JPH10158366A - Liquid injection sealing underfill material - Google Patents

Liquid injection sealing underfill material

Info

Publication number
JPH10158366A
JPH10158366A JP8325390A JP32539096A JPH10158366A JP H10158366 A JPH10158366 A JP H10158366A JP 8325390 A JP8325390 A JP 8325390A JP 32539096 A JP32539096 A JP 32539096A JP H10158366 A JPH10158366 A JP H10158366A
Authority
JP
Japan
Prior art keywords
particle size
underfill material
inorganic filler
liquid injection
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8325390A
Other languages
Japanese (ja)
Other versions
JP3351974B2 (en
Inventor
Akihiro Kondo
晃弘 近藤
Toshiro Takeda
敏郎 竹田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=18176307&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH10158366(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP32539096A priority Critical patent/JP3351974B2/en
Publication of JPH10158366A publication Critical patent/JPH10158366A/en
Application granted granted Critical
Publication of JP3351974B2 publication Critical patent/JP3351974B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a liquid injection sealing underfill material for semiconductor packages that does not cause exfoliation and cracks even in pressure cracker test and thermal cycle test. SOLUTION: This liquid injection sealing underfill material contains, as main components, (a) a liquid epoxy resin, (b) an aromatic amine-based curing agent, an alkylated diaminodiphenylmethane, (c) a silane coupling agent having one or more functional groups selected from epoxy, amino and mercapto groups in one molecule, and (d) an inorganic filler having a specific particle size distribution, in such conditions that compounding ratios of respective components by weight is in relationships of (c)/[(a)+(b)+(c)]=0.01 to 0.05 and (d)/[(a)+(b)+(c)+(d)]=0.50 to 0.80, and that the inorganic filler has an average particle size of 4-6μm, and contains 20-70wt.% of particles of 1μm or smaller size, and 30wt.% or less of particles of 30μm or larger size up to 50μm, with larger particle sizes than 50μm cut out.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体の注入封止
に用いられる液状注入封止アンダーフィル材料に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a liquid injection sealing underfill material used for semiconductor injection sealing.

【0002】[0002]

【従来の技術】ICチップの高密度化、高集積化の進展
に伴い、配線長が短く、高周波用、多ピン化に向いてい
るフリップチップ実装方式のパーケージ形態が多くなっ
てきている。同実装は、ほぼチップサイズの大きさで、
さらに、プリント基板にチップを直接搭載できることか
ら、小型、軽量、薄型が可能となっている。ベアチップ
技術も確立化されているが、完全良品チップの入手が困
難のため、注入封止アンダーフィル材料による充填補強
が必要である。
2. Description of the Related Art With the progress of high-density and high-integration IC chips, a flip-chip packaging system, which has a short wiring length, is suitable for high frequency use, and has a large number of pins, has been increasingly used. This mounting is almost the size of the chip size,
Furthermore, since a chip can be directly mounted on a printed circuit board, it is possible to reduce the size, weight, and thickness. Bare chip technology has also been established, but it is difficult to obtain perfectly good chips, so filling reinforcement with an injection-sealed underfill material is necessary.

【0003】このフリップチップ実装型半導体封止には
液状の封止材料が用いられているが、セラミックスによ
る気密封止型に比べて信頼性の点で充分ではなく、デュ
アルインライン(以下、DIPという)型に比べプラスチ
ックパッケージの普及が遅れていた。フリップチップ実
装型半導体の信頼性低下の原因としては、 (1)注入封止アンダーフィル材料の充填不足による、
外気からの不純物、湿気が侵入する。 (2)有機のプリント配線基板から湿気が侵入する。 (3)半田バンプから不純物が侵入する。 (4)無圧下で液状注入封止アンダーフィル材料をパッ
ケージ内に流入し硬化するため封止材料中に気泡が残存
して、熱ストレスが加わった際にクラックが発生する。 (5)封止材料と半導体チップ、有機基板、半田バンプ
との線膨張係数が異なるために熱ストレスが加わった
際、界面での剥離を生じ湿気の侵入を容易にしてしま
う。 (6)同熱ストレスにより、チップへ機械的な傷付け、
損失を生じてしまう。等が挙げられる。
A liquid sealing material is used for the flip-chip mounting type semiconductor encapsulation, but it is not sufficient in terms of reliability as compared with a hermetic encapsulation type using ceramics. ) Plastic packages were less popular than dies. The causes of the decrease in the reliability of the flip-chip mounted semiconductor are as follows: (1) Insufficient filling of the injection-sealing underfill material
Impurities and moisture from outside air enter. (2) Moisture enters from the organic printed wiring board. (3) Impurities enter from the solder bumps. (4) Since the liquid injection sealing underfill material flows into the package under no pressure and is hardened, bubbles remain in the sealing material and cracks occur when thermal stress is applied. (5) When thermal stress is applied due to the difference in the coefficient of linear expansion between the sealing material and the semiconductor chip, the organic substrate, and the solder bumps, peeling occurs at the interface to facilitate moisture penetration. (6) Mechanical damage to the chip due to the same thermal stress,
Loss occurs. And the like.

