JPH10156554A - Metal clad titan aluminide and production thereof - Google Patents

Metal clad titan aluminide and production thereof

Info

Publication number
JPH10156554A
JPH10156554A JP31400196A JP31400196A JPH10156554A JP H10156554 A JPH10156554 A JP H10156554A JP 31400196 A JP31400196 A JP 31400196A JP 31400196 A JP31400196 A JP 31400196A JP H10156554 A JPH10156554 A JP H10156554A
Authority
JP
Japan
Prior art keywords
alloy
metal
titanium aluminide
steel
aluminide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP31400196A
Other languages
Japanese (ja)
Inventor
Keizo Hashimoto
敬三 橋本
Yoji Mizuhara
洋治 水原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP31400196A priority Critical patent/JPH10156554A/en
Publication of JPH10156554A publication Critical patent/JPH10156554A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)
  • Laminated Bodies (AREA)

Abstract

PROBLEM TO BE SOLVED: To in-expensively produce a metal clad titan aluminide of the excellent quality in the high productivity by making a titan aluminide of a specific composition the base material and making a ductile metal the clad material. SOLUTION: The base material is made as a titan aluminide composed of 42 to 50 atm % Al, 1 to 6 atm % Cr, and the rest of Ti and inevitable impurity. As the clad material, a Ti, a Ti alloy, a steel, a Mo alloy, a Ta alloy, a Nb alloy, etc., are used. As the Ti alloy, an α type Ti alloy, an α+β type Ti alloy, and a βtype Ti alloy, etc., are used, as the steel, an austenite prime heat resisting steel, a ferrite prime heat resisting steel, etc., are used. In the case of treating with surface hardening to the clad material of steel, as the surface hardening method, nitriding, carbonization, cementation, etc., are executed. These hardening treatments are executed after machining of grinding, polishing and cutting, etc.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、金属クラッドチ
タンアルミナイドおよびその製造方法に関する。この発
明の金属クラッドチタンアルミナイドは、航空機、宇宙
往還機、自動車その他において高い比強度、比剛性およ
び耐磨耗性または耐熱性が要求される部材、たとえばタ
ービンのブレードもしくはディスク、またはエンジンバ
ルブなどに用いられる。また、この発明の金属クラッド
チタンアルミナイドは、室温または温間で高比剛性が要
求される部材、たとえばゴルフヘッドなどのスポーツ用
品としても用いられる。
The present invention relates to a metal-clad titanium aluminide and a method for producing the same. The metal-clad titanium aluminide of the present invention can be used for members requiring high specific strength, specific rigidity and abrasion resistance or heat resistance in aircraft, spacecraft, automobiles and the like, such as blades or disks of turbines, engine valves, and the like. Used. The metal-clad titanium aluminide of the present invention is also used as a member requiring high specific rigidity at room temperature or warm temperature, for example, as sports equipment such as a golf head.

【0002】[0002]

【従来の技術】高速で運動する部材、たとえばタービン
ブレードやエンジンバルブに用いられる材料は、耐熱
性、比強度および比剛性が高いことが望ましい。耐熱性
および比強度が高ければ、高温で使用されるこれら部材
は軽量となり、タービンやエンジンなどの熱効率は向上
する。チタンアルミナイドは高い耐熱性、比強度および
比剛性をもっているため、これら部材の材料として注目
されている。しかし、チタンアルミナイドは、常温にお
ける延性および耐磨耗性が低いので摺動部材、たとえば
エンジンバルブに使用できないという問題がある。
2. Description of the Related Art Materials used for high-speed moving members such as turbine blades and engine valves desirably have high heat resistance, high specific strength and high specific rigidity. If the heat resistance and the specific strength are high, these members used at a high temperature become lightweight, and the thermal efficiency of a turbine, an engine, and the like is improved. Since titanium aluminide has high heat resistance, specific strength and specific rigidity, it is attracting attention as a material for these members. However, titanium aluminide has a problem that it cannot be used for a sliding member, for example, an engine valve because of low ductility and abrasion resistance at room temperature.

