JPH08209217A - Production of spherical graphite cast iron - Google Patents

Production of spherical graphite cast iron

Info

Publication number
JPH08209217A
JPH08209217A JP1401295A JP1401295A JPH08209217A JP H08209217 A JPH08209217 A JP H08209217A JP 1401295 A JP1401295 A JP 1401295A JP 1401295 A JP1401295 A JP 1401295A JP H08209217 A JPH08209217 A JP H08209217A
Authority
JP
Japan
Prior art keywords
cast iron
inoculant
graphite cast
spheroidal graphite
melting temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1401295A
Other languages
Japanese (ja)
Inventor
Toshiki Yoshida
敏樹 吉田
Hideaki Nagayoshi
英昭 永吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP1401295A priority Critical patent/JPH08209217A/en
Publication of JPH08209217A publication Critical patent/JPH08209217A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To provide a process for producing a spherical graphite cast iron capable of preventing the chilling of the cast iron by sufficiently exhibiting its effect even near the surface of a casting mold without the generation of the inoculant remaining without melting. CONSTITUTION: This inoculant has the melting temp. lower than the melting temp. of the spherical graphite cast iron and is basically obtd. by using, for example, an Ni-Si alloy as the inoculant. The inoculant melts easily and rapidly in a casting process. While it takes time for the inoculation effect to be exhibited in the case where inoculant does not easily and rapidly melt, the inoculation effect is exhibited rapidly and, therefore, the generation of the inoculant remaining without melting does not arise even if the inoculant is added in the state of large size grains into the cast iron. The inoculant remaining without melting is lessened even if the inoculant is added into the casting mold.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は球状黒鉛鋳鉄の製造方法
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing spheroidal graphite cast iron.

【0002】[0002]

【従来の技術】良く知られるように球状黒鉛鋳鉄の鋳造
に当たっては、結晶の核を作らせる物質を溶湯中に添加
して得られる鋳物の材質を改善する接種が行われ、その
場合、接種剤を添加することによってチル化傾向を抑制
して鋳物の黒鉛組織を改善することができ、かかる接種
剤としては球状黒鉛鋳鉄にあってはフェロシリコン、カ
ルシウムシリコンなどが用いられている。
2. Description of the Related Art As is well known, when casting spheroidal graphite cast iron, inoculation is carried out to improve the material quality of the casting obtained by adding a substance that forms crystal nuclei to the molten metal. It is possible to suppress the tendency of chilling and improve the graphite structure of the casting by adding, and ferrosilicon, calcium silicon, etc. are used in spheroidal graphite cast iron as the inoculant.

【0003】[0003]

【発明が解決しようとする課題】しかし以上の従来の球
状黒鉛鋳鉄の製造方法については次のような問題があっ
た。従来の球状黒鉛鋳鉄の製造方法に用いられた接種剤
の溶融温度は球状黒鉛鋳鉄の溶融温度よりも高温である
ため、どうしても溶け残りが生じ、そのように溶け残り
が生じると接種剤の粒がそのまま鋳物の内部に残り、そ
の部分で非常に硬度が上がるため、その部分で加工がで
きないという問題が生じる。また、特に鋳型表面部分に
おいては鋳鉄溶湯が早く冷却されるため従来の溶融温度
が球状黒鉛鋳鉄の溶融温度よりも高温である接種剤で
は、その鋳型近傍において接種剤が充分に機能せず、鋳
型表面部分においてチル化し易いという問題があった。
However, the above-mentioned conventional method for producing spheroidal graphite cast iron has the following problems. Since the melting temperature of the inoculant used in the conventional method for producing spheroidal graphite cast iron is higher than the melting temperature of the spheroidal graphite cast iron, undissolved residue is inevitable, and when the undissolved residue is generated, particles of the inoculant are formed. Since it remains in the casting as it is, and the hardness of the portion increases significantly, there arises a problem that the portion cannot be processed. Further, particularly in the mold surface portion, since the cast iron molten metal is rapidly cooled, in the conventional inoculant having a melting temperature higher than that of the spheroidal graphite cast iron, the inoculant does not sufficiently function near the mold, There is a problem that chilling easily occurs on the surface portion.

【0004】従って本発明は以上の従来技術における問
題に鑑みてなされたものであって、溶け残りが生じず、
鋳型表面近傍においても充分に効果を発揮して球状黒鉛
鋳鉄のチル化を防止することができる球状黒鉛鋳鉄の製
造方法を提供することを目的とする。
Therefore, the present invention has been made in view of the above problems in the prior art, in which unmelted residue does not occur,
It is an object of the present invention to provide a method for producing spheroidal graphite cast iron, which is capable of sufficiently exerting the effect even in the vicinity of the surface of the mold and preventing the spheroidal graphite cast iron from being chilled.

【0005】[0005]

【課題を解決するための手段】以上の目的を達成する本
発明の球状黒鉛鋳鉄の製造方法は黒鉛化促進元素を含み
溶融温度が球状黒鉛鋳鉄の溶融温度より低温である接種
剤を用いて球状黒鉛鋳鉄の鋳造を行うことを特徴とす
る。以上の本発明の球状黒鉛鋳鉄の製造方法によれば溶
融温度が球状黒鉛鋳鉄の溶融温度より低温である接種剤
を用いるので、溶融温度が球状黒鉛鋳鉄の溶融温度より
高温の接種剤を用いる場合よりも低温から溶解しはじめ
るので、接種効果の発現が早くなり、また接種剤が低温
で溶解するため溶け残り不良の防止効果も得ることがで
きる。
The method for producing spheroidal graphite cast iron of the present invention which achieves the above object is obtained by using an inoculant containing a graphitization promoting element and having a melting temperature lower than the melting temperature of spheroidal graphite cast iron. It is characterized in that graphite cast iron is cast. According to the method for producing a spheroidal graphite cast iron of the present invention as described above, since the inoculant having a melting temperature lower than the melting temperature of the spheroidal graphite cast iron is used, when an inoculant having a melting temperature higher than the melting temperature of the spheroidal graphite cast iron is used. Since it begins to dissolve at a lower temperature than that, the inoculation effect develops faster, and the inoculant dissolves at a lower temperature, so that the effect of preventing undissolved residue can be obtained.

【0006】また以上の目的を達成する本発明の球状黒
鉛鋳鉄の製造方法は黒鉛化促進元素を含み溶融温度が球
状黒鉛鋳鉄の溶融温度より低温である接種剤を表面に塗
布した鋳型に球状黒鉛鋳鉄溶湯を注湯することを特徴と
する。すなわち本発明において接種剤を球状黒鉛鋳鉄溶
湯中に添加する態様としては例えば接種剤を鋳型表面に
塗布した鋳型に球状黒鉛鋳鉄溶湯を注湯するようにすれ
ば、溶湯温度が低くなる鋳型表面部分でも接種剤が低温
で溶解するため溶け残り不良を防止することができ、接
種効果の発現を早くすることができる。
Further, the method for producing spheroidal graphite cast iron of the present invention which achieves the above-mentioned object, is a spheroidal graphite in a mold coated with an inoculant containing a graphitization-promoting element and having a melting temperature lower than the melting temperature of spheroidal graphite cast iron. It is characterized by pouring molten cast iron. That is, as an aspect of adding the inoculant to the spheroidal graphite cast iron molten metal in the present invention, for example, if the spheroidal graphite cast iron molten metal is poured into a mold in which the inoculant is applied to the mold surface, the molten metal temperature becomes lower. However, since the inoculant melts at a low temperature, it is possible to prevent the undissolved residue from occurring, and it is possible to accelerate the onset of the inoculation effect.