【0004】[0004]

【発明が解決しようとする課題】そこで本発明者らは、
従来のこのような問題を解決するために鋭意検討を重ね
てきた結果、液状エポキシ樹脂、芳香族アミン系硬化剤
アルキル化ジアミノジフェニルメタン、シランカップリ
ング剤に、特定の粒度分布を有する無期充填材を配合し
た組成物が、プレッシャークッカーテスト(以下、PC
Tという)や冷熱サイクルテスト(以下、T/Cという)等
の促進試験においても半導体の信頼性を大幅に向上でき
るパッケージ材料となることを見いだし、本発明を完成
するに至ったものである。
SUMMARY OF THE INVENTION Accordingly, the present inventors
As a result of diligent studies to solve such conventional problems, liquid epoxy resin, aromatic amine-based curing agent alkylated diaminodiphenylmethane, and silane coupling agent, a non-permanent filler having a specific particle size distribution is used. The blended composition was tested under a pressure cooker test (hereinafter, PC
The present invention has been found to be a package material that can significantly improve the reliability of a semiconductor even in accelerated tests such as a thermal cycle test (hereinafter referred to as T / C) and a thermal cycle test (hereinafter referred to as T / C), thereby completing the present invention.

【0005】[0005]

【課題を解決するための手段】本発明は、(a)液状エポ
キシ樹脂、(b)芳香族アミン系硬化剤アルキル化ジアミ
ノジフェニルメタン、(c)エポキシ基、アミノ基、メル
カプト基の群から選ばれる1個以上の官能基を分子内に
有するシランカップリング剤、及び(d)特定の粒度分布
を有する無機充填材を主成分とする液状注入封止アンダ
ーフィル材料において、各成分の配合割合が重量比で
(c)/{(a)+(b)+(c)}=0.01〜0.05で、かつ(d)/{(a)+(b)
+(c)+(d)}=0.50〜0.80であり、(d)の無機充填材はその
平均粒径が0.4〜6μmで、粒径1μm 以下のものが全
無機充填材成分中20〜100重量%で、かつ粒径20μm 以
上のものが全無機充填材成分中の30重量%以下で、50μ
m以上をカットした粒度分布を有する無機充填材を配合
した液状注入封止アンダーフィル材料であり、有機プリ
ント配線基板を用いたフリップチップ実装型半導体の信
頼性を大幅に向上させることができる。
The present invention is selected from the group consisting of (a) a liquid epoxy resin, (b) an alkylated diaminodiphenylmethane of an aromatic amine curing agent, and (c) an epoxy group, an amino group, and a mercapto group. In a silane coupling agent having at least one functional group in a molecule, and (d) a liquid injection underfill material mainly composed of an inorganic filler having a specific particle size distribution, the mixing ratio of each component is weight. By ratio
(c) / {(a) + (b) + (c)} = 0.01-0.05, and (d) / {(a) + (b)
+ (c) + (d)} = 0.50 to 0.80, and the inorganic filler of (d) has an average particle size of 0.4 to 6 μm and a particle size of 1 μm or less is 20 to 100% of the total inorganic filler component. 50% by weight and less than 30% by weight of the total inorganic filler component
It is a liquid injection-sealed underfill material containing an inorganic filler having a particle size distribution cut to m or more, and can greatly improve the reliability of a flip-chip mounted semiconductor using an organic printed wiring board.

【0006】[0006]

【発明の実施の形態】本発明に用いられる(a)の液状エ
ポキシ樹脂は、その成分の50重量%以上は、25℃に
おける粘度が10PA・s以下であることが好ましい。エポ
キシ樹脂成分の50重量%以上が低粘度の液状エポキシ
でないと組成物の粘度が高くなり、フリップチップ実装
パッケージ中を液状注入封止アンダーフィル材料で流入
封止する際、気泡を巻き込んだり、コーナー端部への充
填不良が発生し易くなり信頼性低下につながるので好ま
しくない。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The liquid epoxy resin (a) used in the present invention preferably has a viscosity at 25 ° C. of 10 PA · s or less for at least 50% by weight of its components. Unless 50% by weight or more of the epoxy resin component is a low-viscosity liquid epoxy, the viscosity of the composition becomes high, and when flowing in and sealing the inside of the flip-chip mounting package with the liquid injection sealing underfill material, bubbles may be involved or corners may be generated. This is not preferable because poor filling at the end is likely to occur, leading to a reduction in reliability.