【0003】上記問題のうち延性を改善する技術とし
て、特開平2−25534号公報には、Al:46〜5
0原子%、Cr:1〜3原子%、Nb:1〜5原子%残
部Tiからなるチタンアルミニウム合金によって延性と
高温における耐酸化性が改善されたことが示されてい
る。さらに、特開平2−258938号公報には、25
原子%以上、75原子%以下のAl、0.01原子%以
上、10原子%以下のCr、0.005原子%以上、5
原子%以下のB、残部TiからなるTiAl系金属間化
合物により、常温での延性が改良することができたこと
が示されている。
As a technique for improving ductility among the above-mentioned problems, Japanese Patent Application Laid-Open No. 25534/1990 discloses Al: 46-5.
It is shown that ductility and oxidation resistance at high temperatures are improved by a titanium aluminum alloy comprising 0 atomic%, Cr: 1 to 3 atomic%, and Nb: 1 to 5 atomic%, with the balance being Ti. Further, JP-A-2-258938 discloses 25
At least 75 at.% Al, 0.01 at.% To 10 at.% Cr, 0.005 at.
It is shown that the ductility at room temperature could be improved by a TiAl-based intermetallic compound consisting of B in atomic% or less and the balance of Ti.

【0004】耐磨耗性を解決する技術として、特開平3
−75385号公報で開示されたTiAl基製機械摺動
部品がある。この機械摺動部品は、表面にモリブデンを
含む金属、コバルト基合金、または窒化チタン、炭化チ
タン、酸化アルミニウム、炭化タングステン、もしくは
炭化クロムを含む化合物などの材料で被覆されているこ
とを特徴としている。これらの被覆は、プラズマ溶射、
気相めっき(PVD)あるいはガス窒化などにより形成
する。
As a technique for solving the abrasion resistance, Japanese Patent Laid-Open Publication No.
There is a mechanical sliding component made of TiAl disclosed in JP-A-75385. This mechanical sliding component is characterized in that its surface is coated with a material such as a metal containing molybdenum, a cobalt-based alloy, or a compound containing titanium nitride, titanium carbide, aluminum oxide, tungsten carbide, or chromium carbide. . These coatings are plasma sprayed,
It is formed by vapor phase plating (PVD) or gas nitriding.

【0005】特開平3−215654号公報にはTiA
l金属間化合物基合金またはTi3Al金属間化合物基
合金製の表面がβ相チタンの素地に晶出または/および
析出した炭化チタンを含む組織を持った、耐磨耗性に優
れたTi−Al金属間化合物基合金製部材が開示されて
いる。接合に関する技術として、特開平3−22638
7号公報にはTiAl金属間化合物を高温の真空または
不活性ガス雰囲気中で金属間化合物を突き合わせ、突き
合わせ面に圧縮応力を負荷した状態で保持し、接合する
技術が開示されている。
Japanese Patent Application Laid-Open No. Hei 3-215654 discloses that TiA
l intermetallic compound based alloy or Ti 3 Al intermetallic compound-based alloy surface with a tissue containing the titanium carbide which is crystallized and / or precipitated in the matrix of the β-phase titanium, has excellent abrasion resistance Ti- A member made of an Al intermetallic compound-based alloy is disclosed. Japanese Patent Application Laid-Open No. 3-22638 discloses a technique relating to bonding.
No. 7 discloses a technique in which a TiAl intermetallic compound is butt-joined to each other in a high-temperature vacuum or inert gas atmosphere, and the butt face is held under a compressive stress, and joined.

【0006】[0006]

【発明が解決しようとする課題】上記特開平3−753
85号公報のTiAl基製機械摺動部品において、プラ
ズマ溶射により被覆する場合、溶射作業条件が厳しく、
溶射が適切でないと割れなどの欠陥が生じやすい。ま
た、溶射後の熱処理を必要とし、被覆に長時間を要す
る。気相めっきまたはガス窒化などにより被覆する場
合、被覆加工設備が高価であり、また被覆に長時間を要
するので生産能率が低い。
SUMMARY OF THE INVENTION The above-mentioned JP-A-3-753
No. 85, in the case of TiAl-based mechanical sliding parts, when coating by plasma spraying, the spraying operation conditions are severe,
If the thermal spraying is not appropriate, defects such as cracks are likely to occur. Further, heat treatment after thermal spraying is required, and coating requires a long time. In the case of coating by vapor phase plating or gas nitriding, etc., the coating processing equipment is expensive, and the coating takes a long time, so that the production efficiency is low.

