earth element or a misch metal is doubled in amount of the S in the melt. Since 0.04 to 0.4 wt% of the above is added, a high-strength cast iron having high strength and excellent machinability can be obtained.

【0014】[0014]

【発明の実施の形態】以下、本発明の実施の形態を説明
する。
Embodiments of the present invention will be described below.

【0015】本発明の高強度鋳鉄の製造方法を説明す
る。
A method for producing a high-strength cast iron according to the present invention will be described.

【0016】先ず、Sを0.02〜0.2wt%含有し
た原料鋳鉄を、例えば、高周波電気炉で溶解して鋳鉄溶
湯とする。その鋳鉄溶湯中に、Mnを1.0〜3.0w
t%の範囲内で添加する。
First, a raw cast iron containing 0.02 to 0.2 wt% of S is melted in, for example, a high frequency electric furnace to obtain a molten cast iron. In the molten cast iron, Mn is set to 1.0 to 3.0 w.
Add within the range of t%.

【0017】次に、その鋳鉄溶湯中に稀土類元素または
ミッシュメタル(以下、REと呼ぶ)を、溶湯中のS量
に対して倍量の0.04〜0.4wt%添加する。その
鋳鉄溶湯を鋳型に流し込むと共に、冷却して高強度鋳鉄
を作製する。
Next, a rare earth element or a misch metal (hereinafter referred to as RE) is added to the cast iron molten metal in an amount of 0.04 to 0.4 wt%, which is twice the amount of S in the molten metal. The molten cast iron is poured into a mold and cooled to produce a high-strength cast iron.

【0018】原料鋳鉄としては、通常の鋳鉄よりもS含
有量の多い(0.02〜0.2wt%)鋳鉄であれば特
に限定するものではなく、高強度鋳鉄の特性に悪影響を
及ぼさない程度の量の不可避不純物を含んでいてもよ
い。
The raw material cast iron is not particularly limited as long as it has a higher S content (0.02 to 0.2 wt%) than ordinary cast iron. Inevitable impurities.

【0019】原料鋳鉄の溶解方法は、高周波電気炉に限
定するものではなく、目的・用途に応じて、適宜、変更
してもよい。
The method of melting the raw cast iron is not limited to the high-frequency electric furnace, but may be appropriately changed according to the purpose and application.

【0020】[0020]

【実施例】本発明の高強度鋳鉄の一製造方法のフローチ
ャートを図1に示す。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows a flowchart of a method for manufacturing a high-strength cast iron according to the present invention.

【0021】図1に示すように、高純度銑鉄、電解鉄、
Fe−Si、Fe−P、Fe−SおよびFe−Mnを、
一回の溶解量を3kgとして3kHz、12kwの高周
波電気炉で溶解し、化学組成がC:3.3wt%、S
i:2.1wt%、S:0.08wt%、P:0.06
wt%、残部:鉄からなる鋳鉄溶湯を作製する。
As shown in FIG. 1, high purity pig iron, electrolytic iron,
Fe-Si, Fe-P, Fe-S and Fe-Mn
The amount of each dissolution was 3 kg, and the mixture was melted in a 3 kHz, 12 kW high frequency electric furnace. The chemical composition was C: 3.3 wt%, S
i: 2.1 wt%, S: 0.08 wt%, P: 0.06
wt%, balance: A cast iron melt made of iron is prepared.

【0022】この時、鋳鉄溶湯中のMn含有量を0〜
5.0wt%の範囲内で変化させ、Mn含有量の異なる
各鋳鉄溶湯を作製する。この時における最高溶解温度は
1,753Kとする。
At this time, the Mn content in the molten cast iron is set to 0 to
By changing the content within the range of 5.0 wt%, molten cast irons having different Mn contents are produced. The maximum melting temperature at this time is set to 1,753K.

【0023】次に、REとしてRE−Si(RE:3
2.5wt%、Si:34.4wt%)を用い、1,7
23Kにおける各鋳鉄溶湯中に、REをRE換算で0.
2wt%添加する。
Next, RE-Si (RE: 3) is used as RE.
2.5 wt%, Si: 34.4 wt%)
In each cast iron melt at 23K, RE is converted to RE.
Add 2 wt%.

【0024】その後、REが添加された各鋳鉄溶湯を、
1,673Kの温度で各種鋳型(C3号板チル試験用シ
ェル型、φ30mm×200mmのCO2 型、発光分光
分析用金型)に流し込むと共に、冷却を行って、高強度
鋳鉄からなる各試験片を作製する。
Thereafter, each cast iron melt to which RE has been added is
At a temperature of 1,673K, each of the test pieces (high-strength cast iron) was poured into various molds (C3 plate chill test shell mold, φ30 mm × 200 mm CO 2 mold, emission spectroscopic analysis mold) and cooled. Is prepared.