【0007】エポキシ樹脂の粘度測定方法としては、室
温で液状の材料の場合、25℃において東機産業(株)・
製E型粘度計、ブルックフィールド粘度計で測定する。
この要件を満足するエポキシ樹脂であれば、特に限定さ
れるものではないが具体例を挙げると、ビスフェノール
Aジグリシジルエーテル型エポキシ、ビスフェノールF
ジグリシジルエーテル型エポキシ、ビスフェノールSジ
グリシジルエーテル型エポキシ、3,3',5,5'-テトラメチ
ル―4,4'-ジヒドロキシビフェニルジグリシジルエーテ
ル型エポキシ、4,4'-ジヒドロキシビフェニルジグリシ
ジルエーテル型エポキシ、1,6-ジヒドロキシビフェニル
ジグリシジルエーテル型エポキシ、フェノールノボラッ
ク型エポキシ、臭素型クレゾールノボラック型エポキ
シ、ビスフェノールDジグリシジルエーテル型エポキシ
等がある。これらは単独でも混合しても差し支えない。
また、信頼性の優れた液状注入封止アンダーフィル材料
を得るために、使用に耐えるエポキシ樹脂はNa+、Cl-
のイオン性不純物はできるだけ少ないものが好ましい。
As a method for measuring the viscosity of an epoxy resin, in the case of a material which is liquid at room temperature, the temperature is measured at 25 ° C. by Toki Sangyo Co., Ltd.
It is measured with an E-type viscometer or Brookfield viscometer.
As long as the epoxy resin satisfies this requirement, it is not particularly limited, but specific examples include bisphenol A diglycidyl ether type epoxy and bisphenol F
Diglycidyl ether type epoxy, bisphenol S diglycidyl ether type epoxy, 3,3 ', 5,5'-tetramethyl-4,4'-dihydroxybiphenyl diglycidyl ether type epoxy, 4,4'-dihydroxybiphenyl diglycidyl ether Type epoxy, 1,6-dihydroxybiphenyl diglycidyl ether type epoxy, phenol novolak type epoxy, bromine type cresol novolak type epoxy, bisphenol D diglycidyl ether type epoxy and the like. These may be used alone or in combination.
Further, in order to obtain a liquid injection sealing underfill material having excellent reliability, it is preferable that the epoxy resin that can be used has as little ionic impurities as possible, such as Na + and Cl .

【0008】本発明に用いられる(b)の芳香族アミン系
硬化剤は、アルキル化ジアミノジフェニルメタンであ
る。芳香環を有さないアミン類は耐熱性に乏しく、零度
以下の雰囲気下でも反応性に富むため保存性に劣るとい
う致命的な欠点を有し本発明に適さない。また、信頼性
の優れた液状注入封止アンダーフィル材料を得るため
に、使用に耐えるアミン系硬化剤はNa+、Cl-等のイオン
性不純物はできるだけ少ないものが好ましい。ここで云
う芳香族アミン系硬化剤は、3,3',5,5'-テトラメチル-
4,4'-ジアミノジフェニルメタン、3,3'-ジエチル-4,4'-
ジアミノジフェニルメタンなどが挙げられる。(b)の芳
香族アミン系硬化剤は(a)液状エポキシ樹脂との組み合
わせによって、非常に流動性が良い材料を提供すること
ができる。無圧下でパッケージ内に流入し硬化させて
も、気泡が残らず、ボイド・未充填など流動性の不具合
も発生しにくい。
The aromatic amine curing agent (b) used in the present invention is an alkylated diaminodiphenylmethane. Amines having no aromatic ring are poor in heat resistance and have a fatal drawback of poor storage stability because they are highly reactive even in an atmosphere of zero degree or less, and are not suitable for the present invention. In addition, in order to obtain a liquid injection underfill material with excellent reliability, it is preferable that the amine hardener that can be used has as little ionic impurities as possible, such as Na + and Cl . The aromatic amine curing agent referred to herein is 3,3 ', 5,5'-tetramethyl-
4,4'-diaminodiphenylmethane, 3,3'-diethyl-4,4'-
And diaminodiphenylmethane. The combination of the aromatic amine curing agent (b) and the liquid epoxy resin (a) can provide a material having extremely good fluidity. Even when flowing into the package under no pressure and curing, no air bubbles remain, and problems with fluidity such as voids and unfilling hardly occur.

【0009】主剤である(a)のエポキシ樹脂と、硬化剤
である(b)の芳香族アミン系硬化剤アルキル化ジアミノ
ジフェニルメタンとの配合モル比は0.9〜1.2が望まし
い。0.9以下の、硬化剤が過多の場合は、過剰に未反応
のアミノ基が残存することとなり、耐湿性の低下・信頼
性の低下に繋がる。逆に1.2以上、即ちエポキシ樹脂が
多くなると硬化が不十分となり、信頼性の低下に繋が
る。
The mixing molar ratio of the epoxy resin (a) as the main ingredient and the alkylamine diaminodiphenylmethane as the curing agent (b) is preferably 0.9 to 1.2. If the curing agent is 0.9 or less and the amount of the curing agent is excessive, unreacted amino groups will remain excessively, leading to a decrease in moisture resistance and a decrease in reliability. Conversely, when the ratio is 1.2 or more, that is, when the amount of the epoxy resin increases, the curing becomes insufficient, which leads to a decrease in reliability.