【0007】上記特開平3−75385号公報および特
開平3−215654号公報のTiAl基製機械摺動部
品において、PTA法(Plasma Transfered Arc 法)、
プラズマトーチ法、TIG法、レーザービーム法あるい
は電子ビーム法によって肉盛り相を形成する。上記方法
の場合、原料にTi合金粉末を使用し、高価であるとと
もに、原料粉末に対する肉盛り部材への歩留まりが低
く、結果的に製品価格を上昇させる。
In the mechanical sliding parts made of TiAl described in JP-A-3-75385 and JP-A-3-215654, a PTA method (Plasma Transfered Arc method),
The build-up phase is formed by a plasma torch method, a TIG method, a laser beam method or an electron beam method. In the case of the above method, a Ti alloy powder is used as a raw material, which is expensive, and the yield of the raw material powder on the build-up member is low, resulting in an increase in product price.

【0008】この発明は、欠陥のない優れた品質を有
し、高い生産能率で製造することができる廉価な金属ク
ラッドチタンアルミナイドおよびその製造方法を提供す
ることを目的とする。
It is an object of the present invention to provide an inexpensive metal-clad titanium aluminide which has excellent quality without defects and can be manufactured at a high production efficiency, and a method for manufacturing the same.

【0009】[0009]

【課題を解決するための手段】この発明の金属クラッド
チタンアルミナイドは、母材がAl:42〜50原子
%、Cr:1〜6原子%、残部:Tiおよび不可避的不
純物からなる化学組成のチタンアルミナイドからなり、
合せ材が延性金属からなることを特徴としている。
The metal clad titanium aluminide of the present invention has a base material of 42 to 50 atomic% of Al, 1 to 6 atomic% of Cr, and a balance of titanium having a chemical composition of Ti and unavoidable impurities. Made of aluminide,
It is characterized in that the joining material is made of a ductile metal.

【0010】上記チタンアルミナイドの化学組成におい
て、Alが42原子%未満であるとTi3 Alの体積率
が大きくなり、延性が低下し、Alが50原子%を超え
るとTiAl単相になり、脆くなる。Crが1原子%未
満であると添加効果がなく、Crが6原子%を超えると
β相の体積率が大きくなり、高温強度が低下する。
In the above chemical composition of titanium aluminide, if Al is less than 42 atomic%, the volume ratio of Ti 3 Al increases and ductility decreases, and if Al exceeds 50 atomic%, it becomes a TiAl single phase and becomes brittle. Become. If the Cr content is less than 1 at%, there is no effect of addition, and if the Cr content exceeds 6 at%, the volume fraction of the β phase becomes large, and the high-temperature strength decreases.

【0011】合わせ材として用いられる延性金属は、常
温における引張伸びとして10%以上であることが望ま
しい。このような延性金属として、Ti、Ti合金、
鋼、Mo合金、Ta合金、またはNb合金などが用いら
れる。合せ材がTi、またはTi合金である場合、合せ
材は延性が10%以上と高く、TiAlとの密着性が良
く、また広く用いられている炭化、窒化などの表面硬化
処理を行なうことができる。合せ材が鋼である場合、材
料費が安く、成形後の研削、切削などの加工性に優れて
おり、また広く用いられている炭化、窒化などの表面硬
化処理を行うことができる。
The ductile metal used as the bonding material preferably has a tensile elongation at room temperature of 10% or more. As such a ductile metal, Ti, Ti alloy,
Steel, Mo alloy, Ta alloy, Nb alloy, or the like is used. When the joining material is Ti or a Ti alloy, the joining material has a high ductility of 10% or more, has good adhesion to TiAl, and can be subjected to a widely used surface hardening treatment such as carbonization and nitriding. . When the composite material is steel, the material cost is low, the workability such as grinding and cutting after forming is excellent, and a widely used surface hardening treatment such as carbonization and nitriding can be performed.