【0007】また本発明の球状黒鉛鋳鉄の製造方法は、
黒鉛化促進元素を含み溶融温度が球状黒鉛鋳鉄の溶融温
度より低温である接種剤と溶融温度が球状黒鉛鋳鉄の溶
融温度より高温である接種剤を混合又は合金化した接種
剤を用いて球状黒鉛鋳鉄の鋳造を行うことを特徴とす
る。また本発明の球状黒鉛鋳鉄の製造方法は、黒鉛化促
進元素を含み溶融温度が球状黒鉛鋳鉄の溶融温度より低
温である接種剤と溶融温度が球状黒鉛鋳鉄の溶融温度よ
り高温である接種剤を混合又は合金化した接種剤を表面
に塗布した鋳型に球状黒鉛鋳鉄溶湯を注湯することを特
徴とする。溶融温度が球状黒鉛鋳鉄の溶融温度より高温
である接種剤では通常溶け残りが生じ、普通の鋳物で鋳
型内接種をするときには鋳物が小さくなると溶けのこる
ことが多い。そのように溶け残りが生じると接種剤の粒
がそのまま鋳物の内部に残り、その部分で非常に硬度が
上がるため、その部分で加工ができないという問題が生
じる。これに対して溶融温度が球状黒鉛鋳鉄の溶融温度
より低温である接種剤では例えば鋳型に塗布して用いて
も溶け残りが生じない。しかし、一方、溶融温度が球状
黒鉛鋳鉄の溶融温度より低温である接種剤では溶け残り
が生じない反面、早期に溶解するため、接種効果を持続
させるのが困難な場合が生じ、全体としての接種効果が
不十分となる場合もある。そこで本発明の様に、溶融温
度が球状黒鉛鋳鉄の溶融温度より低温である接種剤と高
温である接種剤を混合又は合金化して用いることによ
り、接種剤の溶け残りを防止しつつ接種効果を持続させ
て全体としても高い接種効果を得るようにすることがで
きる。
The method for producing spheroidal graphite cast iron of the present invention is
Spheroidal graphite using an inoculant mixed or alloyed with an inoculant containing a graphitization-promoting element and having a melting temperature lower than that of spheroidal graphite cast iron and an inoculant having a melting temperature higher than that of spheroidal graphite cast iron. It is characterized in that cast iron is cast. Further, the method for producing the spheroidal graphite cast iron of the present invention, an inoculant having a melting temperature lower than the melting temperature of the spheroidal graphite cast iron containing the graphitization promoting element and an inoculant having a melting temperature higher than the melting temperature of the spheroidal graphite cast iron. It is characterized in that the spheroidal graphite cast iron melt is poured into a mold having a mixed or alloyed inoculant applied on the surface. An inoculant whose melting temperature is higher than that of spheroidal graphite cast iron usually causes unmelted residue, and when inoculated in a mold with a normal casting, it often melts when the casting becomes smaller. If such unmelted residue occurs, the particles of the inoculant remain as they are inside the casting, and the hardness increases extremely at that portion, which causes a problem that processing cannot be performed at that portion. On the other hand, with an inoculant having a melting temperature lower than that of spheroidal graphite cast iron, undissolved residue does not occur even when applied to a mold for use. However, on the other hand, inoculants whose melting temperature is lower than the melting temperature of spheroidal graphite cast iron do not cause undissolved residue, but it dissolves early, so it may be difficult to maintain the inoculation effect, and the inoculation as a whole may occur. The effect may be insufficient. Therefore, as in the present invention, by using an inoculant having a melting temperature lower than the melting temperature of the spheroidal graphite cast iron and an inoculant having a high temperature mixed or alloyed with each other, an inoculating effect while preventing undissolved inoculant is obtained. It can be continued to obtain a high inoculation effect as a whole.

【0008】さらに本発明の球状黒鉛鋳鉄の製造方法
は、黒鉛化促進元素を含み溶融温度が球状黒鉛鋳鉄の溶
融温度より低温である接種剤を鋳型表面に塗布し、溶融
温度が球状黒鉛鋳鉄の溶融温度より高温である接種剤を
溶湯中に添加することを特徴とする。その様にすること
により、溶融温度が球状黒鉛鋳鉄の溶融温度より低温で
ある接種剤では鋳型に塗布して用いても溶け残りが生じ
ず、一方、溶融温度が球状黒鉛鋳鉄の溶融温度より高温
である接種剤を溶湯中に添加して用いることにより、接
種剤の溶け残りを防止しつつ接種効果を持続させて全体
としても高い接種効果を得るようにすることができる。
Further, in the method for producing spheroidal graphite cast iron of the present invention, an inoculant containing a graphitization-promoting element and having a melting temperature lower than the melting temperature of spheroidal graphite cast iron is applied to the mold surface, and the melting temperature of spheroidal graphite cast iron is An inoculant having a temperature higher than the melting temperature is added to the molten metal. By doing so, the inoculant whose melting temperature is lower than the melting temperature of the spheroidal graphite cast iron does not cause unmelted residue when applied to the mold, while the melting temperature is higher than the melting temperature of the spheroidal graphite cast iron. By adding the inoculant as described above to the molten metal and using it, it is possible to prevent the undissolved part of the inoculant from remaining and to maintain the inoculating effect and obtain a high inoculating effect as a whole.

【0009】さらに本発明の球状黒鉛鋳鉄の製造方法
は、黒鉛化促進元素を含み主成分がSi及びNiである
接種剤を用いて球状黒鉛鋳鉄の鋳造を行うことを特徴と
する。加えて本発明の球状黒鉛鋳鉄の製造方法は黒鉛化
促進元素を含み主成分がSi及びNiである接種剤を表
面に塗布した鋳型に球状黒鉛鋳鉄溶湯を注湯することを
特徴とする。主成分がSi及びNiであるNi−Si接
種剤の共晶温度は993℃で、Fe−Siの1270℃
より低い。したがって溶湯中に添加したときにFe−S
iよりも低温から溶解しはじめるので、接種効果の発現
が早く、また、低温で溶解するため、溶け残り不良も防
止できる。
Further, the method for producing spheroidal graphite cast iron of the present invention is characterized in that the spheroidal graphite cast iron is cast using an inoculant containing a graphitization promoting element and containing Si and Ni as main components. In addition, the method for producing spheroidal graphite cast iron of the present invention is characterized in that the spheroidal graphite cast iron molten metal is poured into a mold having a surface coated with an inoculant containing graphitization-promoting elements and whose main components are Si and Ni. The eutectic temperature of the Ni-Si inoculant whose main components are Si and Ni is 993 ° C, and that of Fe-Si is 1270 ° C.
Lower. Therefore, when added to the melt, Fe-S
Since it begins to dissolve at a temperature lower than that of i, the inoculation effect develops quickly, and since it dissolves at a low temperature, undissolved residue can be prevented.

【0010】加えて本発明の球状黒鉛鋳鉄の製造方法は
黒鉛化促進元素を含み主成分がSi及びNiであり、3
wt%以下のBaを含有する接種剤を用いて球状黒鉛鋳鉄
の鋳造を行うことを特徴とする。さらに加えて本発明の
球状黒鉛鋳鉄の製造方法は黒鉛化促進元素を含み主成分
がSi及びNiであり、3wt%以下のBaを含有する接
種剤を表面に塗布した鋳型に球状黒鉛鋳鉄溶湯を注湯す
ることを特徴とする。ここで3wt%以下のBaを添加す
るのは接種効果の持続に有効であるからであり、特に本
発明の球状黒鉛鋳鉄の製造方法に用いる溶融温度が球状
黒鉛鋳鉄の溶融温度より低温である接種剤例えばNi−
Si系接種剤では、接種剤の早期溶解と、Ba添加によ
る接種効果の持続との相乗効果が認められ有効となる。
ここで、Baの添加量を3wt%とするのは添加量が3wt%
を越えても添加効果の増大は認められないからである。
In addition, the method for producing spheroidal graphite cast iron of the present invention comprises a graphitization promoting element and the main components are Si and Ni.
It is characterized in that spheroidal graphite cast iron is cast using an inoculant containing less than wt% of Ba. In addition to the above, the method for producing spheroidal graphite cast iron of the present invention comprises the step of applying the spheroidal graphite cast iron molten metal to a mold coated with an inoculant containing graphitization-promoting elements as main components of Si and Ni and containing 3 wt% or less of Ba. It is characterized by pouring hot water. The reason why Ba is added in an amount of 3 wt% or less is that it is effective for maintaining the inoculation effect. In particular, the inoculation in which the melting temperature used in the method for producing spheroidal graphite cast iron of the present invention is lower than the melting temperature of spheroidal graphite cast iron. Agents such as Ni-
The Si-based inoculant is effective because the synergistic effect of the early dissolution of the inoculant and the sustained inoculation effect due to the addition of Ba is recognized.
Here, the addition amount of Ba is 3 wt% because the addition amount is 3 wt%.
This is because the effect of addition is not increased even if it exceeds.

