JPH10158418A - Solid polyelectrolyte and secondary cell equipped therewith - Google Patents

Solid polyelectrolyte and secondary cell equipped therewith

Info

Publication number
JPH10158418A
JPH10158418A JP8337446A JP33744696A JPH10158418A JP H10158418 A JPH10158418 A JP H10158418A JP 8337446 A JP8337446 A JP 8337446A JP 33744696 A JP33744696 A JP 33744696A JP H10158418 A JPH10158418 A JP H10158418A
Authority
JP
Japan
Prior art keywords
polymer
solid
ultrasonic cleaning
heat treatment
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8337446A
Other languages
Japanese (ja)
Inventor
Mikiya Yamazaki
幹也 山崎
Maruo Jinno
丸男 神野
Toshiyuki Noma
俊之 能間
Koji Nishio
晃治 西尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP8337446A priority Critical patent/JPH10158418A/en
Publication of JPH10158418A publication Critical patent/JPH10158418A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a solid polyelectrolyte which can form a secondary cell excellent in charge and discharge cycle characteristics by subjecting a solid polyelectrolyte to heat treatment or ultrasonic cleaning. SOLUTION: This polyelectrolyte is one having the contents of a polymn. initiator and a storage stabilizer reduced by heat treatment or ultrasonic cleaning. The lower the contents after the heat treatment or ultrasonic cleaning are, the better. In order to obtain a solid polyelectrolyte secondary cell excellent in charge and discharge cycle characteristics, the contents are reduced pref. to 100ppm or lower. In the case of heat treatment, the heating temp. is usually 100-300 deg.C, though it is varied depending on the types of the initiator and stabilizer contained in the polyelectrolyte. In the case of ultrasonic cleaning, the oscillation frequency of an ultrasonic oscillator is pref. 20-100kHz, and the high-frequency output, pref. 30-600W.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明が属する技術分野】本発明は、高分子固体電解質
及びそれを備えた二次電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid polymer electrolyte and a secondary battery having the same.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】従来、
二次電池の電解質として、イオン伝導性に優れる液体電
解質が使用されているが、液体電解質には、漏液、電極
物質の溶出などの問題がある。
2. Description of the Related Art
Liquid electrolytes having excellent ion conductivity are used as electrolytes for secondary batteries. However, liquid electrolytes have problems such as liquid leakage and elution of electrode substances.

【0003】このため、最近、このような問題が無い固
体電解質、とくに薄膜成形が容易であり、比較的安価で
ある高分子固体電解質が、二次電池の電解質として注目
されている。
[0003] Therefore, recently, a solid electrolyte free from such problems, particularly a polymer solid electrolyte which can be easily formed into a thin film and is relatively inexpensive, has attracted attention as an electrolyte for a secondary battery.

【0004】しかしながら、高分子固体電解質を使用し
た二次電池(高分子固体電解質二次電池)には、充放電
サイクルを繰り返すと充放電容量が急激に低下する、す
なわち充放電サイクル特性が良くないという問題があっ
た。
However, in a secondary battery using a polymer solid electrolyte (polymer solid electrolyte secondary battery), the charge / discharge capacity is sharply reduced when charge / discharge cycles are repeated, that is, the charge / discharge cycle characteristics are poor. There was a problem.

【0005】そこで、その理由について鋭意研究した結
果、本発明者らは、高分子固体電解質中に残存する特定
の不純物が、充放電容量の急激な低下の大きな原因とな
っていることをつきとめた。
Therefore, as a result of diligent research into the reason, the present inventors have found that specific impurities remaining in the solid polymer electrolyte are a major cause of a rapid decrease in charge / discharge capacity. .

【0006】本発明は、斯かる知見に基づきなされたも
のであって、充放電サイクル特性に極めて優れた二次電
池を得ることを可能にする高分子固体電解質及びそれを
備えた高分子固体電解質二次電池を提供することを目的
とする。
The present invention has been made based on such findings, and a polymer solid electrolyte capable of obtaining a secondary battery having extremely excellent charge / discharge cycle characteristics, and a polymer solid electrolyte having the same. It is intended to provide a secondary battery.