【0010】(d)の無機充填材(以下、単に充填材とい
う)としては、例えば、結晶シリカ、溶融シリカ等が用
いられる。形状は一般に球状、破砕状、フレーク状等が
あるが、充填材をより多く添加することにより線膨張係
数の低減化が図られ、その効果を上げるためには球状の
無機充填材が最も良い。添加量は、(d)/{(a)+(b)+(c)+
(d)}=0.50〜0.80が望ましい。0.50未満だと、上述の
線膨張係数の低減効果は小さく、0.80を越えると結
果として得られる液状注入封止アンダーフィル材料の粘
度が高くなり過ぎ、実用レベルではないため好ましくな
い。
[0010] As the inorganic filler (hereinafter simply referred to as a filler) of (d), for example, crystalline silica, fused silica or the like is used. The shape generally has a spherical shape, a crushed shape, a flake shape, and the like, but the linear expansion coefficient can be reduced by adding more filler, and a spherical inorganic filler is best for improving the effect. The addition amount is (d) / {(a) + (b) + (c) +
(d)} = 0.50 to 0.80 is desirable. If it is less than 0.50, the above-described effect of reducing the coefficient of linear expansion is small. If it exceeds 0.80, the viscosity of the resulting liquid injection underfill material becomes too high, which is not a practical level.

【0011】また充填材の粒度分布を調整することによ
り粘度等の流動特性を最大限に引き出す事が可能であ
る。一般に分布範囲の広い粒度分布をもつ充填材ほど、
大きな粒径をもつ充填材ほど粘度が低くなる傾向がある
ことが知られている。しかし、低粘度化を目的に、例え
ば50μm以上の大きな粒径だけを揃えた充填材は、確実
に粘度は低くなるものの、硬化中に比重の比較的重い充
填材が沈み、硬化物の上下で組成比率の異なる、いわゆ
るフィラー沈降が発生する。また、粒径の大きな充填材
を使うデメリットとして、狭い隙間に流入しないという
点が挙げられる。多ピン化省スペース化のパッケージの
傾向もあり、基板とチップ間の高さ(Stand OFF)が狭く
なってきている。このような傾向にあり無圧下で液状注
入封止アンダーフィル材料を流入し、ボイド・未充填な
ど流動性の不具合がないよう成形するために、充填材の
粒径を極力小さくしなければならない。しかし粒径を小
さくすることによって流動性が損なわれる不具合も多く
なる。
The flow characteristics such as viscosity can be maximized by adjusting the particle size distribution of the filler. In general, fillers with a broad particle size distribution,
It is known that a filler having a larger particle size tends to have a lower viscosity. However, for the purpose of lowering the viscosity, fillers with only a large particle size of, for example, 50 μm or more, although the viscosity surely decreases, the relatively heavy filler of specific gravity sinks during curing, and the top and bottom of the cured product So-called filler sedimentation having a different composition ratio occurs. A disadvantage of using a filler having a large particle size is that it does not flow into a narrow gap. There is also a tendency for packages to be multi-pin and space-saving, and the height (Stand OFF) between the substrate and the chip is becoming narrower. In order to flow the liquid-filled sealing underfill material under no pressure and to form such that there is no fluidity defect such as void or unfilled under such pressure, the particle size of the filler must be minimized. However, reducing the particle size also increases the problem that the fluidity is impaired.

【0012】そこで充填材の平均粒径を0.4〜6μm
と、従来の液状封止材料のそれより小さくし、かつ粒径
20μm 以上のものが全充填材成分中の30重量%以下
で、50μm以上をカットし、粒径を小さくすることによ
り、流動性も損なわず、チップと基板の間隙を縫って充
填する事が可能となった。またなおかつ1μm以下のも
のが全充填材成分中20〜100重量%と、粒度分布を調整
することで、満遍なく充填させることができる。
Therefore, the average particle size of the filler is set to 0.4 to 6 μm.
And smaller than that of the conventional liquid sealing material, and the particle size
20% or more of the total filler component is 30% by weight or less of the total filler component. By cutting 50μm or more and reducing the particle size, the fluidity is not impaired and the gap between the chip and the substrate can be sewn and filled. It became. In addition, the particles having a particle size of 1 μm or less can be uniformly filled by adjusting the particle size distribution to 20 to 100% by weight of the total filler components.

【0013】本発明の液状注入封止アンダーフィル材料
材料には、前記の必須成分の他に必要に応じて他の樹脂
や反応を促進するための触媒、希釈剤、顔料、エラスト
マー、カップリング剤、難燃剤、レベリング剤、消泡剤
等の添加物を用いても差し支えない。
[0013] In addition to the above-mentioned essential components, the liquid injection sealing underfill material of the present invention may further comprise other resins or catalysts, diluents, pigments, elastomers, and coupling agents for accelerating the reaction. Additives such as a flame retardant, a leveling agent and an antifoaming agent may be used.