【0012】合せ材は延性に富むので、熱間加工中ある
いは製品として使用中に、外部から応力が加わり変形し
ても、合せ材が塑性変形して応力を緩和するので、表面
のき裂の発生が抑えられ、その結果チタンアルミナイド
に割れが発生しにくい。
Since the composite material is highly ductile, even if stress is applied from the outside during hot working or during use as a product, the composite material is plastically deformed and the stress is relaxed. Generation is suppressed, and as a result, cracks are less likely to occur in the titanium aluminide.

【0013】この発明の金属クラッドチタンアルミナイ
ドの製造方法は、Al:42〜50原子%、Cr:1〜
6原子%、残部:Tiおよび不可避的不純物からなる化
学組成の原材料を溶解し、インゴットを鋳造し、前記イ
ンゴットからチタンアルミナイドの母材を作製し、前記
母材を延性金属からなる合せ材で被覆し、前記母材と合
せ材とを900℃以上で熱間加工して接合することを特
徴としている。
The method for producing a metal-clad titanium aluminide of the present invention is as follows: Al: 42 to 50 atomic%;
6 atomic%, balance: dissolve raw material of chemical composition consisting of Ti and unavoidable impurities, cast an ingot, produce a titanium aluminide base material from the ingot, and coat the base material with a composite material made of ductile metal Then, the base material and the composite material are joined by hot working at 900 ° C. or more.

【0014】熱間加工の温度が900℃未満であると、
TiAlの変形抵抗が大きく、熱間加工性が低下する。
熱間加工により、母材と合せ材とは相互拡散および変形
によって接合し、クラッド化する。なお、熱間加工温度
が液相線温度を超えると、TiAlに液相が現れて熱間
加工ができなくなるので、熱間加工温度の上限は液相線
温度である。
When the hot working temperature is lower than 900 ° C.,
The deformation resistance of TiAl is large, and the hot workability is reduced.
By the hot working, the base material and the joining material are joined by mutual diffusion and deformation to form a clad. If the hot working temperature exceeds the liquidus temperature, a liquid phase appears in TiAl and hot working cannot be performed. Therefore, the upper limit of the hot working temperature is the liquidus temperature.

【0015】上記製造方法において、合せ材がTi、T
i合金、鋼、Mo合金、Ta合金、またはNb合金とす
ることが望ましい。合せ材を鋼とし、合せ材に表面硬化
処理を施すようにしてもよい。
In the above-mentioned manufacturing method, the joining material is Ti, T
It is desirable to use i-alloy, steel, Mo alloy, Ta alloy, or Nb alloy. The joining material may be steel, and the joining material may be subjected to a surface hardening treatment.

【0016】[0016]

【発明の実施の形態】この発明の金属クラッドチタンア
ルミナイドにおいて、チタンアルミナイドは高温変形能
向上に効果があるNb、Mo、Hf、Ta、W、Vの少
なくとも一つのβ相安定化元素を含むものにしてもよ
い。熱間加工の前段で結晶粒の均一微細化のための熱間
加工を行うと、熱間加工によりγ相粒界にβ相が析出し
た組織となりチタンアルミナイドの変形抵抗が低くな
り、高歪速度、かつ高加工比で熱間加工を行うことがで
きる。この熱間加工として、たとえば1000℃以上、
好ましくはβ相を析出するために1200℃以上で恒温
鍛造を行う。母材の厚みは、製品の寸法および形状によ
って決められる。合せ材の厚みは1 mm 以上であること
が望まく、0.1 mm 未満であると割れ防止効果が低下
する。
BEST MODE FOR CARRYING OUT THE INVENTION In the metal clad titanium aluminide of the present invention, the titanium aluminide contains at least one β-phase stabilizing element of Nb, Mo, Hf, Ta, W, and V, which is effective in improving high-temperature deformability. It may be. When hot working is performed at the stage prior to hot working for uniform grain refinement, a structure in which β phase precipitates at the γ phase grain boundary due to hot working reduces the deformation resistance of titanium aluminide, resulting in a high strain rate. In addition, hot working can be performed at a high working ratio. As the hot working, for example, 1000 ° C. or more,
Preferably, constant temperature forging is performed at 1200 ° C. or higher to precipitate the β phase. The thickness of the base material is determined by the size and shape of the product. It is desirable that the thickness of the composite material be 1 mm or more, and if it is less than 0.1 mm, the effect of preventing cracking is reduced.