【0025】C3号板チル試験用シェル型から試験片を
取り出し、この板チル試験片を用いてチル深さ測定を行
った。
A test piece was taken out from the C3 plate chill test shell mold, and the chill depth was measured using this plate chill test piece.

【0026】また、φ30mm×200mmのCO2
から試験片を取り出すと共に加工を施して、JIS8C
の引張試験片を作製する。この試験片に対して引張試験
を行い、その破断面近傍で組織観察およびブリネル硬さ
測定を行った。
Further, a test piece is taken out from a CO 2 mold of φ30 mm × 200 mm and processed to obtain a JIS8C
To prepare a tensile test piece. A tensile test was performed on the test piece, and the structure was observed and the Brinell hardness was measured near the fractured surface.

【0027】(Mn添加量に対する引張強さ及びチル深
さ)Mn添加量と引張強さの関係を図2に、Mn添加量
とクリアチル深さの関係を図3に示す。図2および図3
の黒丸を結んだ実線はRE0.2wt%添加鋳鉄、四角
を結んだ2点鎖線はRE無添加鋳鉄を示している。
(Tensile Strength and Chill Depth with Mn Added Amount) FIG. 2 shows the relationship between the Mn added amount and the tensile strength, and FIG. 3 shows the relationship between the Mn added amount and the clear chill depth. 2 and 3
The solid line connecting the black circles indicates cast iron with 0.2% by weight of RE added, and the two-dot chain line connecting squares indicates cast iron with no RE added.

【0028】図2に示すように、Mn添加量が約0.9
wt%未満と少ない内は、RE無添加鋳鉄の方が、RE
0.2wt%添加鋳鉄よりも引張強さが高いが、Mn添
加量が約0.9wt%以上と多くなると、RE0.2w
t%添加鋳鉄の方が、RE無添加鋳鉄よりも引張強さが
高くなる。特に、RE0.2wt%添加鋳鉄のMn添加
量が1.0〜2.0wt%の範囲における引張強さの向
上が著しい。
As shown in FIG. 2, the amount of Mn added was about 0.9.
In the case of less than wt%, the cast iron without RE
Although the tensile strength is higher than that of the cast iron containing 0.2 wt%, when the amount of added Mn is increased to about 0.9 wt% or more, the RE 0.2 w
The t% -added cast iron has a higher tensile strength than the RE-free cast iron. In particular, the improvement in tensile strength is remarkable when the Mn content of the cast iron containing 0.2% by weight of RE is 1.0 to 2.0% by weight.

【0029】図3に示すように、全般に、RE無添加鋳
鉄の方が、RE0.2wt%添加鋳鉄よりもクリアチル
深さが深い。特に、RE0.2wt%添加鋳鉄のMn添
加量が1.0〜2.0wt%の範囲におけるクリアチル
深さの低下が著しい。
As shown in FIG. 3, the clear chill depth of RE-free cast iron is generally deeper than that of RE 0.2 wt% -added cast iron. In particular, when the Mn addition amount of the cast iron containing 0.2% by weight of RE is 1.0 to 2.0% by weight, the clear chill depth is significantly reduced.

【0030】(Mn添加量に対する金属組織変化)各鋳
鉄における金属組織の光学顕微鏡写真を図4、図5、お
よび図6に示す。図4(a)はMn添加量0.05wt
%の鋳鉄を示し、図4(b)はMn添加量0.3wt%
の鋳鉄を示し、図5(a)はMn添加量0.6wt%の
鋳鉄を示し、図5(b)はMn添加量1.5wt%の鋳
鉄を示し、図6(a)はMn添加量3.0wt%の鋳鉄
を示し、図6(b)はMn添加量3.0wt%の鋳鉄を
示している。
(Changes in Metallographic Structure with Addition of Mn) Optical micrographs of the metallographic structure in each cast iron are shown in FIGS. 4, 5 and 6. FIG. 4A shows the Mn addition amount of 0.05 wt.
4 (b) shows the Mn addition amount of 0.3 wt%.
5 (a) shows a cast iron with an Mn addition of 0.6 wt%, FIG. 5 (b) shows a cast iron with an Mn addition of 1.5 wt%, and FIG. 6 (a) shows a Mn addition FIG. 6B shows cast iron of 3.0 wt%, and FIG. 6B shows cast iron of Mn added amount of 3.0 wt%.