【0014】エラストマーとしては、(a)のエポキシ樹
脂との相溶性が良く、低応力化・及び強靱化が期待され
る、エポキシ基の有するポりブタジエン化合物、ランダ
ム共重合シリコーン変性エポキシ、ランダム共重合シリ
コーン変性フェノール樹脂、又はエポキシ基含有のポリ
オレフィン等が挙げられ、単独あるいは数種を組み合わ
せても良い。一般にエラストマーは、エポキシ樹脂との
相溶性に欠けるため注入硬化した後はブリードのため成
形性が低下する性質を持つ。しかし、エポキシ基を分子
の一部に組み込んでいる上記エラストマーは、相溶性が
あり、硬化剤の(b)と一部反応し架橋するため、ブリー
ド性は良くなり、低応力化及び強靱化も発現できると考
えられる。
As the elastomer, a polybutadiene compound having an epoxy group, which has good compatibility with the epoxy resin (a) and is expected to have low stress and toughness, a random copolymerized silicone modified epoxy, and a random copolymer Examples thereof include a polymerized silicone-modified phenolic resin and an epoxy group-containing polyolefin, and may be used alone or in combination. In general, elastomers have a property of being poor in moldability due to bleeding after injection curing due to lack of compatibility with an epoxy resin. However, the above elastomer incorporating an epoxy group in a part of the molecule is compatible, partially reacts with the curing agent (b) and crosslinks, so that the bleeding property is improved, and the stress and toughness are also reduced. It is thought that it can be expressed.

【0015】低応力化の確認には例えば3点曲げ試験、
強靱化の確認には例えばKIC測定が挙げられるが、いず
れのテストの結果でも優れた結果を得ることができる。
このエラストマーは、その添加量を調整することによ
り、低応力性・及び靱性を最大限に引き出すことができ
る。添加量は、全液状注入封止アンダーフィル材料中0.
1〜1.0%が望ましいが、0.1%より少ないと低応力化・及
び強靱化の効果が望めなく、特にT/C時に表面クラッ
クが発生し信頼性の不良に繋がる原因となる。また、1.
0%より多いと(a)のエポキシ樹脂との相溶性が悪くなり
パッケージ表面に油浮き、ブリードするといった成形性
低下の原因となる。液状注入封止アンダーフィル材料
は、例えば各成分、添加物等を三本ロール、二本熱ロー
ル、真空混合機にて分散混練し、真空下脱泡処理して製
造する。
To confirm the reduction of stress, for example, a three-point bending test,
Confirmation of toughness includes, for example, KIC measurement, and excellent results can be obtained from any of the test results.
By adjusting the amount of the elastomer, low stress and high toughness can be obtained. The amount of addition is 0.
1% to 1.0% is desirable, but if less than 0.1%, the effects of lowering the stress and increasing the toughness cannot be expected. In particular, surface cracks occur during T / C, leading to poor reliability. Also, 1.
If it is more than 0%, the compatibility with the epoxy resin (a) will be poor, and the oil will float on the package surface and cause bleeding, which will cause a reduction in moldability. The liquid injection sealing underfill material is produced by, for example, dispersing and kneading each component, additive, and the like with a three-roll, two-heat roll, and a vacuum mixer, and then performing a defoaming process under vacuum.

【0016】[0016]

【実施例】以下本発明を以下に示す実施例及び比較例で
説明する。 [実施例1] ビスフェノールF型エポキシ樹脂(当量155、1.6Pa・s @25℃) 100重量部 ジエチルジアミノジフェニルメタン 21重量部 テトラメチルジアミノジフェニルメタン 21重量部 グリシジルトリメトキシシラン 3重量部 溶融シリカA 200重量部 カーボンブラック 1重量部 なお、用いた溶融シリカの特性を表1に示す。
The present invention will be described below with reference to the following examples and comparative examples. [Example 1] Bisphenol F type epoxy resin (equivalent weight: 155, 1.6 Pa · s @ 25 ° C) 100 parts by weight Diethyldiaminodiphenylmethane 21 parts by weight Tetramethyldiaminodiphenylmethane 21 parts by weight Glycidyltrimethoxysilane 3 parts by weight Fused silica A 200 parts by weight Part Carbon black 1 part by weight The characteristics of the fused silica used are shown in Table 1.