【0007】[0007]

【課題を解決するための手段】上記の目的を達成するた
めの本発明に係る高分子固体電解質は、加熱処理又は超
音波洗浄することにより、残存する重合開始剤及び貯蔵
安定剤の総量を減じたものである。また、本発明に係る
高分子固体電解質二次電池(本発明電池)は、斯かる本
発明に係る高分子固体電解質を使用したものである。
The solid polymer electrolyte according to the present invention for achieving the above object reduces the total amount of the remaining polymerization initiator and storage stabilizer by heat treatment or ultrasonic cleaning. It is a thing. The polymer solid electrolyte secondary battery according to the present invention (the battery of the present invention) uses the polymer solid electrolyte according to the present invention.

【0008】加熱処理による場合の温度は、使用する高
分子固体電解質の中に含まれる重合開始剤及び貯蔵安定
剤の種類によっても異なるが、一般的には100〜30
0°Cが好ましい。一方、超音波洗浄による場合は、超
音波振動子の発振周波数を20〜100kHz、高周波
出力を30〜600Wとすることが好ましい。
[0008] The temperature in the case of the heat treatment varies depending on the types of the polymerization initiator and the storage stabilizer contained in the solid polymer electrolyte to be used, but generally ranges from 100 to 30.
0 ° C. is preferred. On the other hand, when using ultrasonic cleaning, it is preferable that the oscillation frequency of the ultrasonic vibrator be 20 to 100 kHz and the high frequency output be 30 to 600 W.

【0009】高分子固体電解質中に残存する重合開始剤
としては、ベンゾフェノン、オルソベンゾイル安息香酸
メチル、4−ベンゾイル−4’−メチルジフェニルサル
ファイド、イソプロピルチオキサントン、ジエチルチオ
キサントン、ベンゾインエーテル、ベンジルジメチルケ
タール、2−ヒドロキシ−2−メチル−1−フェニルプ
ロパン−1−オン、1−ヒドロキシシクロヘキシルフェ
ニルケトン、メチルフェニルグリオキシレート、ジエト
キシアセトフェノン、2−メチル−1−[ 4−(メチル
チオ)フェニル] −2−モルフリノプロパン−1、2−
ベンジル−2−ジメチルアミノ−1−(4−モルフォリ
ノフェニル)−ブタノン−1、アシルフォスフィンオキ
サイド、アゾビスイソブチロニトリル、ベンゾイルパー
オキサイドなどが挙げられる。また、高分子固体電解質
中に残存する貯蔵安定剤としては、ヒドロキノン、ヒド
ロキノンジメチルエーテル、ヒドロキノンジエチルエー
テル、ヒドロキノンモノメチルエーテル、ヒドロキノン
モノエチルエーテル、ヒドロキノンモノベンジルエーテ
ル、ジフェニルピクリルヒドラジル、ジ−p−フルオロ
フェニルアミン、トリ−p−ニトロフェニルメチル、ベ
ンゾキノン、クロラニル、t−ブチルカテコール、m−
ジニトロベンゼン、ニトロベンゼン、p−フェニルジア
ミン、第4級アンモニウムクロライド、ベンゾチアゾー
ルなどが挙げられる。
The polymerization initiator remaining in the solid polymer electrolyte includes benzophenone, methyl orthobenzoyl benzoate, 4-benzoyl-4'-methyldiphenyl sulfide, isopropylthioxanthone, diethylthioxanthone, benzoin ether, benzyldimethyl ketal, -Hydroxy-2-methyl-1-phenylpropan-1-one, 1-hydroxycyclohexylphenyl ketone, methylphenylglyoxylate, diethoxyacetophenone, 2-methyl-1- [4- (methylthio) phenyl] -2- Morfurinopropane-1,2-
Benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone-1, acylphosphine oxide, azobisisobutyronitrile, benzoyl peroxide and the like. The storage stabilizer remaining in the solid polymer electrolyte includes hydroquinone, hydroquinone dimethyl ether, hydroquinone diethyl ether, hydroquinone monomethyl ether, hydroquinone monoethyl ether, hydroquinone monobenzyl ether, diphenylpicrylhydrazyl, and di-p-fluoro. Phenylamine, tri-p-nitrophenylmethyl, benzoquinone, chloranil, t-butylcatechol, m-
Examples include dinitrobenzene, nitrobenzene, p-phenyldiamine, quaternary ammonium chloride, benzothiazole and the like.