【0011】また本発明の球状黒鉛鋳鉄の製造方法は黒
鉛化促進元素を含み主成分がSi及びNiである接種剤
と主成分がSi及びFeである接種剤を混合又は合金化
した接種剤を用いて球状黒鉛鋳鉄の鋳造を行うことを特
徴とする。また本発明の球状黒鉛鋳鉄の製造方法は黒鉛
化促進元素を含み主成分がSi及びNiである接種剤と
主成分がSi及びFeである接種剤を混合又は合金化し
た接種剤を表面に塗布した鋳型に球状黒鉛鋳鉄溶湯を注
湯することを特徴とする。すなわち主成分がFe及びS
iである接種剤では通常溶け残りが生じ、普通の鋳物で
鋳型内接種をするときには鋳物が小さくなると溶けのこ
ることが多い。そのように溶け残りが生じると接種剤の
粒がそのまま鋳物の内部に残り、その部分で非常に硬度
が上がるため、その部分で加工ができないという問題が
生じる。これに対して主成分がSi及びNiである接種
剤では例えば鋳型に塗布して用いても溶け残りが生じな
い。しかし、一方、主成分がSi及びNiである接種剤
では溶け残りが生じない反面、早期に溶解するため、接
種効果を持続させるのが困難な場合が生じ、全体として
の接種効果が不十分となる場合もある。そこで本発明の
様に、主成分がSi及びNiである接種剤と主成分がF
e及びSiである接種剤を混合又は合金化して球状黒鉛
鋳鉄の製造に用いることにより、接種剤の溶け残りを防
止しつつ接種効果を持続させて全体としても高い接種効
果を得るようにすることができる。
The method for producing spheroidal graphite cast iron according to the present invention comprises an inoculant containing a graphitization-promoting element and having Si and Ni as main components, and an inoculant obtained by mixing or alloying an inoculant having Si and Fe as main components. It is characterized in that it is used to cast spheroidal graphite cast iron. Further, the method for producing spheroidal graphite cast iron of the present invention comprises applying an inoculant, which is a mixture or alloy of an inoculant containing graphitization-promoting elements and whose main components are Si and Ni, and an inoculant whose main components are Si and Fe, to the surface. It is characterized in that the spheroidal graphite cast iron molten metal is poured into the formed mold. That is, the main components are Fe and S
The inoculant i is usually unmelted, and when in-mold inoculation is performed with a normal casting, the casting often becomes smaller as the casting becomes smaller. If such unmelted residue occurs, the particles of the inoculant remain as they are inside the casting, and the hardness increases extremely at that portion, which causes a problem that processing cannot be performed at that portion. On the other hand, with the inoculants whose main components are Si and Ni, for example, even if they are applied to a mold and used, undissolved residue does not occur. On the other hand, on the other hand, the inoculants whose main components are Si and Ni do not cause undissolved residue, but they dissolve early so that it may be difficult to maintain the inoculation effect, resulting in insufficient inoculation effect as a whole. In some cases Therefore, as in the present invention, an inoculant whose main components are Si and Ni and a main component F
By mixing or alloying e and Si inoculants to produce spheroidal graphite cast iron, the inoculant is prevented from being undissolved and the inoculant effect is sustained to obtain a high inoculant effect as a whole. You can

【0012】以上において主成分がSi及びNiである
接種剤と主成分がSi及びFeである接種剤との混合又
は合金化比率は1/3〜3/1とするのが好ましい。主
成分がSi及びNiである接種剤と主成分がSi及びF
eである接種剤との混合又は合金化比率が1/3未満で
は、接種剤の溶け残りが生じる傾向が強くなり好ましく
ない。逆に主成分がSi及びNiである接種剤と主成分
がSi及びFeである接種剤との混合又は合金化比率が
3/1を越える場合には、全体としての接種効果が不十
分となる。又以上において主成分がSi及びNiである
接種剤と主成分がSi及びFeである接種剤を混合して
使用する場合には、例えば両者の粉体を混合するという
態様を取ることができる。
In the above, the mixing or alloying ratio of the inoculants whose main components are Si and Ni and the inoculants whose main components are Si and Fe is preferably 1/3 to 3/1. Inoculants whose main components are Si and Ni and whose main components are Si and F
When the mixing ratio or alloying ratio with the inoculant which is e is less than 1/3, the undissolved residue of the inoculant becomes strong, which is not preferable. On the contrary, if the mixing or alloying ratio of the inoculants whose main components are Si and Ni and the inoculants whose main components are Si and Fe exceeds 3/1, the overall inoculation effect becomes insufficient. . When the inoculants having Si and Ni as the main components and the inoculants having Si and Fe as the main components are mixed and used in the above, it is possible to adopt a mode in which both powders are mixed.

【0013】さらに本発明の球状黒鉛鋳鉄の製造方法
は、黒鉛化促進元素を含み主成分がSi及びNiである
接種剤を鋳型表面に塗布し、主成分がSi及びFeであ
る接種剤を溶湯中に添加することを特徴とする。その様
にすることにより、黒鉛化促進元素を含み主成分がSi
及びNiである接種剤では鋳型に塗布して用いても溶け
残りが生じず、一方、主成分がSi及びFeである接種
剤を溶湯中に添加して用いることにより、接種剤の溶け
残りを防止しつつ接種効果を持続させて全体としても高
い接種効果を得るようにすることができる。
Further, in the method for producing spheroidal graphite cast iron of the present invention, an inoculant containing graphitization-promoting elements and whose main components are Si and Ni is applied to the mold surface, and an inoculant whose main components are Si and Fe are melted. It is characterized by being added in. By doing so, the main component containing the graphitization promoting element is Si
With the inoculants of Ni and Ni, undissolved residue does not occur even when applied to a mold and used. On the other hand, by using the inoculants of which the main components are Si and Fe in the molten metal, the undissolved residue of the inoculants is It is possible to maintain the inoculation effect while preventing it and obtain a high inoculation effect as a whole.

【0014】なお、以上の場合には主成分がSi及びN
iである接種剤が3wt%以下のBaを含有する様にする
のが好ましい。さらに以上の各場合において本発明にお
いては主成分がSi及びNiである接種剤のSi含有量
を50〜80wt%とするのが好ましい。すなわちSiが
50wt%未満の場合にはかかる接種剤の状態図における
液相線の温度が球状黒鉛鋳鉄の溶融温度よりも低くなり
接種効果が極めて早く消失し、全体としての接種効果が
低くなり好ましくない。またSiが80wt%を越える場
合には工業的に製造することが困難になる。
In the above cases, the main components are Si and N.
It is preferable that the inoculant i is 3 wt% or less of Ba. Further, in each of the above cases, in the present invention, it is preferable that the Si content of the inoculants whose main components are Si and Ni is 50 to 80 wt%. That is, when Si is less than 50 wt%, the liquidus temperature in the phase diagram of the inoculant is lower than the melting temperature of the spheroidal graphite cast iron, the inoculation effect disappears very quickly, and the inoculation effect as a whole becomes low, which is preferable. Absent. Further, when Si exceeds 80 wt%, it becomes difficult to industrially manufacture.