【0017】合せ材として、Ti、Ti合金、鋼、Mo
合金、Ta合金、Nb合金などが用いられる。Ti合金
は周知のα型Ti合金、α+β型Ti合金、β型Ti合
金などであり、鋼はオーステナイト素耐熱鋼、フェライ
ト素耐熱鋼などである。鋼製の合せ材に表面硬化処理を
施す場合、表面硬化処理方法として窒化、炭化、浸炭な
どが用いられる。これら硬化処理は、研削、研磨、切削
など仕上機械加工の後に行う。
Ti, Ti alloy, steel, Mo
An alloy, a Ta alloy, an Nb alloy, or the like is used. The Ti alloy is a known α-type Ti alloy, α + β-type Ti alloy, β-type Ti alloy, or the like, and the steel is an austenitic heat-resistant steel, a ferritic heat-resistant steel, or the like. When performing a surface hardening treatment on a steel composite material, nitriding, carbonization, carburizing, or the like is used as the surface hardening method. These hardening treatments are performed after finishing machining such as grinding, polishing, and cutting.

【0018】熱間加工に供される素材は、板状、棒状、
またはブロック状など目的の形状に合わせた素材を用い
る。たとえば、板状の場合、板状のチタンアルミナイド
の上下面に合せ材を挟むだけでよい。また、棒状の場
合、棒状のチタンアルミナイドを管状合せ材に挿入し、
金型などの加工具と当たる両端面と加工具面との間に合
せ材を挟む。
The material to be subjected to hot working is plate-like, rod-like,
Alternatively, a material suitable for a target shape such as a block shape is used. For example, in the case of a plate-shaped titanium aluminide, it is only necessary to sandwich a matching material on the upper and lower surfaces of the plate-shaped titanium aluminide. Also, in the case of a rod, a rod-shaped titanium aluminide is inserted into the tubular composite,
A mating material is sandwiched between the processing tool surface and both end surfaces that are in contact with a processing tool such as a mold.

【0019】この発明の金属クラッドチタンアルミナイ
ドの製造方法において、熱間加工として、鍛造、押出
し、または圧延が用いられる。これら熱間加工は大気雰
囲気中で行うことができる。鍛造の場合は、自由鍛造、
型鍛造のいずれであってもよい。加工温度は900℃以
上であるが、歪速度は10-1〜50 s-1であることが望
ましい。歪速度が10-1 s-1未満であると、加工時間が
長くなり、材料および金型などの加工具の温度が低下し
て割れが発生しやすくなり、また生産能率が低下する。
逆に、歪速度が50 s-1を超えると、加工速度が高くな
り割れが発生しやすく、健全な成形体を作製することが
できない。熱間加工を複数回に分けて行ってもよく、そ
の場合には加工中に材料の温度が低下するので、加工途
中で材料を再加熱し、所要の加工温度を保持する。
In the method for producing a metal-clad titanium aluminide of the present invention, forging, extrusion, or rolling is used as hot working. These hot workings can be performed in an air atmosphere. In the case of forging, free forging,
Any of die forging may be used. Although the processing temperature is 900 ° C. or higher, the strain rate is desirably 10 −1 to 50 s −1 . If the strain rate is less than 10 −1 s −1 , the processing time is prolonged, the temperature of a processing tool such as a material and a mold is lowered, cracks are easily generated, and the production efficiency is lowered.
Conversely, if the strain rate exceeds 50 s −1 , the processing speed increases and cracks are likely to occur, and a sound molded body cannot be produced. The hot working may be performed a plurality of times, in which case the temperature of the material decreases during the working, so the material is reheated during the working and the required working temperature is maintained.