【0010】加熱処理後又は超音波洗浄後に高分子固体
電解質に含まれる重合開始剤及び貯蔵安定剤の量は少な
いほどよい。充放電サイクル特性に極めて優れた高分子
固体電解質二次電池を得るためには、残存する重合開始
剤及び貯蔵安定剤の総量を100ppm以下に減じるこ
とが好ましい。
After the heat treatment or ultrasonic cleaning, the smaller the amount of the polymerization initiator and the amount of the storage stabilizer contained in the solid polymer electrolyte, the better. In order to obtain a polymer solid electrolyte secondary battery having extremely excellent charge / discharge cycle characteristics, it is preferable to reduce the total amount of the remaining polymerization initiator and storage stabilizer to 100 ppm or less.

【0011】本発明に係る高分子固体電解質は、加熱処
理及び超音波洗浄しないものに比べて、充放電サイクル
特性を阻害する重合開始剤及び貯蔵安定剤の含有量が少
ない。従って、本発明に係る高分子固体電解質を電解質
として使用することにより、充放電サイクル特性を改善
することができる。本発明の高分子固体電解質は、例え
ば、リチウム二次電池に用いて好適である。
The solid polymer electrolyte according to the present invention has a lower content of a polymerization initiator and a storage stabilizer which inhibit charge / discharge cycle characteristics than those without heat treatment and ultrasonic cleaning. Therefore, the charge / discharge cycle characteristics can be improved by using the polymer solid electrolyte according to the present invention as an electrolyte. The solid polymer electrolyte of the present invention is suitable for use in, for example, a lithium secondary battery.

【0012】[0012]

【実施例】本発明を実施例に基づいてさらに詳細に説明
するが、本発明は下記実施例に何ら限定されるものでは
なく、その要旨を変更しない範囲で適宜変更して実施す
ることが可能なものである。
EXAMPLES The present invention will be described in more detail with reference to examples, but the present invention is not limited to the following examples and can be carried out by appropriately changing the scope of the invention without changing its gist. It is something.

【0013】〔正極の作製〕正極活物質としてのLiC
oO2 粉末85重量部と、導電剤としての炭素粉末10
重量部と、結着剤としてのポリフッ化ビニリデン粉末5
重量部のNMP(N−メチル−2−ピロリドン)溶液と
を混合してスラリーを調製し、このスラリーをフェライ
ト系ステンレス鋼からなる厚さ20μmの集電体の片面
にドクターブレード法により塗布して活物質層を形成し
た後、150°Cで乾燥して、直径10mmの円盤状の
正極を作製した。活物質層の乾固後の厚みは約80μm
であった。
[Preparation of positive electrode] LiC as positive electrode active material
85 parts by weight of oO 2 powder and carbon powder 10 as a conductive agent
Parts by weight and polyvinylidene fluoride powder 5 as a binder
A slurry is prepared by mixing the NMP (N-methyl-2-pyrrolidone) solution in parts by weight with a NMP (N-methyl-2-pyrrolidone) solution. After forming the active material layer, it was dried at 150 ° C. to produce a disk-shaped positive electrode having a diameter of 10 mm. The thickness of the active material layer after drying is about 80 μm
Met.