【0017】[0017]

【表1】 [Table 1]

【0018】上記の原材料を3本ロールにて、分散混練
し真空下脱泡処理をして液状注入封止アンダーフィル材
料を得た。得られた液状注入封止アンダーフィル材料を
用いて、80℃の熱盤上でフリップチップ実装パッケー
ジに5分間注入させた後、120℃で1時間、さらに1
65℃で2時間、オーブン中で硬化して半導体パッケー
ジを得た。粘度はBrookField型粘度計(@25C)にて、5rpm
で測定したものを値とした。この値が高いほど悪い。粘
度が500ポイズを越えるとディスペンス時の作業性が
悪くなる。また、チキソ比は、上述粘度計で、0.5rpmと
5rpmでの粘度の比を値とした。保存性は初期粘度の倍に
なる時間をとった。超音波探傷機(以下、C-SAMとい
う)にて、パッケージ内部のボイドの有無(パッケージ充
填性で表現)、半導体チップ面およびプリント基板バン
プ界面との剥離、クラックの有無を確認した。PCT処
理(125℃/2.3atm)、T/C処理(−65℃/30
分←→150℃/30分)を施して、SATにて半導体
チップとプリント基板界面との剥離、クラックの有無を
確認したところPCT処理720時間、T/C処理10
00サイクルまで全くそのような現象は認められず、良
好な信頼性を有していることが判明した。各評価ごとに
用いたフリップチップ実装パッケージの数は、10個で
ある。なお、チップの大きさは15mm角で、基板との間隙
は100μmである。これらの評価結果を表2に示す。
The above raw materials were dispersed and kneaded with three rolls and subjected to a defoaming treatment under vacuum to obtain a liquid injection-sealed underfill material. The obtained liquid injection sealing underfill material is injected into a flip-chip mounting package for 5 minutes on a hot plate at 80 ° C., and then at 120 ° C. for 1 hour and further for 1 hour.
Cured in an oven at 65 ° C. for 2 hours to obtain a semiconductor package. The viscosity was measured at 5 rpm with a BrookField viscometer (@ 25C).
The value measured in was used as a value. The higher the value, the worse. If the viscosity exceeds 500 poise, the workability at the time of dispensing becomes poor. The thixotropic ratio was 0.5 rpm with the above viscometer.
The ratio of the viscosity at 5 rpm was taken as the value. Storage time was taken to be twice the initial viscosity. Using an ultrasonic flaw detector (hereinafter referred to as C-SAM), the presence or absence of voids in the package (expressed in terms of package filling properties), the separation between the semiconductor chip surface and the printed circuit board bump interface, and the presence or absence of cracks were confirmed. PCT treatment (125 ° C / 2.3atm), T / C treatment (-65 ° C / 30atm)
Min. →→ 150 ° C./30 min.) And the presence or absence of peeling and cracking between the semiconductor chip and the printed circuit board interface was confirmed by SAT.
No such phenomenon was observed at all until the 00 cycle, and it was found that the device had good reliability. The number of flip-chip mounting packages used for each evaluation is ten. The size of the chip is 15 mm square, and the gap with the substrate is 100 μm. Table 2 shows the evaluation results.

【0019】[実施例2〜5、及び比較例1〜5]表2
の配合による以外は実施例1と同様にして、液状注入封
止アンダーフィル材料を得た。得られた液状注入封止ア
ンダーフィル材料を用いて、実施例1と同様にして半導
体パッケージを得た。これらの評価結果を表2に示す。
Examples 2 to 5 and Comparative Examples 1 to 5
A liquid injection sealing underfill material was obtained in the same manner as in Example 1 except for the compounding of. Using the obtained liquid injection underfill material, a semiconductor package was obtained in the same manner as in Example 1. Table 2 shows the evaluation results.

【0020】[0020]

【表2】 (ナフタレンF型エポキシ樹脂(当量135、124Pa・s以下 @
25C) )
[Table 2] (Naphthalene F-type epoxy resin (equivalent to 135, 124 Pa
25C))

【0021】[0021]

【発明の効果】本発明の液状注入封止アンダーフィル材
料で半導体パッケージの封止を行うと、プレッシャーク
ッカーテストや冷熱サイクルテストにおいても剥離クラ
ックのない高信頼性の半導体を得ることができるので工
業的メリット大である。
When a semiconductor package is sealed with the liquid injection sealing underfill material of the present invention, a highly reliable semiconductor without peeling cracks can be obtained even in a pressure cooker test or a thermal cycle test. Is a great merit.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 (a)液状エポキシ樹脂、(b)芳香族アミン
系硬化剤アルキル化ジアミノジフェニルメタン、(c)エ
ポキシ基、アミノ基、メルカプト基の群から選ばれる1
個以上の官能基を分子内に有するシランカップリング
剤、及び(d)無機充填材を主成分とする液状注入封止ア
ンダーフィル材料において、各成分の配合割合が重量比
で(c)/{(a)+(b)+(c)}=0.01〜0.05で、かつ(d)/{(a)+
(b)+(c)+(d)}=0.50〜0.80であり、かつ無機充填材が、
その平均粒径が0.4〜6μmで、粒径1μm以下のもの
が全無機充填材成分中20〜100重量%で、かつ粒径20μ
m 以上のものが全無機充填材成分中の30重量%以下
で、50μm以上をカットした粒度分布を有する無機充填
材であることを特徴とする液状注入封止アンダーフィル
材料。
1. A compound selected from the group consisting of (a) a liquid epoxy resin, (b) an alkylated diaminodiphenylmethane, an aromatic amine-based curing agent, and (c) an epoxy group, an amino group, and a mercapto group.
In a silane coupling agent having at least two functional groups in the molecule, and (d) a liquid injection underfill material containing an inorganic filler as a main component, the mixing ratio of each component is (c) / { (a) + (b) + (c)} = 0.01-0.05, and (d) / {(a) +
(b) + (c) + (d)} = 0.50 to 0.80, and the inorganic filler is
Those having an average particle size of 0.4 to 6 μm and a particle size of 1 μm or less account for 20 to 100% by weight of all the inorganic filler components and a particle size of 20 μm.
A liquid-filled sealing underfill material characterized in that at least 30% by weight of the total inorganic filler component is an inorganic filler having a particle size distribution cut at 50 μm or more.
JP32539096A 1996-12-05 1996-12-05 Liquid injection underfill material Expired - Fee Related JP3351974B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32539096A JP3351974B2 (en) 1996-12-05 1996-12-05 Liquid injection underfill material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32539096A JP3351974B2 (en) 1996-12-05 1996-12-05 Liquid injection underfill material

