JPH1060572A - Fine graphite cast iron and its production - Google Patents

Fine graphite cast iron and its production

Info

Publication number
JPH1060572A
JPH1060572A JP22270296A JP22270296A JPH1060572A JP H1060572 A JPH1060572 A JP H1060572A JP 22270296 A JP22270296 A JP 22270296A JP 22270296 A JP22270296 A JP 22270296A JP H1060572 A JPH1060572 A JP H1060572A
Authority
JP
Japan
Prior art keywords
cast iron
weight
casting
molten metal
fine graphite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22270296A
Other languages
Japanese (ja)
Inventor
Isamu Kawai
勇 河井
Shigeo Hashida
榮夫 橋田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP22270296A priority Critical patent/JPH1060572A/en
Publication of JPH1060572A publication Critical patent/JPH1060572A/en
Pending legal-status Critical Current

Links

Landscapes

  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Abstract

PROBLEM TO BE SOLVED: To easily produce a fine graphite cast iron product excellent in machinability, strength and rigidity by a sand mold casting method by incorporating the molten metal of cast iron with Mn, Ti or the like together with a specified amt. of Bi or Te. SOLUTION: A raw material 1 such as a casting return scrap, casting cutting powder, steel sheet pressing chips or the like is charged to a melting furnace 3 and is melted, and the molten metal 5 of cast iron contg., by weight, 3.4 to 3.7%. C, 2.3 to 2.9%, Si, 0.1 to 0.9% P, 0.6 to 1% Mn, 0.05 to 0.2% S and 0.05 to 0.2% Ti is flowed into a holding furnace 4. Next, while the molten metal 5 is poured into a ladle 6, as the material 7 to be added, to 100 pts.wt. the molten metal 5, at least either 0.01 to 0.05 pts.wt. Bi or 0.001 to 0.01 pts.wt. Te and 0.2 to 1 pts.wt. Mn are added, by which the fine graphite cast iron product contg., by weight, 0.001 to 0.03% Bi or 0.0003 to 0.005% Te, 0.5 to 2% Mn and 0.05 to 0.2% Ti can easily be produced by sand mold casting.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、微細黒鉛鋳鉄およ
びその鋳造技術に係り、機械加工性に優れた高強度・高
剛性を有し、特に砂型鋳造法に適する微細黒鉛鋳鉄とそ
の製造方法とに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fine graphite cast iron and a casting technique therefor, which has high strength and high rigidity excellent in machinability and is particularly suitable for a sand casting method, and a method for producing the same. About.

【0002】[0002]

【従来の技術】微細黒鉛鋳鉄の鋳造には、一般に、鋳造
時の急速凝固を利用した金型鋳造法(特公昭55−48
29号公報)が用いられている。この方法は、高温の溶
湯が金型へ注湯される際に急速凝固することを利用して
鋳造するものである。
2. Description of the Related Art Fine graphite cast iron is generally cast by a die casting method utilizing rapid solidification during casting (Japanese Patent Publication No. 55-48).
No. 29) is used. In this method, casting is performed by utilizing rapid solidification when a high-temperature molten metal is poured into a mold.

【0003】また、コストの高い金型鋳造法を用いず、
砂型で微細黒鉛鋳鉄を鋳造する方法としては、イオウを
0.05%以下に下げて、砂型で鋳造する方法、およ
び、チタンを0.3%以上含む溶湯を用いる砂型で鋳造
することを可能にする方法が知られている。
Also, without using a costly mold casting method,
As a method for casting fine graphite cast iron in a sand mold, it is possible to cast sulfur in a sand mold by lowering sulfur to 0.05% or less, and to cast in a sand mold using a molten metal containing 0.3% or more of titanium. There are known ways to do this.