【0014】〔負極の作製〕黒鉛粉末95重量部とポリ
フッ化ビニリデン粉末5重量部のNMP溶液とを混合し
てスラリーを調製し、このスラリーをフェライト系ステ
ンレス鋼からなる厚さ20μmの集電体の片面にドクタ
ーブレード法により塗布して炭素層を形成した後、15
0°Cで乾燥して、直径10mmの円盤状の負極を作製
した。炭素層の乾固後の厚みは約60μmであった。
[Preparation of Negative Electrode] A slurry is prepared by mixing 95 parts by weight of graphite powder and 5 parts by weight of polyvinylidene fluoride powder to prepare a slurry, and this slurry is made of a 20 μm thick current collector made of ferritic stainless steel. After forming a carbon layer by applying to one side of the
After drying at 0 ° C., a disk-shaped negative electrode having a diameter of 10 mm was prepared. The thickness of the carbon layer after drying was about 60 μm.

【0015】〔高分子固体電解質の作製〕次の4種の高
分子固体電解質を作製した。 (1)高分子固体電解質a−1 ポリエチレングリコールジアクリレート(数平均分子量
1000)とポリエチレングリコールエチルエーテルア
クリレート(数平均分子量400)とを重量比1:1で
混合し、この混合物にベンジルジメチルケタール(重合
開始剤)3000ppmを添加し、ガラス板上にキャス
トした後、70mW/cm2 の紫外線を3分間照射し
て、高分子フィルムを作製した。なお、ポリエチレング
リコールジアクリレート及びポリエチレングリコールエ
チルエーテルアクリレートとして、いずれも1,4−ジ
メトキシベンゼン(貯蔵安定剤)が1000ppm添加
されているものを使用した。
[Preparation of Polymer Solid Electrolyte] The following four types of polymer solid electrolytes were prepared. (1) Polymer solid electrolyte a-1 Polyethylene glycol diacrylate (number average molecular weight 1000) and polyethylene glycol ethyl ether acrylate (number average molecular weight 400) were mixed at a weight ratio of 1: 1, and benzyl dimethyl ketal ( After adding 3000 ppm of polymerization initiator) and casting on a glass plate, ultraviolet rays of 70 mW / cm 2 were irradiated for 3 minutes to prepare a polymer film. As polyethylene glycol diacrylate and polyethylene glycol ethyl ether acrylate, those to which 1,4-dimethoxybenzene (storage stabilizer) was added at 1000 ppm were used.

【0016】次いで、上記の高分子フィルムに5分間の
超音波洗浄(溶剤:テトラヒドロフラン)を3回繰り返
し行った後、1時間真空乾燥した。真空乾燥後、過塩素
酸リチウム6重量部のテトラヒドロフラン溶液を高分子
フィルム94重量部の表面に滴下し、テトラヒドロフラ
ンを除去するために自然乾燥して、高分子固体電解質a
−1を作製した。高分子固体電解質a−1に含まれる重
合開始剤及び貯蔵安定剤の総量を、超音波洗浄し、真空
乾燥した高分子フィルムのガスクロマトグラフィーを測
定し、処理前のものと比較して求めたところ、30pp
mであった。以下の高分子固体電解質に含まれる重合開
始剤及び貯蔵安定剤の総量も、同じ方法で求めた値であ
る。
Next, the above-mentioned polymer film was repeatedly subjected to ultrasonic cleaning (solvent: tetrahydrofuran) for 5 minutes three times, and then dried under vacuum for 1 hour. After vacuum drying, a tetrahydrofuran solution of 6 parts by weight of lithium perchlorate is dropped on the surface of 94 parts by weight of the polymer film, and air-dried to remove tetrahydrofuran.
-1 was produced. The total amount of the polymerization initiator and the storage stabilizer contained in the solid polymer electrolyte a-1 was determined by measuring the gas chromatography of the polymer film which was ultrasonically washed and vacuum dried, and compared with that before the treatment. However, 30pp
m. The total amount of the polymerization initiator and the storage stabilizer contained in the following solid polymer electrolyte is a value obtained by the same method.