【0020】[0020]

【実施例】【Example】

(実施例1)Al47原子%、Cr3原子%、残部Ti
および不可避的不純物からなるチタンアルミナイド原料
をプラズマアーク溶解し、インゴットを鋳造した。イン
ゴットは、直径70 mm 、高さ300 mm の円柱材であ
る。上記インゴットから円柱試料を作製し厚さ20 mm
のTi合金(Ti−6Al−4V)材で覆い、大気中で
熱間押出し加工を行い、直径27 mm 、高さ710 mm
の円柱材に成形した。押出し加工温度は、1250℃で
あり、歪速度は10 s-1であった。上記成形品は、Ti
合金の合せ材により亀裂が押さえられ、室温においても
破壊は発生しなかった。表1に金属クラッドチタンアル
ミナイドの母材および合せ材の体積率、常温における引
張強さ、および引張伸びを示す。
(Example 1) 47 atomic% of Al, 3 atomic% of Cr, balance Ti
In addition, a titanium aluminide raw material comprising unavoidable impurities was melted by plasma arc to cast an ingot. The ingot is a cylindrical material having a diameter of 70 mm and a height of 300 mm. A cylindrical sample was prepared from the above ingot and had a thickness of 20 mm.
Covered with a Ti alloy (Ti-6Al-4V) material, hot-extruded in the air, diameter 27 mm, height 710 mm
Into a cylindrical material. The extrusion temperature was 1250 ° C. and the strain rate was 10 s −1 . The molded article is made of Ti
Cracks were suppressed by the composite material of the alloy, and no destruction occurred even at room temperature. Table 1 shows the volume ratio of the base material and the composite material of the metal clad titanium aluminide, the tensile strength at room temperature, and the tensile elongation.

【0021】[0021]

【表1】 [Table 1]

【0022】また、この成形品について相手材高張力
鋼、試験温度30℃、面圧3.7MPaの試験条件で摺動
試験を行った。その結果、耐焼付き性および耐磨耗性
は、Ti合金と同じであった。比較例として、上記チタ
ンアルミナイドのインゴットを、上記と同様にして熱間
押出しを行った。この合せ材なしの成形品は、室温で十
分な引張伸びが得られなかった。
A sliding test was performed on the molded product under the conditions of a high-tensile steel counterpart, a test temperature of 30 ° C., and a surface pressure of 3.7 MPa. As a result, seizure resistance and abrasion resistance were the same as those of the Ti alloy. As a comparative example, the titanium aluminide ingot was subjected to hot extrusion in the same manner as described above. The molded article without the composite material did not have sufficient tensile elongation at room temperature.

【0023】(実施例2)Al47原子%、Cr3原子
%、残部Tiおよび不可避的不純物からなるチタンアル
ミナイド原料をプラズマアーク溶解し、インゴットを鋳
造した。インゴットは、直径70 mm 、高さ300 mm
の円柱材である。ついで、高温変形特性を向上する目的
で、温度1200℃、歪速度5×10-4 s-1で恒温鍛造
法により組織制御を行った。上記インゴットを厚さ5 m
m のオーステナイト系耐熱鋼材で覆い、大気中で圧下率
70%の熱間鍛造を行い、直径45.6 mm 、高さ9 m
m の円柱材に成形した。鍛造前の試料温度は1200℃
であり、歪速度は13 s-1であった。上記成形品は、室
温において機械加工を行なっても、き裂は発生しなかっ
た。また、成形品について相手材高張力鋼、試験温度3
0℃、面圧3.7MPaの試験条件で摺動試験を行った。
その結果、耐焼付き性および耐磨耗性は、オーステナイ
ト系耐熱鋼と同じであった。
(Example 2) A titanium aluminide raw material comprising 47 atomic% of Al, 3 atomic% of Cr, the balance of Ti and unavoidable impurities was subjected to plasma arc melting to cast an ingot. Ingot is 70 mm in diameter and 300 mm in height
Column material. Next, in order to improve the high temperature deformation characteristics, the structure was controlled by a constant temperature forging method at a temperature of 1200 ° C. and a strain rate of 5 × 10 −4 s −1 . The above ingot is 5 m thick
m austenitic heat-resistant steel, hot forging with a draft of 70% in air, 45.6 mm in diameter and 9 m in height
m. Sample temperature before forging is 1200 ° C
And the strain rate was 13 s -1 . The molded article did not crack even when it was machined at room temperature. In addition, for the molded product, the counterpart material high-strength steel, test temperature 3
A sliding test was performed under the test conditions of 0 ° C. and a surface pressure of 3.7 MPa.
As a result, seizure resistance and abrasion resistance were the same as those of the austenitic heat-resistant steel.