【0031】図4(a)に示すように、Mn添加量が
0.05wt%の鋳鉄は、黒鉛片が細かく、良好な形状
に成長していない。また、黒鉛の比率が少ない。このた
め、図2に示したように比較的高い引張強さ(約270
MPa)を有しているが、硬度も高くなっている。図4
(b)および図5(a)に示すように、Mn添加量が
0.3wt%および0.6wt%の鋳鉄は、黒鉛片が細
長く、かつ、形状が平面的に尖鋭で基地にフェライトが
析出しているため、図2に示したようにMn添加量0.
05wt%の鋳鉄に比べて引張強さが(約240MP
a)低下している。
As shown in FIG. 4 (a), cast iron containing 0.05 wt% of Mn has fine graphite flakes and has not grown into a good shape. Further, the ratio of graphite is small. For this reason, as shown in FIG. 2, a relatively high tensile strength (about 270
MPa), but the hardness is also high. FIG.
As shown in FIG. 5 (b) and FIG. 5 (a), in the cast iron containing 0.3 wt% and 0.6 wt% of Mn, the graphite flakes are elongated, the shape is planar and sharp, and ferrite precipitates on the matrix. Therefore, as shown in FIG.
Tensile strength (about 240MP) compared to 05wt% cast iron
a) It is decreasing.

【0032】これに対して、図5(b)に示すように、
Mn添加量が1.5wt%の本発明の高強度鋳鉄は、黒
鉛片が短く、かつ、形状が“いも虫状”であるため、図
2に示したように引張強さも向上(約300MPa)し
ている。
On the other hand, as shown in FIG.
The high-strength cast iron of the present invention containing 1.5 wt% of Mn has a short graphite flake and a "worm-like" shape, so that the tensile strength is also improved as shown in FIG. 2 (about 300 MPa). doing.

【0033】各鋳鉄におけるパーライト組織のSEM写
真を図7、図8に示す。図7(a)はMn添加量0.0
5wt%の鋳鉄を示し、図7(b)はMn添加量0.6
wt%の鋳鉄を示し、図8(a)はMn添加量1.5w
t%の鋳鉄を示し、図8(b)はMn添加量3.0wt
%の鋳鉄を示している。
FIGS. 7 and 8 show SEM photographs of the pearlite structure in each cast iron. FIG. 7A shows the Mn added amount 0.0
FIG. 7 (b) shows a 5 wt% cast iron, and FIG.
Fig. 8 (a) shows the amount of Mn added 1.5w
FIG. 8 (b) shows the amount of Mn added 3.0 wt%.
% Of cast iron is shown.

【0034】図7および図8に示すように、Mn添加量
の増加と共に、ラメラ間隔は狭くなっている。
As shown in FIGS. 7 and 8, the lamella interval becomes narrower with an increase in the amount of Mn added.

【0035】また、図6(a)に示すように、Mn添加
量が3.0wt%の鋳鉄は、図7および図8に示したよ
うに基地のパーライトが変化しており、また、黒鉛片が
短く、かつ、部分的に略球状の黒鉛片が存在しているた
め、図2に示したように引張強さは更に向上(約350
MPa)している。これは、Mnを固溶したフェライト
が析出し、このフェライトの固溶強化により引張強度及
び硬さが増加したものである。さらに、図6(b)に示
すように、Mn添加量が5.0wt%の鋳鉄は、全体に
亘ってチル組織が存在している。
As shown in FIG. 6 (a), the cast iron containing 3.0% by weight of Mn has a change in base pearlite as shown in FIG. 7 and FIG. However, the tensile strength is further improved (about 350 mm) as shown in FIG.
MPa). This is because ferrite in which Mn is dissolved is precipitated, and tensile strength and hardness are increased by solid solution strengthening of the ferrite. Further, as shown in FIG. 6 (b), the cast iron containing 5.0 wt% of Mn has a chill structure throughout.

【0036】このように、本発明の高強度鋳鉄は、黒鉛
形状がやや“いも虫状”になること、およびパーライト
のラメラ間隔が細かくなることの相乗効果で高強度化を
図ったものである。
As described above, the high-strength cast iron of the present invention achieves high strength by a synergistic effect of the graphite being slightly "worm-like" and the pearlite lamella spacing being small. .

【0037】尚、EPMA分析結果、MnS及びRE2
3 の複合硫化物が、黒鉛晶出の有効な下地となり、黒
鉛化を著しく促進させる。
The results of EPMA analysis showed that MnS and RE 2
The complex sulfide of S 3 becomes an effective underlayer for graphite crystallization and significantly promotes graphitization.

【0038】(Mn添加量に対する引張強さおよびブリ
ネル硬さ)Mn添加量と引張強さ及びブリネル硬さの関
係を図9に示す。Mn添加量を0〜3.0wt%と変化
させた時の、引張強さとブリネル硬さの関係を図10に
示す。図9の黒丸を結んだ実線は引張強さを示し、黒四
角を結んだ点線はブリネル硬さを示し、図10の直線
は、J.T.Mackenzie の関係式におけるRH=1を示して
いる。
(Tensile Strength and Brinell Hardness with Mn Addition) FIG. 9 shows the relationship between the amount of Mn added, tensile strength and Brinell hardness. FIG. 10 shows the relationship between tensile strength and Brinell hardness when the amount of Mn added was changed from 0 to 3.0 wt%. The solid line connecting the black circles in FIG. 9 indicates the tensile strength, the dotted line connecting the black squares indicates the Brinell hardness, and the straight line in FIG. 10 indicates RH = 1 in the JTMackenzie relation.