【0017】(2)高分子固体電解質a−2 ポリエチレングリコールジアクリレート〔(1)で使用
したものと同じもの〕とポリエチレングリコールエチル
エーテルアクリレート〔(1)で使用したものと同じも
の〕とを重量比1:1で混合し、この混合物に2−ヒド
ロキシ−2−メチル−1−フェニル−プロパン−1−オ
ン(重合開始剤)を3000ppm添加し、ガラス板上
にキャストした後、70mW/cm2 の紫外線を3分間
照射して、高分子フィルムを作製した。
(2) Polymer solid electrolyte a-2 Weight of polyethylene glycol diacrylate [same as used in (1)] and polyethylene glycol ethyl ether acrylate [same as used in (1)] The mixture was mixed at a ratio of 1: 1, 2-hydroxy-2-methyl-1-phenyl-propan-1-one (polymerization initiator) was added to the mixture at 3000 ppm, and after casting on a glass plate, 70 mW / cm 2. For 3 minutes to produce a polymer film.

【0018】次いで、上記の高分子フィルムを150°
Cで2時間加熱処理した後、過塩素酸リチウム6重量部
のテトラヒドロフラン溶液を高分子フィルム94重量部
の表面に滴下し、自然乾燥して、高分子固体電解質a−
2を作製した。高分子固体電解質a−2に含まれる重合
開始剤及び貯蔵安定剤の総量は、100ppmであっ
た。
Next, the above polymer film is placed at 150 °
After heating at C for 2 hours, a solution of 6 parts by weight of lithium perchlorate in tetrahydrofuran was dropped on the surface of 94 parts by weight of the polymer film, air-dried, and dried to obtain a solid polymer electrolyte a-.
2 was produced. The total amount of the polymerization initiator and the storage stabilizer contained in the solid polymer electrolyte a-2 was 100 ppm.

【0019】(3)高分子固体電解質b−1 ポリエチレングリコールジアクリレート〔(1)で使用
したものと同じもの〕とポリエチレングリコールエチル
エーテルアクリレート〔(1)で使用したものと同じも
の〕とを重量比1:1で混合し、この混合物にベンジル
ジメチルケタール(重合開始剤)3000ppmを添加
し、ガラス板上にキャストした後、70mW/cm2
紫外線を3分間照射して、高分子フィルムを作製した。
(3) Polymer solid electrolyte b-1 Weight of polyethylene glycol diacrylate [same as used in (1)] and polyethylene glycol ethyl ether acrylate [same as used in (1)] After mixing at a ratio of 1: 1, benzyl dimethyl ketal (polymerization initiator) 3000 ppm was added to the mixture, cast on a glass plate, and then irradiated with 70 mW / cm 2 ultraviolet light for 3 minutes to produce a polymer film. did.

【0020】次いで、過塩素酸リチウム6重量部のテト
ラヒドロフラン溶液を上記の高分子フィルム94重量部
の表面に滴下し、自然乾燥して、高分子固体電解質b−
1を作製した。高分子固体電解質b−1に含まれる重合
開始剤及び貯蔵安定剤の総量は、1800ppmであっ
た。
Next, a solution of 6 parts by weight of lithium perchlorate in tetrahydrofuran was dropped on the surface of 94 parts by weight of the above polymer film, air-dried, and dried to obtain a solid polymer electrolyte b-
1 was produced. The total amount of the polymerization initiator and the storage stabilizer contained in the solid polymer electrolyte b-1 was 1,800 ppm.

【0021】(4)高分子固体電解質b−2 ポリエチレングリコールジアクリレート〔(1)で使用
したものと同じもの〕とポリエチレングリコールエチル
エーテルアクリレート〔(1)で使用したものと同じも
の〕とを重量比1:1で混合し、この混合物に2−ヒド
ロキシ−2−メチル−1−フェニル−プロパン−1−オ
ン(重合開始剤)を3000ppm添加し、ガラス板上
にキャストした後、70mW/cm2 の紫外線を3分間
照射して、高分子フィルムを作製した。
(4) Polymer solid electrolyte b-2 Weight of polyethylene glycol diacrylate [same as used in (1)] and polyethylene glycol ethyl ether acrylate [same as used in (1)] The mixture was mixed at a ratio of 1: 1, 2-hydroxy-2-methyl-1-phenyl-propan-1-one (polymerization initiator) was added to the mixture at 3000 ppm, and after casting on a glass plate, 70 mW / cm 2. For 3 minutes to produce a polymer film.