【0015】[0015]

【作用】現在、球状黒鉛鋳鉄の製造にあたっては接種剤
としてFe−Siを用いるのが一般的である。本発明の
球状黒鉛鋳鉄の製造方法は、このFe−Siに代えて溶
融温度が球状黒鉛鋳鉄の溶融温度より低温である接種剤
例えばNi−Si合金を接種剤として使うことを骨子と
するものであり、かかる本発明の球状黒鉛鋳鉄の製造方
法によってチル化のない、黒鉛球状化率の均一な球状黒
鉛鋳鉄が得られる。Ni−Si合金及びFe−Si合金
の状態図をみるとFe−Si合金の共晶温度が1210
〜1220℃であるのに対してNi−Si合金の共晶温
度は950〜990℃であり、Ni−Si合金の方がF
e−Siよりも低温で溶けやすいことが判る。それと同
時に、Ni−Si合金ではFe−Si合金と比べた場合
にSi量を同程度に含ませることができる。ここで接種
剤において接種効果を発揮するのはSiでありSi量が
同程度であればFe−SiでもNi−Siでも同程度に
接種効果を発揮する。しかも前述したようにNi−Si
合金はFe−Siに比べて融点が低いので早い時期に効
き始める。一方、Ni−Si合金及びFe−Siの溶け
終わりの時期はそれ等の状態図の液相線で示される様に
Fe−Si、Ni−Si共に同程度の温度である。
At present, Fe-Si is generally used as an inoculant in the production of spheroidal graphite cast iron. The method for producing spheroidal graphite cast iron of the present invention is based on the use of an inoculant having a melting temperature lower than the melting temperature of spheroidal graphite cast iron, such as a Ni-Si alloy, as an inoculant instead of Fe-Si. Thus, by the method for producing spheroidal graphite cast iron of the present invention, spheroidal graphite cast iron without chilling and having a uniform graphite spheroidization rate can be obtained. Looking at the phase diagrams of the Ni-Si alloy and the Fe-Si alloy, the eutectic temperature of the Fe-Si alloy is 1210.
˜1220 ° C., whereas the eutectic temperature of Ni—Si alloy is 950 to 990 ° C.
It can be seen that it melts more easily at a lower temperature than e-Si. At the same time, the Ni-Si alloy can contain the same amount of Si as compared with the Fe-Si alloy. Here, it is Si that exerts the inoculation effect in the inoculant, and if the amount of Si is the same, Fe-Si and Ni-Si exhibit the same inoculation effect. Moreover, as described above, Ni-Si
Since the alloy has a lower melting point than Fe-Si, it starts to work early. On the other hand, when the Ni-Si alloy and the Fe-Si are completely melted, the temperatures of both Fe-Si and Ni-Si are about the same, as shown by the liquidus lines in those phase diagrams.

【0016】以上のことからNi−Siは早い時期から
効き初めて、Fe−Siと同じ位の時期まで効き続け
る。なお以上において、球状黒鉛鋳鉄の溶融温度は11
50℃であり30Si−Niを添加した場合には、30
Si−Niの溶融温度は950℃でありすぐに溶けてし
まい接種剤として使うことはできない。そこでNi−S
i合金として添加する。以上のように本発明の球状黒鉛
鋳鉄の製造方法に用いられる接種剤が球状黒鉛鋳鉄の溶
融温度より低温であることにより、鋳造過程において接
種剤が容易に早く溶け、接種剤が容易に早く溶けない場
合には接種効果が現れるのに時間がかかるに対して短時
間で接種効果が現れ、従って接種剤を大きい粒のまま入
れても本発明の球状黒鉛鋳鉄の製造方法では接種剤の溶
け残りが生じるようなことはない。また鋳型の中に入れ
る場合であっても溶け残りが少ない。
From the above, Ni-Si begins to work from an early stage, and continues to work until the same period as Fe-Si. In the above, the melting temperature of spheroidal graphite cast iron is 11
When the temperature is 50 ° C. and 30Si—Ni is added, 30
The melting temperature of Si—Ni is 950 ° C., and it melts immediately and cannot be used as an inoculant. So Ni-S
It is added as an i alloy. As described above, the inoculant used in the method for producing the spheroidal graphite cast iron of the present invention is at a temperature lower than the melting temperature of the spheroidal graphite cast iron, so that the inoculant easily and quickly melts in the casting process, and the inoculant easily and quickly melts. If it is not present, it takes time for the inoculation effect to appear, but the inoculation effect appears in a short time. Therefore, even if the inoculant is put in large grains, the inoculant remains undissolved in the method for producing spheroidal graphite cast iron of the present invention. Does not occur. Even when it is placed in a mold, there is little undissolved residue.

【0017】さらに本発明では溶融温度が球状黒鉛鋳鉄
の溶融温度より低温である接種剤例えばNi−Si合金
の接種剤と溶融温度が球状黒鉛鋳鉄の溶融温度より低温
である接種剤例えばFe−Siの接種剤とを混合して接
種剤として用いるが、この様に両者を混合することによ
って、安価とすることができる。また特にNi−Si合
金の接種剤とFe−Siの接種剤の特性の中間的特性の
接種剤を用いる必要があるときに有効となる。すなわち
Ni−Si合金の接種剤だけではあまりに早く効果が現
れすぎ、逆にFe−Siの接種剤だけでは溶け残りが生
じる様な場合である。また本発明の球状黒鉛鋳鉄の製造
方法では黒鉛粒数が増えるという作用が認められる。す
なわち球状黒鉛鋳鉄溶湯の表面は温度が低く例えば鋳型
表面部では温度が低いのでFe−Si接種剤では溶け込
まない。これに対し本発明の球状黒鉛鋳鉄の製造方法に
用いられる接種剤例えばNi−Si合金接種剤ではFe
−Si等の接種剤に比べて非常に低い温度から溶け始め
る。従って、鋳物表面のチル化防止については本発明の
球状黒鉛鋳鉄の製造方法で用いられる接種剤例えばNi
−Si合金の接種剤がはるかに有利となる。
Further, in the present invention, an inoculant having a melting temperature lower than that of spheroidal graphite cast iron, such as Ni-Si alloy, and an inoculant having a melting temperature lower than that of spheroidal graphite cast iron, such as Fe-Si. It is used as an inoculant by mixing with the inoculant of 1., but it is possible to reduce the cost by mixing the two in this way. It is also particularly effective when it is necessary to use an inoculant having an intermediate property between those of the Ni-Si alloy inoculant and the Fe-Si inoculant. That is, this is a case where the effect appears too quickly only with the Ni-Si alloy inoculant, and conversely the undissolved residue occurs only with the Fe-Si inoculant. Further, in the method for producing spheroidal graphite cast iron of the present invention, it is recognized that the number of graphite particles increases. That is, since the surface of the spheroidal graphite cast iron melt has a low temperature, for example, the surface of the mold has a low temperature, it cannot be melted by the Fe-Si inoculant. On the other hand, the inoculant used in the method for producing spheroidal graphite cast iron of the present invention, for example, the Ni-Si alloy inoculant, is Fe.
-Begin to melt from a very low temperature compared to inoculants such as Si. Therefore, to prevent chilling of the surface of the casting, an inoculant such as Ni used in the method for producing spheroidal graphite cast iron of the present invention is used.
-Si alloy inoculants are much more advantageous.

【0018】すなわちFe−Si等の接種剤では鋳物表
面のチル化を十分に防止することができないのに対し、
本発明の球状黒鉛鋳鉄の製造方法では球状黒鉛鋳鉄の溶
融温度より低温である接種剤例えばNi−Si合金の接
種剤を用いるので表面のチル化を防止することができ
る。又それに伴いFe−Si等の接種剤を用いる場合に
比べ本発明の球状黒鉛鋳鉄の製造方法では球状黒鉛鋳鉄
の溶融温度より低温である接種剤例えばNi−Si合金
の接種剤を用いるので球状黒鉛鋳鉄溶湯への添加時にお
ける黒鉛粒数が増える。
That is, the inoculant such as Fe-Si cannot sufficiently prevent chilling of the casting surface, whereas
In the method for producing spheroidal graphite cast iron of the present invention, an inoculant having a temperature lower than the melting temperature of spheroidal graphite cast iron, for example, an inoculant of Ni-Si alloy is used, so that surface chilling can be prevented. Along with that, in the method for producing spheroidal graphite cast iron of the present invention, an inoculant having a temperature lower than the melting temperature of spheroidal graphite cast iron, for example, an inoculant of Ni-Si alloy is used, so that the spheroidal graphite is used. The number of graphite particles increases when added to the cast iron melt.

【0019】[0019]

【実施例】以下に本発明の球状黒鉛鋳鉄の製造方法の実
施例について説明する。 実施例1 表1に示す成分のNi−Si系接種剤を用いて、Ni−
Si系接種剤における低温溶解の特徴を生かして塗型接
種を行い本発明の球状黒鉛鋳鉄の製造方法を実施した。
図1に示されるように鋳型1の一部領域Aに粒径0.1
〜0.3mmのNi−Si系接種剤2を塗布し、比較例
として他の領域Bには接種剤を塗布せずに、鋳型1に球
状黒鉛鋳鉄溶湯を注湯し、得られたテストピースにおけ
る鋳肌付近の金属組織を調査した。その結果、Ni−S
i系接種剤2を塗布した領域Aに対応する領域ではテス
トピースの表面まで充分に球状化しておりチルの発生が
認められないのに対し、接種剤を塗布しなかった領域B
に対応する領域はチル化しているのが認められた。また
Ni−Si系接種剤2を塗布した領域Aに対応する領域
では、得られた鋳鉄における鋳肌付近のチルが解消され
ただけではなく、Fe−Si系接種剤を用いた場合のよ
うなの溶け残りはほとんど認められなかった。
EXAMPLES Examples of the method for producing spheroidal graphite cast iron of the present invention will be described below. Example 1 Using the Ni-Si type inoculant of the components shown in Table 1, Ni-
The method for producing spheroidal graphite cast iron according to the present invention was carried out by inoculating a mold by making use of the characteristics of low temperature dissolution in a Si-based inoculant.
As shown in FIG. 1, the particle size is 0.1 in a partial region A of the mold 1.
A test piece obtained by pouring spheroidal graphite cast iron molten metal into the mold 1 without applying the inoculant to the other region B as a comparative example by applying a Ni-Si inoculant 2 of about 0.3 mm. The metallographic structure near the casting surface was investigated. As a result, Ni-S
In the area corresponding to the area A to which the i-type inoculant 2 was applied, the surface of the test piece was sufficiently spheroidized and no chill was observed, whereas the area B to which the inoculant was not applied was observed.
It was recognized that the region corresponding to was chilled. Further, in the area corresponding to the area A coated with the Ni-Si inoculant 2, not only the chill near the casting surface in the obtained cast iron has been eliminated, but also the case where the Fe-Si inoculant is used. Almost no unmelted residue was observed.

【0020】[0020]

【表1】 [Table 1]

【0021】なお以上の実施例に用いた接種剤の組成に
おいてAl、Caは一般的に接種剤にはこれくらい含ま
れるものであり、製造工程で硅砂から入ってくる。これ
に対してBaは意図的に添加している。
In the composition of the inoculant used in the above-mentioned examples, Al and Ca are generally contained in the inoculant in this amount, and they come from silica sand in the manufacturing process. On the other hand, Ba is intentionally added.

【0022】実施例2 図2に示す鋳造方案の鋳型を用いて球状黒鉛鋳鉄溶湯の
鋳造を行った。図2に示す鋳造方案ではt1が1mm厚
のテストピースの鋳型であり、t2が2mm厚のテスト
ピースの鋳型であり、t3が3mm厚のテストピースの
鋳型であり、t4が4mm厚のテストピースの鋳型であ
る。鋳造にあたっては、前記表1に示す組成のNi−S
i系接種剤を用いて塗型接種を行い本発明の球状黒鉛鋳
鉄の製造方法を実施した。また比較例として、従来のF
e−Si系接種剤を用いて塗型接種を行って同様に鋳造
を行った。さらに別の比較例として接種剤を用いずに同
様に鋳造を行った。得られた各テストピースにつき鋳肌
からの距離と黒鉛粒数との関係を調査した。その結果を
図3〜図5に示す。図3〜図5において○は図2におけ
るt1の鋳型により得られた1mm厚のテストピースを
用いた調査結果を示し、◇は図2におけるt2の鋳型に
より得られた2mm厚のテストピースを用いた調査結果
を示し、□は図2におけるt3の鋳型により得られた3
mm厚のテストピースを用いた調査結果を示し、△は図
2におけるt4の鋳型により得られた4mm厚のテスト
ピースを用いた調査結果を示す。
Example 2 A spheroidal graphite cast iron molten metal was cast using the mold of the casting method shown in FIG. In the casting method shown in FIG. 2, t1 is a 1 mm thick test piece mold, t2 is a 2 mm thick test piece mold, t3 is a 3 mm thick test piece mold, and t4 is a 4 mm thick test piece. It is a mold of. Upon casting, Ni-S having the composition shown in Table 1 above
The method for producing spheroidal graphite cast iron of the present invention was carried out by inoculation with a coating type using an i-type inoculant. As a comparative example, the conventional F
Mold casting was performed using an e-Si inoculant and casting was performed in the same manner. As another comparative example, casting was performed in the same manner without using the inoculant. The relationship between the distance from the casting surface and the number of graphite particles was investigated for each of the obtained test pieces. The results are shown in FIGS. In FIGS. 3 to 5, ◯ indicates the results of the investigation using the 1 mm-thick test piece obtained by the t1 mold in FIG. 2, and ⋄ indicates the 2 mm-thick test piece obtained by the t2 mold in FIG. The results of the investigation were shown, and □ indicates 3 obtained by the template of t3 in FIG.
2 shows the result of the investigation using the test piece having a thickness of mm, and Δ shows the result of the investigation using the test piece having a thickness of 4 mm obtained by the mold of t4 in FIG.

【0023】図3に示されるように接種剤を添加せずに
鋳造を行った場合には、鋳肌近傍における黒鉛粒数が極
めて低く、チル化の可能性が認められる。これに対して
図4に示されるようにFe−Si系接種剤を用いて塗型
接種を行って鋳造を行った場合には図3に示される接種
剤を添加せずに鋳造を行った場合に比べ、黒鉛粒数が増
加している。しかし、図5に示されるようにNi−Si
系接種剤を用いて塗型接種を行った実施例の場合ではF
e−Si系接種剤を用いて塗型接種を行った図4の実施
例の場合に比べて更に黒鉛粒数が増加しており、格段に
黒鉛粒数が多い。
As shown in FIG. 3, when casting was carried out without adding an inoculant, the number of graphite particles in the vicinity of the casting surface was extremely low, and the possibility of chilling was recognized. On the other hand, as shown in FIG. 4, when casting was performed by inoculation with the Fe-Si type inoculant, when casting was performed without adding the inoculant shown in FIG. Compared with, the number of graphite particles is increasing. However, as shown in FIG.
F in the case of an example in which a coating type inoculation was carried out using a system inoculant
The number of graphite particles is further increased as compared with the case of the example of FIG. 4 in which the inoculation with the coating type is performed using the e-Si inoculant, and the number of graphite particles is remarkably large.

【0024】従って以上の図5の実施例及び図3、4の
比較例の結果に示されるように、本発明の球状黒鉛鋳鉄
の製造方法では球状黒鉛鋳鉄の溶融温度より低温である
ことにより接種剤が容易に早く溶け、接種剤が容易に早
く溶けない比較例の場合には接種効果が現れるのに時間
がかかるのに対して短時間で接種効果が現れ、黒鉛粒数
が増える。特に鋳型表面部では球状黒鉛鋳鉄溶湯の温度
が低いのでFe−Si接種剤では溶け込まないのに対
し、本発明の球状黒鉛鋳鉄の製造方法に用いられるNi
−Si合金接種剤ではFe−Si等の接種剤に比べて非
常に低い温度から溶け始め、黒鉛粒数が増加することか
ら鋳物表面のチル化防止については従来のFe−Si等
の接種剤を用いた球状黒鉛鋳鉄の製造方法に比べて本発
明のNi−Si合金の接種剤を用いた球状黒鉛鋳鉄の製
造方法がはるかに有利となる。
Therefore, as shown in the results of the example of FIG. 5 and the comparative examples of FIGS. 3 and 4, in the method for producing spheroidal graphite cast iron of the present invention, the temperature is lower than the melting temperature of the spheroidal graphite cast iron, so that the inoculation is performed. In the case of the comparative example in which the agent dissolves easily and quickly and the inoculum does not dissolve quickly, the inoculation effect takes time to appear, whereas the inoculation effect appears in a short time and the number of graphite particles increases. In particular, since the temperature of the molten spheroidal graphite cast iron on the surface of the mold is low, the spheroidal graphite cast iron is not melted by the Fe-Si inoculant, whereas Ni used in the method for producing spheroidal graphite cast iron of the present invention.
The -Si alloy inoculant begins to melt at a temperature extremely lower than that of Fe-Si and the like, and the number of graphite particles increases. Therefore, in order to prevent chilling of the casting surface, conventional inoculants such as Fe-Si are used. Compared with the method for producing spheroidal graphite cast iron used, the method for producing spheroidal graphite cast iron using the Ni—Si alloy inoculant of the present invention is much more advantageous.

【0025】実施例3 表1に示す成分のNi−Si系接種剤を用いて、Ni−
Si系接種剤における低温溶解の特徴を生かして塗型接
種を行い本発明の球状黒鉛鋳鉄の製造方法を実施し、3
0mmφのテストピースを鋳造した。一方、比較例として
従来の接種剤を用いて塗型接種を行い従来の方法で球状
黒鉛鋳鉄を製造し、実施例と同様のテストピースを得
た。得られた実施例及び比較例夫々のテストピースを用
いて図6に示す試験を行った。すなわち図6に示す様に
300mm間隔で配置された支持体3,3上にテストピー
ス4を設置し、そのテストピース4上に重錘5を載置
し、それによるテストピース4の変位xを測定した。そ
の測定結果を図7に示す。また実施例及び比較例夫々の
テストピース4の表層部断面の金属組織写真を図8、図
9にそれぞれ示す。図7に示されるように図中実線で示
す実施例のテストピース4では荷重が1000kgを越え
ても破断せず、荷重が1500kgを越えてようやく破断
するのに対し、図中破線で示す比較例のテストピース4
では荷重が1500kgに達する前に荷重が1000kgを
越えると破断する事実が認められる。これは実施例のテ
ストピースは本発明を実施して得られたテストピースで
あるので表層部が図8に示されるようにフェライト化し
ており靱性が高いのに対し、比較例のテストピースは従
来法で製造したため表層が充分に球状化されず図9に示
されるように表層部がパーライト化していることに起因
する。
Example 3 Using the Ni-Si type inoculant having the components shown in Table 1, Ni-
Using the characteristic of the low temperature dissolution in the Si-based inoculant, a mold-type inoculation was performed to carry out the method for producing spheroidal graphite cast iron of the present invention.
A 0 mmφ test piece was cast. On the other hand, as a comparative example, coating inoculation was performed using a conventional inoculant to produce spheroidal graphite cast iron by a conventional method, and a test piece similar to that of the example was obtained. The test shown in FIG. 6 was conducted using the test pieces of the obtained Examples and Comparative Examples. That is, as shown in FIG. 6, the test piece 4 is placed on the supports 3 which are arranged at intervals of 300 mm, the weight 5 is placed on the test piece 4, and the displacement x of the test piece 4 caused by the test piece 4 is set. It was measured. The measurement result is shown in FIG. 8 and 9 are photographs of the metallographic structures of the cross-sections of the surface layers of the test pieces 4 of Examples and Comparative Examples, respectively. As shown in FIG. 7, the test piece 4 of the embodiment shown by the solid line in the figure does not break even when the load exceeds 1000 kg, and finally breaks when the load exceeds 1500 kg, whereas the comparative example shown by the broken line in the figure. Test piece 4
In fact, it is recognized that if the load exceeds 1000 kg before the load reaches 1500 kg, it breaks. Since the test piece of the example is a test piece obtained by carrying out the present invention, the surface layer part is ferritic as shown in FIG. 8 and has high toughness, whereas the test piece of the comparative example is conventional. Since it was manufactured by the method, the surface layer was not sufficiently spheroidized and the surface layer portion was pearlite as shown in FIG.

【0026】なお以上の各実施例ではNi−Si系接種
剤の球状黒鉛鋳鉄溶湯への添加方法として主として塗型
接種を採用したが、本発明におけるNi−Si系接種剤
の球状黒鉛鋳鉄溶湯への添加方法はこれに限られるもの
ではなく例えば以下の(1)〜(4)に示す各態様での
添加方法を採用することができる。 (1)一次接種(取鍋中にFe−Si−Mgと同時に装
入) (2)二次接種(球状化反応後取鍋に投入) (3)元湯で装入 (4)注湯流接種を行う。
In each of the above examples, the coating type inoculation was mainly used as a method of adding the Ni-Si inoculant to the spheroidal graphite cast iron melt, but the Ni-Si inoculant of the present invention was added to the spheroidal graphite cast iron melt. The addition method is not limited to this, and the addition method in each of the following modes (1) to (4) can be adopted. (1) Primary inoculation (charged into the ladle at the same time as Fe-Si-Mg) (2) Secondary inoculation (charged into the ladle after the spheroidizing reaction) (3) Charged with the original hot water (4) Pouring flow Inoculate.

【0027】[0027]

【発明の効果】以上のように本発明の球状黒鉛鋳鉄の製
造方法によれば、黒鉛化促進元素を含み溶融温度が球状
黒鉛鋳鉄の溶融温度より低温である接種剤を用いて球状
黒鉛鋳鉄溶湯の鋳造を行う様にしたので接種剤が容易に
早く溶け、接種剤が容易に早く溶けない場合には接種効
果が現れるのに時間がかかるに対して短時間で接種効果
が現れ、接種剤の溶け残りが少ない球状黒鉛鋳鉄を得る
ことができる。また本発明の球状黒鉛鋳鉄の製造方法に
用いられる接種剤例えばNi−Si合金接種剤では従来
のFe−Si等の接種剤に比べて非常に低い温度から溶
け始め、従って、本発明の球状黒鉛鋳鉄の製造方法によ
れば接種剤の球状黒鉛鋳鉄溶湯の表面への添加時におけ
る黒鉛粒数が増え、表面のチル化を防止することができ
る。
As described above, according to the method for producing spheroidal graphite cast iron of the present invention, the spheroidal graphite cast iron molten metal is prepared by using the inoculant containing the graphitization promoting element and having the melting temperature lower than the melting temperature of the spheroidal graphite cast iron. Since the inoculation agent is easily and quickly melted, it takes time for the inoculation effect to appear when the inoculation agent does not dissolve easily and quickly. Spheroidal graphite cast iron with little unmelted residue can be obtained. Further, the inoculant used in the method for producing spheroidal graphite cast iron of the present invention, for example, the Ni-Si alloy inoculant, starts to melt at a temperature extremely lower than that of the conventional inoculants such as Fe-Si, and therefore, the spheroidal graphite of the present invention. According to the method for producing cast iron, the number of graphite particles at the time of adding the inoculant to the surface of the molten spheroidal graphite cast iron is increased, and chilling of the surface can be prevented.

【0028】さらに本発明の球状黒鉛鋳鉄の製造方法で
は溶融温度が球状黒鉛鋳鉄の溶融温度より低温である接
種剤例えばNi−Si合金の接種剤と溶融温度が球状黒
鉛鋳鉄の溶融温度より低温である接種剤例えばFe−S
iの接種剤とを混合して接種剤として用いるのでこの様
に両者を混合することによって、球状黒鉛鋳鉄の製造コ
ストを低くすることができる。また特にNi−Si合金
の接種剤とFe−Siの接種剤の特性の中間的特性の接
種剤を用いる必要があるときにかかる本発明の球状黒鉛
鋳鉄の製造方法は有効となる。
Further, in the method for producing spheroidal graphite cast iron of the present invention, an inoculant having a melting temperature lower than that of spheroidal graphite cast iron, for example, an inoculant of Ni-Si alloy and a melting temperature lower than that of spheroidal graphite cast iron are used. Some inoculants such as Fe-S
Since the inoculant i is mixed and used as the inoculant, the production cost of the spheroidal graphite cast iron can be reduced by mixing the both. The method for producing spheroidal graphite cast iron of the present invention is particularly effective when it is necessary to use an inoculant having an intermediate property between the inoculant of Ni-Si alloy and the inoculant of Fe-Si.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明を実施して得られたテストピース及び
比較例のテストピースにおける鋳肌付近の金属組織写
真。
FIG. 1 is a photograph of a metal structure near a casting surface in a test piece obtained by carrying out the present invention and a test piece of a comparative example.

【図2】 本発明の実施例に用いた鋳造方案の正面図。FIG. 2 is a front view of a casting method used in an example of the present invention.

【図3】 本発明の実施例に対する比較例のテストピー
スにおける鋳肌からの距離と黒鉛粒数との関係を調査し
た結果を示す図。
FIG. 3 is a diagram showing the results of an investigation of the relationship between the distance from the casting surface and the number of graphite particles in the test piece of the comparative example with respect to the example of the present invention.

【図4】 本発明の実施例に対する他の比較例のテスト
ピースにおける鋳肌からの距離と黒鉛粒数との関係を調
査した結果を示す図。
FIG. 4 is a diagram showing the results of an investigation of the relationship between the distance from the casting surface and the number of graphite particles in the test piece of another comparative example with respect to the example of the present invention.

【図5】 本発明の実施例のテストピースにおける鋳肌
からの距離と黒鉛粒数との関係を調査した結果を示す
図。
FIG. 5 is a diagram showing the results of an examination of the relationship between the distance from the casting surface and the number of graphite particles in the test piece of the example of the present invention.

【図6】 本発明の実施例3で行った強度試験の試験法
を示す説明図。
FIG. 6 is an explanatory diagram showing a test method of a strength test performed in Example 3 of the present invention.

【図7】 本発明の実施例3で行った強度試験の結果を
示す図。
FIG. 7 is a diagram showing the results of a strength test conducted in Example 3 of the present invention.

【図8】 本発明の実施例3で得られたテストピースの
表層部断面の金属組織写真。
FIG. 8 is a photograph of a metallographic structure of a surface layer section of a test piece obtained in Example 3 of the present invention.

【図9】 比較例で得られたテストピースの表層部断面
の金属組織写真。
FIG. 9 is a photograph of a metal structure of a cross section of a surface layer of a test piece obtained in a comparative example.

【符号の説明】[Explanation of symbols]

1・・・鋳型、2・・・接種剤、3・・・支持体、4・
・・テストピース、5・・・重錘、A・・・接種剤添加
部、B・・・接種剤非添加部、t1・・・1mm厚テス
トピース、t2・・・2mm厚テストピース、t3・・
・3mm厚テストピース、t4・・・4mm厚テストピ
ース、○・・・t1鋳型により得られた1mm厚テスト
ピースを用いた調査結果、◇・・・t2鋳型により得ら
れた2mm厚テストピースを用いた調査結果、□・・・
t3鋳型により得られた3mm厚テストピースを用いた
調査結果、△・・・t4鋳型により得られた4mm厚テ
ストピースを用いた調査結果。
1 ... Template, 2 ... Inoculant, 3 ... Support, 4 ...
..Test pieces, 5 ... Weight, A ... Inoculant-added portion, B ... Inoculant-free portion, t1 ... 1 mm thick test piece, t2 ... 2 mm thick test piece, t3・ ・
・ 3 mm thick test piece, t4 ... 4 mm thick test piece, ◯ ... Investigation result using 1 mm thick test piece obtained by t1 mold, ◇ ... 2 mm thick test piece obtained by t2 mold Survey results used, □ ・ ・ ・
Investigation result using 3 mm thick test piece obtained by t3 mold, Δ ... Investigation result using 4 mm thick test piece obtained by t4 mold.

Claims (14)