Publications (2)

Publication Number Publication Date
JPH10158366A true JPH10158366A (en) 1998-06-16
JP3351974B2 JP3351974B2 (en) 2002-12-03

Family

ID=18176307

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32539096A Expired - Fee Related JP3351974B2 (en) 1996-12-05 1996-12-05 Liquid injection underfill material

Country Status (1)

Country Link
JP (1) JP3351974B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000302841A (en) * 1999-02-18 2000-10-31 Three Bond Co Ltd Epoxy resin composition
JP2001270976A (en) * 1999-04-13 2001-10-02 Hitachi Chem Co Ltd Epoxy resin composition for sealing and electronic device
US6605355B1 (en) 1999-02-18 2003-08-12 Three Bond Co., Ltd. Epoxy resin composition
JP2006016433A (en) * 2004-06-30 2006-01-19 Shin Etsu Chem Co Ltd Liquid epoxy resin composition for semiconductor encapsulation and flip chip semiconductor device
JP2006016431A (en) * 2004-06-30 2006-01-19 Shin Etsu Chem Co Ltd Liquid epoxy resin composition for semiconductor sealing and flip chip type semiconductor
US7094844B2 (en) 2002-09-13 2006-08-22 Shin-Etsu Chemical Co., Ltd. Liquid epoxy resin composition and semiconductor device
JP2006219575A (en) * 2005-02-10 2006-08-24 Sumitomo Bakelite Co Ltd Liquid sealing resin and semiconductor device using the same
US7169833B2 (en) 2003-03-28 2007-01-30 Shin-Estu Chemical Co., Ltd. Liquid epoxy resin composition and semiconductor device
JP2007182561A (en) * 2005-12-08 2007-07-19 Hitachi Chem Co Ltd Liquid resin composition for electronic element and electronic element device using the same
KR100895238B1 (en) * 2002-12-03 2009-04-27 에스케이케미칼주식회사 Liquid-phase device-protecting chemical composition for packaging semiconductor
JP2010189664A (en) * 1999-04-13 2010-09-02 Hitachi Chem Co Ltd Epoxy resin composition for encapsulation and electronic part device
JP2011014885A (en) * 2009-06-01 2011-01-20 Shin-Etsu Chemical Co Ltd Dam material composition of underfill material for multilayer semiconductor device, and method of manufacturing multilayer semiconductor device using the same dam material composition
US8450859B2 (en) 2008-10-27 2013-05-28 Panasonic Corporation Semiconductor device mounted structure and its manufacturing method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03177450A (en) * 1989-12-05 1991-08-01 Hitachi Chem Co Ltd Epoxy resin composition for semiconductor and production of semiconductor device
JPH05206326A (en) * 1991-05-21 1993-08-13 Oki Electric Ind Co Ltd Resin-sealed semiconductor device
JPH07242731A (en) * 1994-03-04 1995-09-19 Sumitomo Bakelite Co Ltd Epoxy resin composition for semiconductor sealing
JPH0853601A (en) * 1994-08-10 1996-02-27 Sumitomo Bakelite Co Ltd Epoxy resin composition for semiconductor sealing
JPH09176294A (en) * 1995-12-27 1997-07-08 Sumitomo Bakelite Co Ltd Liquid sealing material

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03177450A (en) * 1989-12-05 1991-08-01 Hitachi Chem Co Ltd Epoxy resin composition for semiconductor and production of semiconductor device
JPH05206326A (en) * 1991-05-21 1993-08-13 Oki Electric Ind Co Ltd Resin-sealed semiconductor device
JPH07242731A (en) * 1994-03-04 1995-09-19 Sumitomo Bakelite Co Ltd Epoxy resin composition for semiconductor sealing
JPH0853601A (en) * 1994-08-10 1996-02-27 Sumitomo Bakelite Co Ltd Epoxy resin composition for semiconductor sealing
JPH09176294A (en) * 1995-12-27 1997-07-08 Sumitomo Bakelite Co Ltd Liquid sealing material
JP3137314B2 (en) * 1995-12-27 2001-02-19 住友ベークライト株式会社 Liquid sealing material