【0022】次いで、過塩素酸リチウム6重量部のテト
ラヒドロフラン溶液を上記の高分子フィルム94重量部
の表面に滴下し、自然乾燥して、高分子固体電解質b−
2を作製した。高分子固体電解質b−2に含まれる重合
開始剤及び貯蔵安定剤の総量は、2200ppmであっ
た。
Next, a solution of 6 parts by weight of lithium perchlorate in tetrahydrofuran is dropped on the surface of 94 parts by weight of the above polymer film, air-dried, and the solid polymer electrolyte b-
2 was produced. The total amount of the polymerization initiator and the storage stabilizer contained in the solid polymer electrolyte b-2 was 2,200 ppm.

【0023】〔高分子固体電解質二次電池の作製〕上記
の正極、負極及び高分子固体電解質を用いて、扁平形の
高分子固体電解質二次電池(リチウム二次電池)A−1
(本発明電池;高分子固体電解質a−1使用),A−2
(本発明電池;高分子固体電解質a−2使用),B−1
(比較電池;高分子固体電解質b−1使用),B−2
(比較電池;高分子固体電解質b−2使用)を作製し
た。
[Preparation of Polymer Solid Electrolyte Secondary Battery] A flat polymer solid electrolyte secondary battery (lithium secondary battery) A-1 was prepared using the above positive electrode, negative electrode and polymer solid electrolyte.
(Battery of the present invention; using solid polymer electrolyte a-1), A-2
(Battery of the present invention; using solid polymer electrolyte a-2), B-1
(Comparative battery; using solid polymer electrolyte b-1), B-2
(Comparative battery; using solid polymer electrolyte b-2) was prepared.

【0024】図1は、作製した高分子固体電解質二次電
池の断面模式図であり、図示の電池BAは、正極1、負
極2、高分子固体電解質3、正極缶4、負極缶5、正極
集電体6、負極集電体7及びポリプロピレン製の絶縁パ
ッキング8などからなる。
FIG. 1 is a schematic cross-sectional view of the produced polymer solid electrolyte secondary battery. The battery BA shown in the figure has a positive electrode 1, a negative electrode 2, a polymer solid electrolyte 3, a positive electrode can 4, a negative electrode can 5, a positive electrode It comprises a current collector 6, a negative electrode current collector 7, an insulating packing 8 made of polypropylene, and the like.

【0025】正極1及び負極2は、高分子固体電解質3
を介して対向して正極缶4及び負極缶5が形成する電池
ケース内に収納されており、正極1は正極集電体6を介
して正極缶4に、又負極2は負極集電体7を介して負極
缶5に接続され、電池内部に生じた化学エネルギーを正
極缶4及び負極缶5の両端子から電気エネルギーとして
外部へ取り出し得るようになっている。
The positive electrode 1 and the negative electrode 2 are made of a solid polymer electrolyte 3
The positive electrode 1 is accommodated in the positive electrode can 4 through the positive electrode current collector 6, and the negative electrode 2 is accommodated in the battery case formed by the positive electrode can 4 and the negative electrode can 5. Is connected to the negative electrode can 5 so that the chemical energy generated inside the battery can be taken out as electric energy from both terminals of the positive electrode can 4 and the negative electrode can 5.

【0026】〈各電池の1サイクル目及び100サイク
ル目の放電容量〉各電池を、80°Cにて、電流密度5
0μA/cm2 で4.20Vまで充電した後、電流密度
50μA/cm2 で2.75Vまで放電して、各電池の
1サイクル目及び100サイクル目の正極1cm2 当た
りの放電容量(mAh/cm2 )を求めた。結果を表1
に示す。
<Discharge capacity at 1st cycle and 100th cycle of each battery>
After charging at 0 .mu.A / cm 2 to 4.20 V, current density of 50 .mu.A / cm 2 and discharged to 2.75V at a discharge capacity of the positive electrode 1 cm 2 per 1 cycle and 100th cycle of each battery (mAh / cm 2 ) Asked. Table 1 shows the results
Shown in