【特許請求の範囲】[Claims] 【請求項1】 黒鉛化促進元素を含み溶融温度が球状黒
鉛鋳鉄の溶融温度より低温である接種剤を用いて球状黒
鉛鋳鉄の鋳造を行うことを特徴とする球状黒鉛鋳鉄の製
造方法。
1. A method for producing spheroidal graphite cast iron, which comprises casting the spheroidal graphite cast iron using an inoculant containing a graphitization promoting element and having a melting temperature lower than the melting temperature of the spheroidal graphite cast iron.
【請求項2】 黒鉛化促進元素を含み溶融温度が球状黒
鉛鋳鉄の溶融温度より低温である接種剤を表面に塗布し
た鋳型に球状黒鉛鋳鉄溶湯を注湯することを特徴とする
球状黒鉛鋳鉄の製造方法。
2. A spheroidal graphite cast iron characterized in that a spheroidal graphite cast iron melt is poured into a mold having a surface coated with an inoculant containing a graphitization promoting element and having a melting temperature lower than that of spheroidal graphite cast iron. Production method.
【請求項3】 黒鉛化促進元素を含み溶融温度が球状黒
鉛鋳鉄の溶融温度より低温である接種剤と溶融温度が球
状黒鉛鋳鉄の溶融温度より高温である接種剤を混合又は
合金化した接種剤を用いて球状黒鉛鋳鉄の鋳造を行うこ
とを特徴とする球状黒鉛鋳鉄の製造方法。
3. An inoculant comprising a graphitization-promoting element and having a melting temperature lower than that of spheroidal graphite cast iron and an inoculant having a melting temperature higher than that of spheroidal graphite cast iron. A method for producing spheroidal graphite cast iron, characterized in that spheroidal graphite cast iron is cast by using.
【請求項4】 黒鉛化促進元素を含み溶融温度が球状黒
鉛鋳鉄の溶融温度より低温である接種剤と溶融温度が球
状黒鉛鋳鉄の溶融温度より高温である接種剤を混合又は
合金化した接種剤を表面に塗布した鋳型に球状黒鉛鋳鉄
溶湯を注湯することを特徴とする球状黒鉛鋳鉄の製造方
法。
4. An inoculant containing a graphitization-promoting element and having a melting temperature lower than that of spheroidal graphite cast iron, and an inoculant having a melting temperature higher than that of spheroidal graphite cast iron. A method for producing spheroidal graphite cast iron, which comprises pouring molten spheroidal graphite cast iron into a mold having a surface coated with slag.
【請求項5】 黒鉛化促進元素を含み溶融温度が球状黒
鉛鋳鉄の溶融温度より低温である接種剤を鋳型表面に塗
布し、溶融温度が球状黒鉛鋳鉄の溶融温度より高温であ
る接種剤を溶湯中に添加することを特徴とする球状黒鉛
鋳鉄の製造方法。
5. An inoculant containing a graphitization-promoting element and having a melting temperature lower than that of spheroidal graphite cast iron is applied to a mold surface, and an inoculant having a melting temperature higher than that of spheroidal graphite cast iron is melted. A method for producing spheroidal graphite cast iron, characterized by being added to the inside.
【請求項6】 黒鉛化促進元素を含み主成分がSi及び
Niである接種剤を用いて球状黒鉛鋳鉄の鋳造を行うこ
とを特徴とする球状黒鉛鋳鉄の製造方法。
6. A method for producing spheroidal graphite cast iron, which comprises casting spheroidal graphite cast iron using an inoculant containing a graphitization promoting element and having Si and Ni as main components.
【請求項7】 黒鉛化促進元素を含み主成分がSi及び
Niである接種剤を表面に塗布した鋳型に球状黒鉛鋳鉄
溶湯を注湯することを特徴とする球状黒鉛鋳鉄の製造方
法。
7. A method for producing spheroidal graphite cast iron, which comprises pouring the spheroidal graphite cast iron molten metal into a mold having a surface coated with an inoculant containing graphitization-promoting elements and whose main components are Si and Ni.
【請求項8】 黒鉛化促進元素を含み主成分がSi及び
Niであり、3wt%以下のBaを含有する接種剤を用い
て球状黒鉛鋳鉄の鋳造を行うことを特徴とする球状黒鉛
鋳鉄の製造方法。
8. Production of spheroidal graphite cast iron, characterized in that spheroidal graphite cast iron is cast using an inoculant containing graphitization promoting elements as main components of Si and Ni and containing 3 wt% or less of Ba. Method.
【請求項9】 黒鉛化促進元素を含み主成分がSi及び
Niであり、3wt%以下のBaを含有する接種剤を表面
に塗布した鋳型に球状黒鉛鋳鉄溶湯を注湯することを特
徴とする球状黒鉛鋳鉄の製造方法。
9. A spheroidal graphite cast iron molten metal is poured into a mold having Si and Ni as main components containing a graphitization promoting element and having an inoculant containing 3 wt% or less of Ba applied on the surface thereof. Manufacturing method of spheroidal graphite cast iron.
【請求項10】 黒鉛化促進元素を含み主成分がSi及
びNiである接種剤と主成分がSi及びFeである接種
剤を混合又は合金化した接種剤を用いて球状黒鉛鋳鉄の
鋳造を行うことを特徴とする球状黒鉛鋳鉄の製造方法。
10. Casting of spheroidal graphite cast iron is carried out using an inoculant which is a mixture or alloy of an inoculant containing graphitization-promoting elements and whose main components are Si and Ni and an inoculant whose main components are Si and Fe. A method for producing spheroidal graphite cast iron, comprising:
【請求項11】 黒鉛化促進元素を含み主成分がSi及
びNiである接種剤と主成分がSi及びFeである接種
剤を混合又は合金化した接種剤を表面に塗布した鋳型に
球状黒鉛鋳鉄溶湯を注湯することを特徴とする球状黒鉛
鋳鉄の製造方法。
11. A spheroidal graphite cast iron in a mold having a surface coated with an inoculant which is a mixture or alloy of an inoculant containing graphitization-promoting elements and whose main components are Si and Ni and an inoculant whose main components are Si and Fe. A method for producing spheroidal graphite cast iron, which comprises pouring molten metal.
【請求項12】 主成分がSi及びNiである接種剤と
主成分がSi及びFeである接種剤との混合又は合金化
比率を1/3〜3/1とする請求項10又は請求項11
記載の球状黒鉛鋳鉄の製造方法。
12. The mixing or alloying ratio of an inoculant having Si and Ni as main components and an inoculant having Si and Fe as main components is set to 1/3 to 3/1.
A method for producing the spheroidal graphite cast iron described.
【請求項13】 黒鉛化促進元素を含み主成分がSi及
びNiである接種剤を鋳型表面に塗布し、主成分がSi
及びFeである接種剤を溶湯中に添加することを特徴と
する球状黒鉛鋳鉄の製造方法。
13. An inoculum containing a graphitization-promoting element, the main components of which are Si and Ni, is applied to the surface of the mold, and the main component is Si.
A method for producing spheroidal graphite cast iron, characterized in that an inoculant of Fe and Fe is added to the molten metal.
【請求項14】 主成分がSi及びNiである接種剤が
3wt%以下のBaを含有する請求項13記載の球状黒鉛
鋳鉄の製造方法。
14. The method for producing spheroidal graphite cast iron according to claim 13, wherein the inoculant whose main components are Si and Ni contains 3 wt% or less of Ba.
JP1401295A 1995-01-31 1995-01-31 Production of spherical graphite cast iron Pending JPH08209217A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1401295A JPH08209217A (en) 1995-01-31 1995-01-31 Production of spherical graphite cast iron

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1401295A JPH08209217A (en) 1995-01-31 1995-01-31 Production of spherical graphite cast iron

Publications (1)

Publication Number Publication Date
JPH08209217A true JPH08209217A (en) 1996-08-13

Family

ID=11849294

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1401295A Pending JPH08209217A (en) 1995-01-31 1995-01-31 Production of spherical graphite cast iron

Country Status (1)

Country Link
JP (1) JPH08209217A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113897538A (en) * 2021-10-12 2022-01-07 安徽裕隆模具铸业有限公司 High-strength and high-elongation as-cast QT500-18 nodular cast iron and preparation method thereof
US11396041B2 (en) 2018-12-27 2022-07-26 Hyundai Motor Company Method for manufacturing cast iron casting with fining graphite and suspension part

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11396041B2 (en) 2018-12-27 2022-07-26 Hyundai Motor Company Method for manufacturing cast iron casting with fining graphite and suspension part
US11845125B2 (en) 2018-12-27 2023-12-19 Hyundai Motor Company Method for manufacturing cast iron casting with fining graphite and suspension part
CN113897538A (en) * 2021-10-12 2022-01-07 安徽裕隆模具铸业有限公司 High-strength and high-elongation as-cast QT500-18 nodular cast iron and preparation method thereof

Similar Documents

Publication Publication Date Title
US5008074A (en) Inoculant for gray cast iron
ID24078A (en) CANAI WHICH SURFACE THE AMORE OR GLASS MIXED METALS FOR CONTINUUING SUPPORT OF METALS
Borse et al. Review on grey cast iron inoculation
JPS59232649A (en) Metallic mold for molding plastic
JPH08209217A (en) Production of spherical graphite cast iron
JPH1034301A (en) Mold powder at initial stage for continuous casting
JP3735318B2 (en) High silicon cast iron excellent in acid resistance and method for producing the same
JP3475607B2 (en) Prevention of chunky graphite crystallization of spheroidal graphite cast iron.
JPH08333650A (en) Thin-walled spheroidal graphite cast iron, automobile parts using same, and production of thin-walled spheroidal graphite cast iron
JPH11279681A (en) High strength cast iron
JPH08209216A (en) Inoculant
JP2000017372A (en) Spheroidal graphite cast iron with high rigidity
JP3797818B2 (en) Graphite spheroidized alloy for cast iron production
JP2002275575A (en) High strength spheroidal graphite cast iron and production method therefor
JP3053063B2 (en) Manufacturing method of aluminum alloy casting material suitable for semi-solid molding
JPS61216840A (en) Instantaneous inoculation casting method
US2625473A (en) Lithium modified magnesium treatment of cast iron
JP3227051B2 (en) Method of preventing chilling during casting of cast iron cast products
JPH0454723B2 (en)
JPH0247213A (en) Inoculant for cast iron
JPH09235609A (en) Production of cast iron
JP3025667B2 (en) Metal mold casting method
JPH10317039A (en) Production of spheroidal graphite cast iron
JPS58151451A (en) Cast iron with superior weldability
JP2000256722A (en) Inoculant for spheroidal graphite cast iron and production thereof