【0039】図9に示すように、Mn添加量が0.05
wt%の鋳鉄は、引張強さが約270MPa、ブリネル
硬さが約255HBであり、また、Mn添加量が0.3
wt%の鋳鉄は、引張強さが約235MPa、ブリネル
硬さが約205HBであり、共に図10に示す直線より
上方に位置しており、引張強さに対して硬さが高過ぎ
る。
As shown in FIG. 9, the amount of Mn added was 0.05
The wt% cast iron has a tensile strength of about 270 MPa, a Brinell hardness of about 255 HB, and an Mn content of 0.3%.
The wt% cast iron has a tensile strength of about 235 MPa and a Brinell hardness of about 205 HB, both of which are located above the straight line shown in FIG. 10, and the hardness is too high with respect to the tensile strength.

【0040】これに対して、Mn添加量が0.6wt
%、1.2wt%、1.5wt%、2.0wt%、3.
0wt%の鋳鉄は、それぞれ引張強さとブリネル硬さ
が、約240MPaと約195HB、約275MPaと
約195HB、約295MPaと約195HB、約30
5MPaと約205HB、約350MPaと約230H
Bであり、図中の直線より下方に位置しており、引張強
さの割には硬さが余り高くなく、材質が良好であること
を示している。
On the other hand, when the added amount of Mn is 0.6 wt.
%, 1.2 wt%, 1.5 wt%, 2.0 wt%, 3.
0 wt% cast iron has a tensile strength and a Brinell hardness of about 240 MPa and about 195 HB, about 275 MPa and about 195 HB, about 295 MPa and about 195 HB, and about 30 MPa, respectively.
5MPa and about 205HB, about 350MPa and about 230H
B, which is located below the straight line in the figure, indicates that the hardness is not too high for the tensile strength and the material is good.

【0041】特に、Mn添加量が1.2wt%、1.5
wt%、2.0wt%である本発明の高強度鋳鉄は、引
張強さが約260〜300(MPa)と高く、かつ、ブ
リネル硬さが約190〜210(HB)と低く、優れた
機械的特性を示している。すなわち、1.0〜2.0w
t%のMn添加によって、黒鉛晶出の下地となる複合硫
化物が生成すると共に、黒鉛基地組織が改善されるた
め、引張強度が高く、かつ、ブリネル硬さの低い高強度
鋳鉄を得ることができる。
Particularly, when the added amount of Mn is 1.2 wt%,
The high-strength cast iron of the present invention having a wt% of 2.0 wt% has a high tensile strength of about 260 to 300 (MPa) and a low Brinell hardness of about 190 to 210 (HB). The characteristic is shown. That is, 1.0 to 2.0 w
By adding t% of Mn, a composite sulfide as a base for graphite crystallization is generated and a graphite matrix structure is improved, so that a high-strength cast iron having high tensile strength and low Brinell hardness can be obtained. it can.

【0042】(Ce(RE)に対するチル深さ及び引張
強さ)Ce添加量とクリアチル深さの関係を図11に、
Ce添加量と引張強さの関係を図12に示す。図11、
図12において、黒丸を結んだ実線はS0.003wt
%含有鋳鉄を示し、黒三角を結んだ実線はS0.05w
t%含有鋳鉄を示し、黒四角を結んだ実線はS0.1w
t%含有鋳鉄を示している。
(Chill Depth and Tensile Strength with Ce (RE)) FIG. 11 shows the relationship between the amount of added Ce and the clear chill depth.
FIG. 12 shows the relationship between the amount of added Ce and the tensile strength. FIG.
In FIG. 12, the solid line connecting the black circles is S0.003 wt.
% Indicates cast iron, and the solid line connecting the black triangles is S0.05w
t% -containing cast iron, and the solid line connecting the black squares is S0.1w
Shows cast iron containing t%.

【0043】図11に示すように、Sの含有量の少ない
S0.003wt%含有鋳鉄は、クリアチル深さの最低
が8mm程度であり、Ce(RE)の添加による組織改
善の効果が低い。
As shown in FIG. 11, the cast iron containing 0.003 wt% of S having a low S content has a minimum clear chill depth of about 8 mm, and the effect of improving the structure by adding Ce (RE) is low.