【0004】[0004]

【発明が解決しようとする課題】上述の金型鋳造法で
は、急速凝固を行うことにより加工性の良い微細黒鉛鋳
鉄材料が得られるが、急速凝固のために砂型鋳造に比較
して白銑(いわゆるチル)や亀裂、ピンホール等の鋳造
欠陥が発生しやすい。
In the above-mentioned mold casting method, a fine graphite cast iron material having good workability can be obtained by performing rapid solidification. Cast defects such as so-called chills, cracks and pinholes are likely to occur.

【0005】一方、砂型鋳造法では、十分な加工性を有
する高強度の鋳鉄を得ることは困難である。イオウ含有
量を0.05%以下にした溶湯を用いる場合には、イオ
ウの量を減らすことにより黒鉛が微細化して強度が向上
するが、困難な脱流作業を行わなければならない。ま
た、0.3%以上のチタンを含む溶湯を用いる場合は、
チタンにより黒鉛が微細になって強度が高まるが、チタ
ン化合物の増加により加工性が著しく害される。
On the other hand, in the sand casting method, it is difficult to obtain a high-strength cast iron having sufficient workability. In the case of using a molten metal having a sulfur content of 0.05% or less, graphite is refined and the strength is improved by reducing the amount of sulfur, but it is necessary to perform a difficult outflow operation. When a molten metal containing 0.3% or more of titanium is used,
Titanium makes graphite finer and increases the strength, but the workability is significantly impaired by the increase in titanium compound.

【0006】そこで本発明では、機械加工性の良い、高
硬度、高強度、高剛性の微細黒鉛鋳鉄と、その製造方法
とを提供することを目的とする。
Accordingly, an object of the present invention is to provide a fine graphite cast iron having high machinability, high hardness, high strength and high rigidity, and a method for producing the same.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するた
め、本発明では、(a)0.001〜0.03重量%の
ビスマス、および、0.0003〜0.005重量%の
テルルの、少なくともいずれか一方と、(b)0.5〜
2重量%のマンガンと、(c)0.05〜0.2重量%
のチタンと、を含む微細黒鉛鋳鉄が提供される。ビスマ
スとテルルとは、いずれか一方が含まれていれば足りる
が、両方含まれていてもよい。
In order to achieve the above object, the present invention provides (a) bismuth of 0.001 to 0.03% by weight and tellurium of 0.0003 to 0.005% by weight, At least one of them, and (b) 0.5 to
2% by weight of manganese and (c) 0.05 to 0.2% by weight
And a fine graphite cast iron comprising: Bismuth and tellurium need only contain one of them, but they may contain both.

【0008】また、本発明では、被溶解材料を溶解して
鋳鉄溶湯とする溶解工程と、鋳鉄溶湯100重量部に、
添加物として、(a)0.01〜0.05重量部のビス
マスと、0.001〜0.01重量部のテルルとのうち
の少なくともいずれか一方、および、(b)0.2〜1
重量部のマンガンを添加して注型用溶湯とする添加工程
と、該注型用溶湯を鋳造する鋳造工程とを有する微細黒
鉛鋳鉄の製造方法が提供される。
Further, in the present invention, a melting step of melting a material to be melted to form a molten cast iron;
As additives, (a) at least one of 0.01 to 0.05 parts by weight of bismuth and 0.001 to 0.01 parts by weight of tellurium, and (b) 0.2 to 1 part by weight
There is provided a method for producing fine graphite cast iron, comprising: an adding step of adding a part by weight of manganese to form a molten cast metal; and a casting step of casting the molten cast metal.

【0009】[0009]

【発明の実施の形態】本発明では、鋳鉄の溶湯に、
(1)溶湯に添加することにより凝固過程で過冷を引き
起こす元素と、(2)黒鉛を粗大化させることなく過冷
による白銑化凝固を抑える元素と、を添加することによ
り、凝固時における微細黒鉛の晶出範囲を広げること
で、機械加工性の良い、高硬度、高強度、高剛性の微細
黒鉛鋳鉄を得る。本発明では、黒鉛化を妨げて強度を低
下させるとされるイオウを0.1〜0.2%含有しても
十分な強度が得られるため、困難な脱硫作業を行う必要
がない。また、このイオウは微細黒鉛鋳鉄の加工性をさ
らに増す効果がある。さらに、加工性を害するチタン
(黒鉛を微細にして強度を高める)の含有量を0.3重
量%以下にすることができる。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention,
By adding (1) an element that causes supercooling in the solidification process by adding to the molten metal, and (2) an element that suppresses white pig iron solidification due to supercooling without coarsening the graphite, By expanding the crystallization range of the fine graphite, it is possible to obtain fine graphite cast iron having high machinability, high hardness, high strength, and high rigidity. In the present invention, sufficient strength can be obtained even if 0.1 to 0.2% of sulfur, which is considered to reduce the strength by preventing graphitization, is obtained, so that it is not necessary to perform a difficult desulfurization operation. Further, this sulfur has an effect of further improving the workability of the fine graphite cast iron. Further, the content of titanium (which enhances strength by making graphite finer) which impairs processability can be reduced to 0.3% by weight or less.

【0010】上記(1)の過冷促進元素としては、マグ
ネシウムが知られている。しかし、マグネシウムの効果
は、溶湯中にイオウが存在すると阻害されるため、マグ
ネシウムを用いる場合には、前処理として脱硫を行なう
必要がある。そこで、本発明では、イオウの存在下でも
効果を発揮する元素として、ビスマスとテルルを採用し
た。
As the supercooling promoting element of the above (1), magnesium is known. However, the effect of magnesium is hindered by the presence of sulfur in the molten metal. Therefore, when magnesium is used, desulfurization must be performed as a pretreatment. Therefore, in the present invention, bismuth and tellurium are employed as elements that exhibit an effect even in the presence of sulfur.

【0011】また、(2)の過冷による白銑凝固を阻害
する元素としては、珪素、アルミニウムなどがある。し
かし、珪素は片状黒鉛凝固を促進するため効果がなく、
また、アルミニウムは酸化皮膜を作るなどにより鋳造性
を害する。そこで、本発明では、このような弊害の無い
マンガンを使用した。
[0011] Further, as the element which inhibits white iron solidification due to the subcooling of (2), there are silicon, aluminum and the like. However, silicon has no effect because it promotes flake graphite solidification.
Aluminum impairs castability by forming an oxide film. Therefore, in the present invention, manganese which does not have such an adverse effect is used.

【0012】これらの添加物を添加する鋳鉄としては、
例えば、3.4〜3.7重量%の炭素と、2.3〜2.
9重量%のケイ素と、0.1〜0.3重量%のリンと、
0.6〜1重量%のマンガンと、0.05〜0.2重量
%のイオウと、0.05〜0.2重量%のチタンとを含
むものが挙げられる。
As the cast iron to which these additives are added,
For example, 3.4-3.7% by weight of carbon and 2.3-2.
9% by weight of silicon, 0.1-0.3% by weight of phosphorus,
Those containing 0.6-1% by weight of manganese, 0.05-0.2% by weight of sulfur, and 0.05-0.2% by weight of titanium.

【0013】なお、鋳造は、生産性のよい砂型を用いて
行なうことが望ましい。また、溶解工程は、鋳鉄溶湯を
炭素層に通す工程を備えることが望ましい。炭素層(例
えばコークスなどの炭素塊の層)を溶湯が通過すること
により、チル化傾向が少なくなるからである。
The casting is desirably performed using a sand mold having good productivity. The melting step preferably includes a step of passing the molten cast iron through the carbon layer. This is because when the molten metal passes through a carbon layer (for example, a layer of carbon lump such as coke), the tendency to chill is reduced.

【0014】また、鋳鉄溶湯への添加物としては、ビス
マスの添加にはビスマス塊を、テルルの添加にはテルル
塊を、マンガンの添加にはフェロマンガン粒を、それぞ
れ用いることが望ましい。添加物(添加合金)の添加順
序としては、まず、過冷を促進する元素(ビスマスおよ
び/またはテルル)を添加し、その後、黒鉛を粗大化せ
ずに白銑化凝固を抑えるマンガンを添加するのが黒鉛の
微細化には良いと考えられるが、実際に同時に添加する
実験を行ったところ、黒鉛は粗大化せず、これらの元素
を同時に添加してもよいことがわかった。
[0014] Further, as an additive to the molten cast iron, it is preferable to use a bismuth mass for adding bismuth, a tellurium mass for adding tellurium, and a ferromanganese particle for adding manganese. The order of addition of the additive (addition alloy) is as follows: first, an element that promotes supercooling (bismuth and / or tellurium) is added, and then manganese that suppresses white pig iron solidification without coarsening graphite is added. Although this is considered to be good for miniaturization of graphite, an experiment of actually adding graphite at the same time showed that graphite did not coarsen and that these elements could be added simultaneously.

【0015】[0015]

【実施例】以下、本発明の一実施例を図面を用いて説明
する。なお、溶解炉の構成、鋳鉄溶湯の組成、添加物の
量などは、以下の実施例に限定されるものではない。ま
た、以下の実施例では、試料をフェライト地にしている
が、本発明はこれに限られなず、比較的速い冷却を行っ
てパーライト地としてもよい。
An embodiment of the present invention will be described below with reference to the drawings. The configuration of the melting furnace, the composition of the molten cast iron, the amount of the additive, and the like are not limited to the following examples. Further, in the following examples, the sample is made of ferrite, but the present invention is not limited to this, and pearlite may be formed by performing relatively rapid cooling.

【0016】図1に、溶解から添加合金投入までの工程
を示す。本実施例では、炭素塊2を炉底に敷き詰めて炭
素層を形成した溶解炉3と、溶湯の温度を保持するため
の保持炉4と、鋳造のための砂型(図示せず)とを用
い、溶解炉3側面の下部には開口部が設けられており、
該開口部には、保持炉4への流路9が接続されている。
また、本実施例では、保持炉4に溜った溶湯5を砂型に
注型するために、取鍋6を用いた。
FIG. 1 shows steps from melting to addition of an additional alloy. In the present embodiment, a melting furnace 3 in which a carbon layer is formed by spreading a carbon lump 2 on a furnace bottom, a holding furnace 4 for holding a temperature of a molten metal, and a sand mold (not shown) for casting are used. An opening is provided at the lower part of the melting furnace 3 side,
A flow path 9 to the holding furnace 4 is connected to the opening.
In the present embodiment, a ladle 6 was used to cast the molten metal 5 accumulated in the holding furnace 4 into a sand mold.

【0017】まず、鋳物戻り材40重量%、鋳物切削粉
40重量%、鋼板プレス屑20重量%からなる被溶解材
料1を溶解炉3に入れ、加熱用コイル10に通電し、炉
内を1743Kに加熱して溶解させた後、得られた鋳鉄
の溶湯5を、流路9を介して保持炉4へ流し込み、加熱
用コイル11に通電して溶湯5を1743Kに保持し
た。つぎに、保持炉4に保持された溶湯5を取鍋6へ出
湯しつつ、取鍋6に所定量の添加合金7を投入した。こ
れにより得られた注型用溶湯8を、取鍋6から砂型に流
し込み、凝固した鋳物を砂型から取り出し、熱処理炉内
にて温度1173Kで1時間保持してその組織をほぼ完
全なフェライト地とした後、室温まで炉内冷却し、直径
30mm、長さ200mmの微細黒鉛鋳鉄の鋳物試験片
を作成した。ただし、添加合金7として、表1に示すよ
うに、実施例1ではビスマスとマンガンとを、実施例2
ではテルルとマンガンとを、実施例3ではビスマスおよ
びテルルとマンガンとを、それぞれ投入した。
First, a material 1 to be melted, which is composed of 40% by weight of cast material, 40% by weight of cast metal powder, and 20% by weight of pressed steel sheet, is placed in a melting furnace 3, and a heating coil 10 is energized. Then, the obtained cast iron molten metal 5 was poured into the holding furnace 4 through the flow path 9 and the heating coil 11 was energized to hold the molten metal 5 at 1743K. Next, while pouring the molten metal 5 held in the holding furnace 4 into the ladle 6, a predetermined amount of the additive alloy 7 was charged into the ladle 6. The casting melt 8 thus obtained is poured from the ladle 6 into a sand mold, the solidified casting is taken out of the sand mold, and kept at a temperature of 1173K for 1 hour in a heat treatment furnace to reduce the structure to a substantially complete ferrite ground. After that, the furnace was cooled to room temperature to prepare a cast specimen of fine graphite cast iron having a diameter of 30 mm and a length of 200 mm. However, as shown in Table 1, bismuth and manganese were used as additive alloy 7 in Example 1,
In Example 3, tellurium and manganese were charged, and in Example 3, bismuth, tellurium, and manganese were respectively charged.