【0024】[0024]

【発明の効果】この発明の金属クラッドチタンアルミナ
イドおよびその製造方法では、母材がチタンアルミナイ
ドからなり、合せ材が延性金属からなっている。したが
って、プラズマ溶射、気相めっき、ガス窒化などを用い
てチタンアルミナイドに被覆しないので、欠陥のない優
れた品質を有し、チタンアルミナイドの高比強度・高比
剛性を利用できる。さらに、廉価な設備により高い生産
能率で製造することができる。その製造方法では、母材
と合せ材とを熱間加工で接合するので、成形と接合とを
同時に行うことができ、生産能率の一層の向上を図るこ
とができる。
According to the metal clad titanium aluminide and the method for producing the same of the present invention, the base material is made of titanium aluminide and the composite material is made of ductile metal. Therefore, since the titanium aluminide is not coated by using plasma spraying, vapor phase plating, gas nitriding, or the like, it has excellent quality without defects, and can utilize the high specific strength and high specific rigidity of the titanium aluminide. Furthermore, it can be manufactured with high production efficiency by using inexpensive equipment. In the manufacturing method, since the base material and the joining material are joined by hot working, molding and joining can be performed at the same time, and the productivity can be further improved.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 母材がAl:42〜50原子%、Cr:
1〜6原子%、残部:Tiおよび不可避的不純物からな
る化学組成のチタンアルミナイドからなり、合せ材が延
性金属からなることを特徴とする金属クラッドチタンア
ルミナイド。
The base material is Al: 42 to 50 atomic%, Cr:
Metal clad titanium aluminide comprising 1 to 6 atomic%, balance: titanium aluminide having a chemical composition comprising Ti and unavoidable impurities, and a composite comprising a ductile metal.
【請求項2】 前記合せ材がTi、Ti合金、鋼、Mo
合金、Ta合金、またはNb合金からなる請求項1記載
の金属クラッドチタンアルミナイド。
2. The composite according to claim 1, wherein said composite material is Ti, Ti alloy, steel, Mo.
2. The metal-clad titanium aluminide according to claim 1, comprising an alloy, a Ta alloy, or an Nb alloy.
【請求項3】 前記合せ材が鋼からなり、合せ材が表面
硬化処理されている請求項2記載の金属クラッドチタン
アルミナイド。
3. The metal-clad titanium aluminide according to claim 2, wherein said bonding material is made of steel, and said bonding material is subjected to a surface hardening treatment.
【請求項4】 Al:42〜50原子%、Cr:1〜6
原子%、残部:Tiおよび不可避的不純物からなる化学
組成の原材料を溶解し、インゴットを鋳造しチタンアル
ミナイドの母材を作製し、前記母材を延性金属からなる
合せ材で被覆し、前記母材と合せ材とを900℃以上で
熱間加工して接合することを特徴とする金属クラッドチ
タンアルミナイドの製造方法。
4. Al: 42 to 50 atomic%, Cr: 1 to 6
Atomic%, balance: Dissolve raw materials of chemical composition consisting of Ti and unavoidable impurities, cast an ingot to produce a titanium aluminide base material, cover the base material with a composite material made of ductile metal, A metal clad titanium aluminide, which is hot-worked at 900 ° C. or more to join the metal and the joining material.
【請求項5】 前記合せ材がTi、Ti合金、鋼、Mo
合金、Ta合金、またはNb合金からなる請求項4記載
の金属クラッドチタンアルミナイドの製造方法。
5. The composite according to claim 1, wherein the composite material is Ti, Ti alloy, steel, Mo.
The method for producing a metal-clad titanium aluminide according to claim 4, wherein the method comprises an alloy, a Ta alloy, or an Nb alloy.
【請求項6】 前記合せ材が鋼からなり、合せ材に表面
硬化処理を施す請求項5記載の金属クラッドチタンアル
ミナイドの製造方法。
6. The method for producing a metal-clad titanium aluminide according to claim 5, wherein said composite material is made of steel, and the composite material is subjected to a surface hardening treatment.
JP31400196A 1996-11-25 1996-11-25 Metal clad titan aluminide and production thereof Withdrawn JPH10156554A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31400196A JPH10156554A (en) 1996-11-25 1996-11-25 Metal clad titan aluminide and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31400196A JPH10156554A (en) 1996-11-25 1996-11-25 Metal clad titan aluminide and production thereof