【0044】これに対して、Sの含有量の多いS0.0
5wt%含有鋳鉄およびS0.1wt%含有鋳鉄は、ク
リアチル深さの最低が0〜1.5mm程度となり、Ce
(RE)の添加による組織改善の効果が高く、特に、C
e(RE)の添加量がSの含有量の2倍の時、その効果
が顕著である。
On the other hand, S0.0
The cast iron containing 5 wt% and the cast iron containing 0.1 wt% have a minimum clear chill depth of about 0 to 1.5 mm, and have a Ce
The effect of improving the structure by the addition of (RE) is high.
When the added amount of e (RE) is twice the S content, the effect is remarkable.

【0045】また、図12に示すように、Sの含有量の
少ないS0.003wt%含有鋳鉄は、引張強さの最高
が27.0kgf/mm2 (約265MPa)程度であ
り、Ce(RE)の添加による強度向上の効果が低い。
As shown in FIG. 12, cast iron containing 0.003 wt% of S with a low S content has a maximum tensile strength of about 27.0 kgf / mm 2 (about 265 MPa), and Ce (RE) The effect of improving the strength by the addition of is low.

【0046】これに対して、Sの含有量の多いS0.0
5wt%含有鋳鉄およびS0.1wt%含有鋳鉄は、引
張強さの最高が30〜31.5kgf/mm2 (約29
5〜310MPa)程度となり、Ce(RE)の添加に
よる強度向上の効果が高く、特に、Ce(RE)の添加
量がSの含有量の2倍の時、その効果が顕著である。
On the other hand, S0.0
The cast iron containing 5 wt% and the cast iron containing S0.1 wt% have a maximum tensile strength of 30 to 31.5 kgf / mm 2 (about 29%).
5 to 310 MPa), and the effect of improving strength by the addition of Ce (RE) is high. In particular, when the amount of Ce (RE) added is twice the S content, the effect is remarkable.

【0047】(切削性)各鋳鉄について切削性を評価し
た。この切削性を評価するための切削装置図を図13に
示す。図13(a)は切削装置の斜視図を示し、図13
(b)は、図13(a)の要部拡大図を示し、図13
(c)は逃げ面摩耗幅の測定方法を示している。
(Machinability) The machinability of each cast iron was evaluated. FIG. 13 shows a diagram of a cutting apparatus for evaluating this cutting property. FIG. 13A shows a perspective view of a cutting device, and FIG.
13B is an enlarged view of a main part of FIG.
(C) shows a method of measuring the flank wear width.

【0048】図13(a)に示すように、各鋳鉄を被切
削材3として切削加工を行う。
As shown in FIG. 13A, cutting is performed using each cast iron as the workpiece 3.

【0049】図13(b)、(c)に示すように、被切
削材3を回転させると共に、被切削材3の表面に工具1
を当てがって切削加工を行ううちに、工具1の先端部に
おいて逃げ面摩耗Aが生じる。
As shown in FIGS. 13 (b) and 13 (c), the workpiece 3 is rotated and the tool 1 is placed on the surface of the workpiece 3.
Flank wear A occurs at the tip of the tool 1 during the cutting process.

【0050】逃げ面摩耗幅Tの測定は、切削加工開始直
後の工具1の先端の逃げ面摩耗幅がT=0であるのに対
して、逃げ面摩耗Aが生じた工具1の先端の逃げ面摩耗
幅はT=Lとなる。
The flank wear width T was measured by measuring the flank wear width at the tip of the tool 1 immediately after the start of the cutting process, while the flank wear width T was equal to T = 0. The surface wear width is T = L.

【0051】切削長さと逃げ面摩耗幅の関係を図14に
示す。図14において、黒丸を結んだ点線はMnを2.
0wt%、Sを0.08wt%添加し、RE−Si(R
E32.5wt%、Si34.4wt%)を接種した本
発明の高強度鋳鉄を示し、黒菱を結んだ点線はMnを
2.0wt%、Sを0.02wt%添加し、RE−Si
を接種した鋳鉄を示し、白三角を結んだ実線はCa−S
iを接種したFC300を示し、白四角を結んだ実線は
Fe−Siを接種したFC300を示し、黒三角を結ん
だ実線はCa−Siを接種したFC350を示し、黒四
角を結んだ実線はCa−Siを接種したFC350を示
している。
FIG. 14 shows the relationship between the cutting length and the flank wear width. In FIG. 14, dotted lines connecting black circles indicate Mn as 2.
0 wt%, S is added 0.08 wt%, and RE-Si (R
E32.5 wt%, Si34.4 wt%) shows the high-strength cast iron of the present invention, the dotted line connecting the black diamonds added Mn 2.0 wt%, S added 0.02 wt%, RE-Si
Is shown, and the solid line connecting the white triangles is Ca-S
i, FC300 inoculated with white squares, FC300 inoculated with Fe-Si, solid lines connected with black triangles, FC350 inoculated with Ca-Si, solid lines connected with black squares, Shows FC350 inoculated with -Si.

【0052】ここで、本発明の高強度鋳鉄、Mn2.0
wt%、S0.02wt%添加、RE−Si接種鋳鉄
(以下、比較鋳鉄と呼ぶ)、Ca−Si接種FC30
0、Fe−Si接種FC300、Ca−Si接種FC3
50、およびFe−Si接種FC350の引張強さは、
それぞれ341.5MPa、340.5MPa、30
4.7MPa、270.1MPa、338MPa、28
1.4MPaである。
Here, the high-strength cast iron of the present invention, Mn 2.0
wt%, S 0.02 wt% addition, RE-Si inoculated cast iron (hereinafter referred to as comparative cast iron), Ca-Si inoculated FC30
0, Fe-Si inoculated FC300, Ca-Si inoculated FC3
50, and the tensile strength of Fe-Si inoculated FC350 is
341.5 MPa, 340.5 MPa, 30 respectively
4.7MPa, 270.1MPa, 338MPa, 28
It is 1.4 MPa.

【0053】図14に示すように、本発明の高強度鋳
鉄、Ca−Si接種FC300、およびFe−Si接種
FC300は、切削長が1000mm超になっても、逃
げ面摩耗幅が200μm程度であり、良好な耐摩耗性を
示している。
As shown in FIG. 14, the high-strength cast iron, Ca-Si-inoculated FC300, and Fe-Si-inoculated FC300 of the present invention have a flank wear width of about 200 μm even when the cutting length exceeds 1000 mm. , Showing good abrasion resistance.

【0054】FC350はFC300よりも引張強さが
高い分だけ逃げ面摩耗幅(摩耗量)が多くなっており、
比較鋳鉄はS含有量が少ないことによるRE−Si接種
の効果が低いため、図11に示したようにチル深さが深
くなっており、逃げ面摩耗幅(摩耗量)が多くなってい
る。
FC350 has a larger flank wear width (amount of wear) by the higher tensile strength than FC300.
Since the comparative cast iron has a low effect of inoculation of RE-Si due to a small S content, the chill depth is large and the flank wear width (amount of wear) is large as shown in FIG.

【0055】引張強さと逃げ面摩耗幅の関係を図15に
示す。図15において、黒丸は本発明の高強度鋳鉄を示
し、黒菱は比較鋳鉄を示し、白三角はCa−Si接種F
C300を示し、白四角はFe−Si接種FC300を
示し、黒三角はCa−Si接種FC350を示し、黒四
角はCa−Si接種FC350を示している。
FIG. 15 shows the relationship between the tensile strength and the flank wear width. In FIG. 15, black circles indicate the high-strength cast iron of the present invention, black diamonds indicate the comparative cast irons, and open triangles indicate Ca-Si inoculated F.
C300 is shown, a white square shows Fe-Si inoculated FC300, a black triangle shows Ca-Si inoculated FC350, and a black square shows Ca-Si inoculated FC350.

【0056】図15に示すように、本願発明の高強度鋳
鉄は引張強さが約335MPaと大きいにも関わらず、
逃げ面摩耗幅が150μm弱と少ない。
As shown in FIG. 15, the high strength cast iron of the present invention has a large tensile strength of about 335 MPa,
The flank wear width is as small as less than 150 μm.

【0057】これに対して、耐摩耗性が良好なCa−S
i接種FC300およびFe−Si接種FC300は、
本願発明の高強度鋳鉄と比べて、引張強さが約305M
Pa、約270MPaと小さい。また、比較鋳鉄、Ca
−Si接種FC350、およびFe−Si接種FC35
0は、逃げ面摩耗幅がいずれも200μmを超えてお
り、耐摩耗性が劣っている。
On the other hand, Ca—S having good wear resistance
i-inoculated FC300 and Fe-Si-inoculated FC300
Compared with the high-strength cast iron of the present invention, the tensile strength is about 305M
Pa, as small as about 270 MPa. In addition, comparative cast iron, Ca
FC-350 inoculated with Si and FC35 inoculated with Fe-Si
0 indicates that the flank wear width exceeds 200 μm in all cases, and the wear resistance is poor.

【0058】すなわち、本願発明の高強度鋳鉄は、Sを
十分含有(0.05〜0.2wt%)し、MnおよびR
Eを規定範囲(Mn:1.0〜2.0wt%,RE:S
の2倍量(0.1〜0.4wt%))内で含有している
ため、切削加工を長く行っても逃げ面摩耗幅が小さく、
かつ、引張強度は高い。
That is, the high-strength cast iron of the present invention contains S sufficiently (0.05 to 0.2 wt%), and Mn and R
E in a specified range (Mn: 1.0 to 2.0 wt%, RE: S
Doubling (0.1-0.4 wt%), the flank wear width is small even if cutting is performed for a long time,
And the tensile strength is high.