【0018】なお、本実施例では、ビスマスの添加合金
7としてビスマス塊を、テルルの添加合金7としてテル
ルを、マンガンの添加合金7としてフェロマンガン粒
(JIS記号FMnH1、粒度f:表1ではFMnとし
て示した)を、それぞれ使用し、添加するすべて種類の
添加合金7をあらかじめ混合したものを、取鍋6に投入
した。表1に示した添加量は、添加する溶湯の量を10
0重量部としたときの値である。
In this embodiment, bismuth mass is used as the bismuth-added alloy 7, tellurium is used as the tellurium-added alloy 7, and ferromanganese particles are used as the manganese-added alloy 7 (JIS symbol FMnH1, particle size f: FMn in Table 1). ) Was added to the ladle 6, and a mixture of all kinds of additive alloys 7 to be added was previously mixed. The amount of addition shown in Table 1 indicates that the amount of
The value is based on 0 parts by weight.

【0019】また、比較例として、添加合金7を添加し
ない以外は本実施例と同様に処理して、鋳物試料を得
た。この比較例についても、表1に合わせて示す。
As a comparative example, a casting sample was obtained in the same manner as in the present example except that the additive alloy 7 was not added. This comparative example is also shown in Table 1.

【0020】[0020]

【表1】 [Table 1]

【0021】各実施例および比較例により得られた鋳物
試料の化学成分の分析値を、表2に示す。なお、ビスマ
スおよびテルルの歩留まりは、一般に、10〜50重量
%であると言われている。
Table 2 shows the analytical values of the chemical components of the casting samples obtained in each of the examples and comparative examples. The yield of bismuth and tellurium is generally said to be 10 to 50% by weight.

【0022】[0022]

【表2】 [Table 2]

【0023】さらに、各実施例および比較例により得ら
れた鋳物試料の機械的性質を測定した結果を、表3に示
す。なお、本実施例および比較例では、音速は同質材料
であれば材料のヤング率に比例するため、音速を剛性
(ヤング率)を示すものとして用いた。音速の測定には
超音波法を用い、まず、長さ200mmの鋳物試料を1
70mmに切削して試験片とし、この試験片内を周波数
4MHzの超音波が往復するのに要した時間を測定し
て、音速を算出した。
Table 3 shows the results of measuring the mechanical properties of the casting samples obtained in each of the examples and comparative examples. In this example and the comparative example, since the sound speed is proportional to the Young's modulus of the material if the material is a homogeneous material, the sound speed is used to indicate rigidity (Young's modulus). The ultrasonic method was used to measure the speed of sound.
The test piece was cut into 70 mm, and the time required for an ultrasonic wave having a frequency of 4 MHz to reciprocate in the test piece was measured to calculate the sound velocity.