【0027】[0027]

【表1】 [Table 1]

【0028】表1に示すように、加熱処理又は超音波洗
浄により高分子固体電解質中に残存する重合開始剤及び
貯蔵安定剤の総量を減じた本発明電池A−1,A−2
は、加熱処理も超音波洗浄もしなかった高分子固体電解
質を使用した比較電池B−1,B−2に比べて、1サイ
クル目の放電容量に対する100サイクル目の放電容量
の低下が遙に小さい。この事実から、加熱処理又は超音
波洗浄により高分子固体電解質に含まれる重合開始剤及
び貯蔵安定剤の総量を減じることにより、高分子固体電
解質二次電池の充放電サイクル特性が大きく改善される
ことが分かる。
As shown in Table 1, the batteries A-1 and A-2 of the present invention in which the total amount of the polymerization initiator and the storage stabilizer remaining in the solid polymer electrolyte was reduced by heat treatment or ultrasonic cleaning.
Shows that the decrease in the discharge capacity at the 100th cycle with respect to the discharge capacity at the 1st cycle is much smaller than that in the comparative batteries B-1 and B-2 using the polymer solid electrolyte which was not subjected to the heat treatment and the ultrasonic cleaning. . From this fact, the charge / discharge cycle characteristics of the polymer solid electrolyte secondary battery are greatly improved by reducing the total amount of the polymerization initiator and the storage stabilizer contained in the polymer solid electrolyte by heat treatment or ultrasonic cleaning. I understand.

【0029】[0029]

【発明の効果】本発明に係る高分子固体電解質二次電池
は、極めて優れた充放電サイクル特性を発現する。ま
た、本発明に係る高分子固体電解質は、充放電サイクル
特性に優れた高分子固体電解質二次電池を得ることを可
能にする。
The polymer solid electrolyte secondary battery according to the present invention exhibits extremely excellent charge / discharge cycle characteristics. Further, the solid polymer electrolyte according to the present invention makes it possible to obtain a solid polymer electrolyte secondary battery having excellent charge / discharge cycle characteristics.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例で作製した扁平形の高分子固体電解質二
次電池の断面図である。
FIG. 1 is a cross-sectional view of a flat polymer solid electrolyte secondary battery manufactured in an example.

【符号の説明】[Explanation of symbols]

BA 扁平形の高分子固体電解質二次電池 1 正極 2 負極 3 高分子固体電解質 4 正極缶 5 負極缶 6 正極集電体 7 負極集電体 8 絶縁パッキング BA Flat polymer solid electrolyte secondary battery 1 Positive electrode 2 Negative electrode 3 Polymer solid electrolyte 4 Positive electrode can 5 Negative electrode can 6 Positive current collector 7 Negative current collector 8 Insulation packing

フロントページの続き (72)発明者 西尾 晃治 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内Continuation of front page (72) Inventor Koji Nishio 2-5-5 Keihanhondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】加熱処理又は超音波洗浄することにより、
残存する重合開始剤及び貯蔵安定剤の総量を減じた高分
子固体電解質。
Claims: 1. By heating or ultrasonic cleaning,
A polymer solid electrolyte in which the total amount of the remaining polymerization initiator and storage stabilizer is reduced.
【請求項2】残存する重合開始剤及び貯蔵安定剤の総量
を100ppm以下に減じた請求項1記載の高分子固体
電解質。
2. The solid polymer electrolyte according to claim 1, wherein the total amount of the remaining polymerization initiator and storage stabilizer is reduced to 100 ppm or less.
【請求項3】請求項1又は2記載の高分子固体電解質を
備えた二次電池。
3. A secondary battery comprising the polymer solid electrolyte according to claim 1.
JP8337446A 1996-12-02 1996-12-02 Solid polyelectrolyte and secondary cell equipped therewith Pending JPH10158418A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8337446A JPH10158418A (en) 1996-12-02 1996-12-02 Solid polyelectrolyte and secondary cell equipped therewith