Publications (1)

Publication Number Publication Date
JPH10156554A true JPH10156554A (en) 1998-06-16

Family

ID=18048027

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31400196A Withdrawn JPH10156554A (en) 1996-11-25 1996-11-25 Metal clad titan aluminide and production thereof

Country Status (1)

Country Link
JP (1) JPH10156554A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019123694A1 (en) * 2017-12-19 2019-06-27 株式会社Ihi Tial alloy material, production method therefor, and forging method for tial alloy material

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019123694A1 (en) * 2017-12-19 2019-06-27 株式会社Ihi Tial alloy material, production method therefor, and forging method for tial alloy material
CN111479946A (en) * 2017-12-19 2020-07-31 株式会社Ihi TiAl alloy material, preparation method thereof and forging method of TiAl alloy material
JPWO2019123694A1 (en) * 2017-12-19 2021-01-14 株式会社Ihi TiAl alloy material and its manufacturing method, and forging method of TiAl alloy material
RU2752616C1 (en) * 2017-12-19 2021-07-29 АйЭйчАй КОРПОРЕЙШН ELEMENT OF TiAl ALLOY, METHOD OF ITS PRODUCTION AND METHOD OF FORGING ELEMENT OF TiAl ALLOY
JP2022130467A (en) * 2017-12-19 2022-09-06 株式会社Ihi TiAl ALLOY MATERIAL AND METHOD FOR PRODUCING THE SAME, AND METHOD FOR FORGING TiAl ALLOY MATERIAL
US11542574B2 (en) 2017-12-19 2023-01-03 Ihi Corporation TiAl alloy member, method of manufacturing the same, and method of forging TiAl alloy member

Similar Documents

Publication Publication Date Title
US11415210B2 (en) Structured material alloy component fabrication
EP1783235B1 (en) Titanium-based alloy
US5861070A (en) Titanium-aluminum-vanadium alloys and products made using such alloys
EP0683242B1 (en) Method for making titanium alloy products
US20060093736A1 (en) Aluminum articles with wear-resistant coatings and methods for applying the coatings onto the articles
JPH04232234A (en) Production of product from doping material containing alloy on basis of titanium aluminide
US8828160B2 (en) Method for producing a forging from a gamma titanium aluminum-based alloy
Zhao et al. Influence of annealing on the microstructure and mechanical properties of Ti/steel clad plates fabricated via cold spray additive manufacturing and hot-rolling
TWI632959B (en) Titanium composite and titanium for hot rolling
CN114131295B (en) Diffusion welding method adopting Ti-Nb alloy as intermediate layer
EP2149617B1 (en) Method and article for improved adhesion of fatigue-prone components
EP0533914B1 (en) Superalloy forging process and related composition
US20040244887A1 (en) Method for forging titanium alloy forging and forged titanium alloy material
JPH10156554A (en) Metal clad titan aluminide and production thereof
JP2792379B2 (en) Ti alloy member excellent in wear resistance and method of manufacturing the same
CN108480838B (en) Diffusion welding connection method adopting Ti foil and titanium-based brazing filler metal foil as intermediate layer
US5815791A (en) Structural element with brazed-on foil made of oxide dispersion-Strengthened sintered iron alloy and process for the manufacture thereof
JPS61231150A (en) Manufacture of ti alloy wire rod
JP2001115222A (en) High strength alpha plus beta titanium alloy tube and its manufacturing method
JP3767193B2 (en) Hardening heat treatment method for titanium alloy member
JPH0375385A (en) Parts for machine sliding part made of tial-base alloy
JP2785139B2 (en) Composite roll for rolling and manufacturing method thereof
JP2638327B2 (en) High wear-resistant titanium alloy parts
JP6848991B2 (en) Titanium material for hot rolling
Shapiro Brazing of conventional titanium alloys

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20040203