【0059】[0059]

【発明の効果】以上要するに本発明によれば、Sを0.
05〜0.2wt%、Mnを1.0〜2.0wt%、R
EをSの2倍量である0.1〜0.4wt%含有してい
るため、引張強度が高い割には硬度が余り高くなく、か
つ、摩耗しにくい高強度鋳鉄を得ることができるという
優れた効果を発揮する。
In summary, according to the present invention, S is set to 0.
0.5-0.2 wt%, Mn 1.0-2.0 wt%, R
Since E is contained in an amount of 0.1 to 0.4 wt%, which is twice the amount of S, it is possible to obtain a high-strength cast iron that is not too high in hardness for high tensile strength and hard to wear. Demonstrates excellent effects.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の高強度鋳鉄の一製造方法のフローチャ
ートである。
FIG. 1 is a flowchart of a method for manufacturing a high-strength cast iron according to the present invention.

【図2】Mn添加量と引張強さの関係を示す図である。FIG. 2 is a diagram showing the relationship between the amount of added Mn and tensile strength.

【図3】Mn添加量とクリアチル深さの関係を示す図で
ある。
FIG. 3 is a diagram showing the relationship between the added amount of Mn and the clear chill depth.

【図4】Mn添加量0.05wt%およびMn添加量
0.3wt%の鋳鉄における黒鉛形状の光学顕微鏡写真
である。
FIG. 4 is an optical microscope photograph of a graphite shape in cast iron with an Mn addition amount of 0.05 wt% and an Mn addition amount of 0.3 wt%.

【図5】Mn添加量0.6wt%およびMn添加量1.
5wt%の鋳鉄における黒鉛形状の光学顕微鏡写真であ
る。
FIG. 5: Mn added amount 0.6 wt% and Mn added amount 1.
It is an optical microscope photograph of graphite shape in 5 wt% cast iron.

【図6】Mn添加量3.0wt%およびMn添加量3.
0wt%の鋳鉄における黒鉛形状の光学顕微鏡写真であ
る。
FIG. 6 shows a Mn added amount of 3.0 wt% and a Mn added amount of 3.
It is an optical microscope photograph of graphite shape in 0 wt% cast iron.

【図7】Mn添加量0.05wt%およびMn添加量
0.6wt%の鋳鉄におけるパーライト組織のSEM写
真である。
FIG. 7 is an SEM photograph of a pearlite structure in cast iron with an Mn addition amount of 0.05 wt% and an Mn addition amount of 0.6 wt%.

【図8】Mn添加量1.5wt%およびMn添加量3.
0wt%の鋳鉄におけるパーライト組織のSEM写真で
ある。
FIG. 8: 1.5 wt% of Mn addition amount and 3 Mn addition amount.
It is a SEM photograph of a pearlite structure in 0 wt% cast iron.

【図9】Mn添加量と引張強さ及びブリネル硬さの関係
を示す図である。
FIG. 9 is a graph showing the relationship between the amount of added Mn, tensile strength, and Brinell hardness.

【図10】Mn添加量を0〜3.0wt%と変化させた
時の、引張強さとブリネル硬さの関係を示す図である。
FIG. 10 is a graph showing the relationship between tensile strength and Brinell hardness when the amount of Mn added is changed from 0 to 3.0 wt%.

【図11】Ce添加量とクリアチル深さの関係を示す図
である。
FIG. 11 is a diagram showing the relationship between the amount of added Ce and the clear chill depth.

【図12】Ce添加量と引張強さの関係を示す図であ
る。
FIG. 12 is a graph showing the relationship between the amount of added Ce and the tensile strength.

【図13】切削性を評価するための切削装置図である。FIG. 13 is a diagram of a cutting device for evaluating cutability.

【図14】切削長さと逃げ面摩耗幅の関係を示す図であ
る。
FIG. 14 is a diagram showing a relationship between a cutting length and a flank wear width.

【図15】引張強さと逃げ面摩耗幅の関係を示す図であ
る。
FIG. 15 is a diagram showing the relationship between tensile strength and flank wear width.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 Sを0.02〜0.2wt%含有した鋳
鉄を溶解して溶湯とし、その溶湯中に、Mnを1.0〜
3.0wt%添加すると共に、稀土類元素またはミッシ
ュメタルを上記溶湯中の上記S量に対して倍量の0.0
4〜0.4wt%添加することを特徴とする高強度鋳鉄
の製造方法。
1. A cast iron containing 0.02 to 0.2 wt% of S is melted to form a molten metal, and Mn is contained in the molten metal in an amount of 1.0 to 0.2 wt%.
In addition to adding 3.0 wt%, rare earth elements or misch metals are added in an amount of 0.0 times the amount of S in the molten metal.
A method for producing high-strength cast iron, characterized by adding 4 to 0.4 wt%.
【請求項2】 Sを0.02〜0.2wt%含有した鋳
鉄を溶解してなる溶湯中に、Mnが1.0〜3.0wt
%、稀土類元素またはミッシュメタルが上記溶湯中の上
記S量に対して倍量の0.04〜0.4wt%含有され
ていることを特徴とする高強度鋳鉄。
2. In a molten metal obtained by melting a cast iron containing 0.02 to 0.2 wt% of S, Mn is 1.0 to 3.0 wt.
%, A rare earth element or a misch metal is contained in an amount of 0.04 to 0.4 wt% twice the amount of S in the molten metal.
JP33305896A 1996-11-29 1996-11-29 Method for producing high-strength cast iron and high-strength cast iron Expired - Fee Related JP3959764B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33305896A JP3959764B2 (en) 1996-11-29 1996-11-29 Method for producing high-strength cast iron and high-strength cast iron

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33305896A JP3959764B2 (en) 1996-11-29 1996-11-29 Method for producing high-strength cast iron and high-strength cast iron

Publications (2)

Publication Number Publication Date
JPH10158777A true JPH10158777A (en) 1998-06-16
JP3959764B2 JP3959764B2 (en) 2007-08-15

Family

ID=18261804

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33305896A Expired - Fee Related JP3959764B2 (en) 1996-11-29 1996-11-29 Method for producing high-strength cast iron and high-strength cast iron

Country Status (1)

Country Link
JP (1) JP3959764B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008195993A (en) * 2007-02-09 2008-08-28 Kimura Chuzosho:Kk Flake graphite cast iron material having excellent weldability
KR20140095138A (en) * 2013-01-23 2014-08-01 두산인프라코어 주식회사 Flake graphite iron and preparation method thereof, and engine body for internal combustion engine comprising the same
US8956565B2 (en) 2007-06-26 2015-02-17 Incorporated National University Iwate University Flake graphite cast iron and production method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008195993A (en) * 2007-02-09 2008-08-28 Kimura Chuzosho:Kk Flake graphite cast iron material having excellent weldability
US8956565B2 (en) 2007-06-26 2015-02-17 Incorporated National University Iwate University Flake graphite cast iron and production method thereof
KR20140095138A (en) * 2013-01-23 2014-08-01 두산인프라코어 주식회사 Flake graphite iron and preparation method thereof, and engine body for internal combustion engine comprising the same

Also Published As

Publication number Publication date
JP3959764B2 (en) 2007-08-15

Similar Documents

Publication Publication Date Title
US9512498B2 (en) Process for producing spheroidal-graphite cast iron, and spheroidal-graphite cast iron member obtained from said spheroidal-graphite cast iron
EP2765207B1 (en) Method for producing spheroidal graphite cast iron and vehicle component using said spheroidal graphite cast iron
JP2019119924A (en) Spheroidal graphite cast iron
JP4806477B2 (en) Production method of as-cast spheroidal graphite cast iron products
JPH10158777A (en) Production of high strength cast iron, and high strength cast iron
JP4527304B2 (en) High strength high toughness spheroidal graphite cast iron
JP3735318B2 (en) High silicon cast iron excellent in acid resistance and method for producing the same
JP3597211B2 (en) Spheroidal graphite cast iron with excellent high-temperature strength
JPH1096040A (en) High strength gray cast iron excellent in cutting workability
JP4565301B2 (en) High-strength spheroidal graphite cast iron and method for producing the same
JP2634707B2 (en) Manufacturing method of spheroidal graphite cast iron
US8302667B2 (en) Cast iron semi-finished product excellent in workability and method of production of the same
JP2007327083A (en) Spheroidal graphite cast iron and its production method
JPH08120396A (en) Pearlitic spheroidal graphite cast iron as cast and its production
JPH03271312A (en) Agent and method for reform-treating molten cast iron
JP2006057139A (en) Spheroidal graphite cast iron having excellent machinability and mechanical property
JPH1060572A (en) Fine graphite cast iron and its production
JPH06108199A (en) Spheroidal graphite cast iron
JPS58151451A (en) Cast iron with superior weldability
JP4162461B2 (en) Spheroidal graphite cast iron and manufacturing method
JP4318481B2 (en) Flake graphite cast iron
JPH09235609A (en) Production of cast iron
JP4746434B2 (en) Method for producing spheroidal graphite cast iron
JPS6045267B2 (en) free-cutting alloy cast iron
JPH11209843A (en) Eutectic graphite cast iron and mold therefor

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Effective date: 20050517

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20050622

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070424

A61 First payment of annual fees (during grant procedure)

Effective date: 20070507

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20110525

LAPS Cancellation because of no payment of annual fees