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8337446A JPH10158418A (en) 1996-12-02 1996-12-02 Solid polyelectrolyte and secondary cell equipped therewith

Publications (1)

Publication Number Publication Date
JPH10158418A true JPH10158418A (en) 1998-06-16

Family

ID=18308717

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8337446A Pending JPH10158418A (en) 1996-12-02 1996-12-02 Solid polyelectrolyte and secondary cell equipped therewith

Country Status (1)

Country Link
JP (1) JPH10158418A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002029921A1 (en) * 2000-09-29 2002-04-11 Dai-Ichi Kogyo Seiyaku Co., Ltd. Lithium polymer secondary battery
US7273503B2 (en) * 2000-09-29 2007-09-25 Sharp Corporation Lithium polymer secondary battery and method for manufacturing the same
WO2007119460A1 (en) * 2006-03-24 2007-10-25 Zeon Corporation Solid electrolyte composition, solid electrolyte film and lithium secondary battery

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002029921A1 (en) * 2000-09-29 2002-04-11 Dai-Ichi Kogyo Seiyaku Co., Ltd. Lithium polymer secondary battery
US7273503B2 (en) * 2000-09-29 2007-09-25 Sharp Corporation Lithium polymer secondary battery and method for manufacturing the same
US7629079B2 (en) 2000-09-29 2009-12-08 Dai-Ichi Kogyo Seiyaki Co., Ltd. Lithium polymer secondary battery
WO2007119460A1 (en) * 2006-03-24 2007-10-25 Zeon Corporation Solid electrolyte composition, solid electrolyte film and lithium secondary battery
JPWO2007119460A1 (en) * 2006-03-24 2009-08-27 日本ゼオン株式会社 Solid electrolyte composition, solid electrolyte film, and lithium secondary battery

Similar Documents

Publication Publication Date Title
Guinot et al. A new class of PEO-based SPEs: structure, conductivity and application to alkaline secondary batteries
CA2117730C (en) Manufacturing method of a separator for a lithium secondary battery and an organic electrolyte lithium secondary battery using the same separator
JP4418134B2 (en) Polymer gel electrolyte and lithium battery using the same
JP2896361B2 (en) Polymer solid electrolyte, method for producing the same, and lithium secondary battery employing the polymer solid electrolyte
US6235433B1 (en) High molecular gel electrolyte and secondary battery using the same
Kim et al. Gel-coated membranes for lithium-ion polymer batteries
JP3854382B2 (en) Polymer matrix for forming gelled solid electrolyte, solid electrolyte and battery
JP2001256980A (en) Binder for lithium ion secondary battery electrode and its utlization
JP4163295B2 (en) Gel-like solid electrolyte battery
Kim et al. Preparation and electrochemical performance of gel polymer electrolytes using tri (ethylene glycol) dimethacrylate
JPH10158418A (en) Solid polyelectrolyte and secondary cell equipped therewith
JP4193248B2 (en) Gel electrolyte battery
JPH10284128A (en) Lithium battery
JPH08148140A (en) Manufacture of current collector-integrated sheet-like composite positive electrode and manufacture of polymer solid electrolyte battery using the positive electrode
JPH10162809A (en) Secondary battery
JP3363676B2 (en) Solid electrolyte battery and method for manufacturing solid electrolyte battery
JP3379567B2 (en) Lithium secondary battery
JP4286011B2 (en) Non-aqueous electrolyte secondary battery and manufacturing method thereof
Kim et al. Electrochemical properties of poly (tetra ethylene glycol diacrylate)-based gel electrolytes for lithium-ion polymer batteries
JPH05303980A (en) Ion conductive polymer compound and its manufacture
JP3378761B2 (en) Polymer electrolyte battery
JPH10334946A (en) Lithium battery
JP3460941B2 (en) Polymer gel electrolyte and secondary battery
JPH10284127A (en) Lithium battery
JP4190133B2 (en) Gel electrolyte lithium secondary battery