【0024】[0024]

【表3】 [Table 3]

【0025】表3からわかるように、実施例1〜3のい
ずれの試料も、フェライト地にもかかわらず、硬さ、引
張強さ、音速の全てにおいて、添加合金7を添加しない
もの(比較例)に比べて高い値となっており、添加合金
7の効果が顕著であった。
As can be seen from Table 3, all of the samples of Examples 1 to 3 did not contain the additive alloy 7 in all of hardness, tensile strength and sound speed despite the ferrite ground (Comparative Example). ), And the effect of the additive alloy 7 was remarkable.

【0026】[0026]

【発明の効果】本発明によれば、機械加工性の良い、高
硬度、高強度、高剛性の微細黒鉛鋳鉄が得られる。本発
明では、凝固過程で過冷を引き起こす元素と、過冷によ
る白銑化凝固を抑える元素とを添加することにより、炭
素、珪素、硫黄の比較的高い材料でも、硬さ、引張強さ
および剛性を飛躍的に向上させることができる。
According to the present invention, a fine graphite cast iron having good machinability, high hardness, high strength and high rigidity can be obtained. In the present invention, by adding an element that causes supercooling in the solidification process and an element that suppresses white iron solidification due to supercooling, carbon, silicon, and even a relatively high material of sulfur, hardness, tensile strength and The rigidity can be dramatically improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 実施例における微細黒鉛鋳鉄の製造方法を示
す説明図である。
FIG. 1 is an explanatory view showing a method for producing fine graphite cast iron in an example.

【符号の説明】[Explanation of symbols]

1…被溶解材料、2…炭素塊、3…溶解炉、4…保持
炉、5…溶湯、6…取鍋、7…添加物、8…注型用溶
湯、9…溶湯の流路、10…加熱用コイル、11…加熱
用コイル。
DESCRIPTION OF SYMBOLS 1 ... Material to be melted, 2 ... Carbon lump, 3 ... Melting furnace, 4 ... Holding furnace, 5 ... Molten metal, 6 ... Ladle, 7 ... Additive, 8 ... Molten metal for casting, 9 ... Molten metal flow path, 10 ... heating coil, 11 ... heating coil.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】(a)0.001〜0.03重量%のビス
マス、および、0.0003〜0.005重量%のテル
ルのうちの、少なくともいずれか一方と、(b)0.5
〜2重量%のマンガンと、(c)0.05〜0.2重量
%のチタンと、を含むことを特徴とする微細黒鉛鋳鉄。
(A) at least one of 0.001 to 0.03% by weight of bismuth and 0.0003 to 0.005% by weight of tellurium; and (b) 0.5% of tellurium.
A fine graphite cast iron comprising manganese in an amount of up to 2% by weight and (c) titanium in an amount of 0.05 to 0.2% by weight.
【請求項2】被溶解材料を溶解して鋳鉄溶湯とする溶解
工程と、 上記鋳鉄溶湯100重量部に、下記(a)および(b)
の添加物を添加して注型用溶湯とする添加工程と、
(a)0.01〜0.05重量部のビスマス、および、
0.001〜0.01重量部のテルルのうちの、少なく
ともいずれか一方(b)0.2〜1重量部のマンガン 上記注型用溶湯を鋳造する鋳造工程とを有することを特
徴とする微細黒鉛鋳鉄の製造方法。
2. A melting step in which a material to be melted is melted into a cast iron melt, and the following (a) and (b) are added to 100 parts by weight of the cast iron melt.
An additive step of adding an additive of
(A) 0.01 to 0.05 parts by weight of bismuth, and
(B) 0.2 to 1 part by weight of manganese of 0.001 to 0.01 part by weight of tellurium. A casting step of casting the molten metal for casting. Manufacturing method of graphite cast iron.
【請求項3】請求項2において、 上記鋳造は、 砂型を用いて行われることを特徴とする微細黒鉛鋳鉄の
製造方法。
3. The method for producing fine graphite cast iron according to claim 2, wherein the casting is performed using a sand mold.
【請求項4】請求項2において、 上記溶解工程は、 上記鋳鉄溶湯を炭素層に通す工程を備えることを特徴と
する微細黒鉛鋳鉄の製造方法。
4. The method for producing fine graphite cast iron according to claim 2, wherein the melting step includes a step of passing the molten cast iron through a carbon layer.
JP22270296A 1996-08-23 1996-08-23 Fine graphite cast iron and its production Pending JPH1060572A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22270296A JPH1060572A (en) 1996-08-23 1996-08-23 Fine graphite cast iron and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22270296A JPH1060572A (en) 1996-08-23 1996-08-23 Fine graphite cast iron and its production

Publications (1)

Publication Number Publication Date
JPH1060572A true JPH1060572A (en) 1998-03-03

Family

ID=16786578

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22270296A Pending JPH1060572A (en) 1996-08-23 1996-08-23 Fine graphite cast iron and its production

Country Status (1)

Country Link
JP (1) JPH1060572A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2166119A1 (en) * 2007-06-26 2010-03-24 Incorporated National University Iwate University Flaky graphite cast iron, and method for production thereof
CN102294467A (en) * 2011-07-28 2011-12-28 徐州胜海机械制造科技有限公司 Method for producing large-sized cast
CN102814491A (en) * 2012-09-09 2012-12-12 吉林大学 High-strength gray cast iron enhancer and strengthening treatment process thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2166119A1 (en) * 2007-06-26 2010-03-24 Incorporated National University Iwate University Flaky graphite cast iron, and method for production thereof
EP2166119A4 (en) * 2007-06-26 2011-10-05 Nat University Iwate Univ Inc Flaky graphite cast iron, and method for production thereof
CN102294467A (en) * 2011-07-28 2011-12-28 徐州胜海机械制造科技有限公司 Method for producing large-sized cast
CN102814491A (en) * 2012-09-09 2012-12-12 吉林大学 High-strength gray cast iron enhancer and strengthening treatment process thereof

Similar Documents

Publication Publication Date Title
US9512498B2 (en) Process for producing spheroidal-graphite cast iron, and spheroidal-graphite cast iron member obtained from said spheroidal-graphite cast iron
US4666516A (en) Gray cast iron inoculant
JP2003521582A (en) Steel grain refining method, steel grain refining alloy and method for producing grain refining alloy
JP6954846B2 (en) Spheroidal graphite cast iron
KR20180132857A (en) Gray cast iron inoculant
WO2007125871A1 (en) Method of continuous casting of high-aluminum steel and mold powder
JP2006312200A (en) Continuous casting powder and continuous casting method for al-containing ni-based alloy
CN108950120A (en) A kind of cast iron silicon-lanthanum-strontium inovulant and preparation method thereof
JP2008025003A (en) Casting aluminum alloy, and casting of the aluminum alloy
JPH1060572A (en) Fine graphite cast iron and its production
US4224064A (en) Method for reducing iron carbide formation in cast nodular iron
JP2503119B2 (en) Beryllium copper alloy casting method
JP4516923B2 (en) Continuously cast slab of aluminum killed steel and method for producing the same
JPH1096040A (en) High strength gray cast iron excellent in cutting workability
JP4541545B2 (en) Method for producing pseudo-spherical graphite iron (CGI)
JP3416503B2 (en) Hypereutectic Al-Si alloy die casting member and method of manufacturing the same
JP2007327083A (en) Spheroidal graphite cast iron and its production method
RU2590772C1 (en) Method for production of aluminium cast iron
JP2626417B2 (en) Graphite spheroidizing alloy in mold and graphite spheroidizing method
WO2019194681A1 (en) Silicon based alloy, method for the production thereof and use of such alloy
JPH10158777A (en) Production of high strength cast iron, and high strength cast iron
RU2041967C1 (en) Method for production of hypereutectic aluminum-silicon alloys
JP3949557B2 (en) Wear-resistant aluminum alloy for casting and cast aluminum alloy
RU2312161C2 (en) Semifinished product of foundry cast iron and method of its production
JP2003253368A (en) Aluminum alloy for semisolid casting