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6605355B1 (en) 1999-02-18 2003-08-12 Three Bond Co., Ltd. Epoxy resin composition
JP2000302841A (en) * 1999-02-18 2000-10-31 Three Bond Co Ltd Epoxy resin composition
JP2016026263A (en) * 1999-04-13 2016-02-12 日立化成株式会社 Epoxy resin composition for sealing and electronic component device
JP2001270976A (en) * 1999-04-13 2001-10-02 Hitachi Chem Co Ltd Epoxy resin composition for sealing and electronic device
JP2010189664A (en) * 1999-04-13 2010-09-02 Hitachi Chem Co Ltd Epoxy resin composition for encapsulation and electronic part device
JP4568940B2 (en) * 1999-04-13 2010-10-27 日立化成工業株式会社 Epoxy resin composition for sealing and electronic component device
US7094844B2 (en) 2002-09-13 2006-08-22 Shin-Etsu Chemical Co., Ltd. Liquid epoxy resin composition and semiconductor device
KR100895238B1 (en) * 2002-12-03 2009-04-27 에스케이케미칼주식회사 Liquid-phase device-protecting chemical composition for packaging semiconductor
US7169833B2 (en) 2003-03-28 2007-01-30 Shin-Estu Chemical Co., Ltd. Liquid epoxy resin composition and semiconductor device
JP2006016433A (en) * 2004-06-30 2006-01-19 Shin Etsu Chem Co Ltd Liquid epoxy resin composition for semiconductor encapsulation and flip chip semiconductor device
JP2006016431A (en) * 2004-06-30 2006-01-19 Shin Etsu Chem Co Ltd Liquid epoxy resin composition for semiconductor sealing and flip chip type semiconductor
JP2006219575A (en) * 2005-02-10 2006-08-24 Sumitomo Bakelite Co Ltd Liquid sealing resin and semiconductor device using the same
JP2007182561A (en) * 2005-12-08 2007-07-19 Hitachi Chem Co Ltd Liquid resin composition for electronic element and electronic element device using the same
US8450859B2 (en) 2008-10-27 2013-05-28 Panasonic Corporation Semiconductor device mounted structure and its manufacturing method
US8828806B2 (en) 2009-06-01 2014-09-09 Shin-Etsu Chemical Co., Ltd. Dam composition for use with multilayer semiconductor package underfill material, and fabrication of multilayer semiconductor package using the same
JP2011014885A (en) * 2009-06-01 2011-01-20 Shin-Etsu Chemical Co Ltd Dam material composition of underfill material for multilayer semiconductor device, and method of manufacturing multilayer semiconductor device using the same dam material composition

Also Published As

Publication number Publication date
JP3351974B2 (en) 2002-12-03

Similar Documents

Publication Publication Date Title
JP5354753B2 (en) Underfill material and semiconductor device
JP5163912B2 (en) Epoxy resin composition and semiconductor device
US6225704B1 (en) Flip-chip type semiconductor device
KR20120092505A (en) Semiconductor-encapsulating liquid epoxy resin composition and semiconductor device
JP2011014885A (en) Dam material composition of underfill material for multilayer semiconductor device, and method of manufacturing multilayer semiconductor device using the same dam material composition
JP3351974B2 (en) Liquid injection underfill material
JP3794349B2 (en) Liquid epoxy resin composition for sealing and semiconductor device
JP4931079B2 (en) Liquid thermosetting resin composition for underfill and semiconductor device using the same
JP3912515B2 (en) Liquid epoxy resin composition and semiconductor device
JPH10231351A (en) Liquid injection sealing underfilling material
JP2007162001A (en) Liquid epoxy resin composition
JP3137314B2 (en) Liquid sealing material
JP6115929B2 (en) Epoxy resin composition
JP2009173744A (en) Underfill agent composition
JP3925803B2 (en) Flip chip mounting side fill material and semiconductor device
JP4176619B2 (en) Flip chip mounting side fill material and semiconductor device
JP2012082281A (en) Liquid epoxy resin composition and semiconductor device
JP4221585B2 (en) Liquid epoxy resin composition and semiconductor device
JP2005097448A (en) Liquid epoxy resin composition for sealing semiconductor and semiconductor apparatus
KR100429363B1 (en) Epoxy resin composition for semiconductor device sealing
JP3867784B2 (en) Liquid epoxy resin composition and semiconductor device
JP2000336244A (en) Liquid sealing resin composition and semiconductor device using the composition
JP2000017149A (en) Liquid epoxy resin composition for sealing medium and its cured product
JPH0931161A (en) Liquid epoxy resin composition
JP2013107993A (en) Liquid resin composition for semiconductor sealing and semiconductor device using the same

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090920

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100920

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110920

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110920

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120920

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120920

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130920

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees