JPH10156390A - Treatment of ammonia-containing fluid waste - Google Patents
Treatment of ammonia-containing fluid wasteInfo
- Publication number
- JPH10156390A JPH10156390A JP33016896A JP33016896A JPH10156390A JP H10156390 A JPH10156390 A JP H10156390A JP 33016896 A JP33016896 A JP 33016896A JP 33016896 A JP33016896 A JP 33016896A JP H10156390 A JPH10156390 A JP H10156390A
- Authority
- JP
- Japan
- Prior art keywords
- ammonia
- water
- fluid waste
- contg
- treatment
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/10—Biological treatment of water, waste water, or sewage
Landscapes
- Treatment Of Sludge (AREA)
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
- Water Treatment By Sorption (AREA)
- Biological Treatment Of Waste Water (AREA)
- Removal Of Specific Substances (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、流動性廃棄物の処
理方法に係り、特に、アンモニアを含有する廃水及び泥
状(スラリー状)の多量の水分を含む廃棄物の処理方法
に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for treating fluid waste, and more particularly, to a method for treating wastewater containing ammonia and waste containing a large amount of muddy (slurry) water.
【0002】[0002]
【従来の技術】一般廃棄物や産業廃棄物の埋立地の浸出
水や、現在産業廃棄物として指定されている汚泥、動物
のふん尿中の廃水の性状は、高濃度のBOD、COD、
SSを有すると共に、アンモニアを含有し、それらの濃
度変動巾が大きい等の特徴を持っており、従来は、BO
D、COD、SS除去のための設備を二重あるいは三重
に設置し、処理水の規制値に対応している。その一例と
しては、次の通りである。 ○ BODの除去・・・浮遊式生物処理(いわゆる活性
汚泥設備)と回転円板や接触酸化等の生物膜式生物処理
設備との組合せ。 ○ CODの除去・・・凝縮沈殿処理とオゾン酸化設備
や活性炭吸着設備との組合せ。 ○ SSの除去・・・・脱水設備や凝集沈殿設備とろ過
設備の組合せ。2. Description of the Related Art The properties of leachate in landfills of general waste and industrial waste, sludge currently designated as industrial waste, and wastewater in animal manure are characterized by high concentrations of BOD, COD,
It has the characteristics of containing SS, containing ammonia, and having a large range of concentration fluctuation.
The equipment for removing D, COD and SS is installed double or triple to comply with the regulation value of treated water. An example is as follows. ○ Removal of BOD: Combination of floating biological treatment (so-called activated sludge equipment) and biofilm-type biological treatment equipment such as rotating disks and catalytic oxidation. ○ Removal of COD: Combination of condensation and precipitation treatment with ozone oxidation equipment and activated carbon adsorption equipment. ○ Removal of SS: Combination of dewatering equipment, coagulation sedimentation equipment and filtration equipment.
【0003】この様に、多くの設備を設置しても流入す
る廃水の性状変動に対しては、多数の運転管理者の永年
の経験を基にした管理技術により、設備を運転せざるを
えないことや、また生物処理、凝集沈殿処理では多くの
薬品を使用すること、それに伴ない余剰汚泥が発生する
ことによる問題がある。また廃水中に、重金属類が含ま
れる場合には新たにキレート樹脂設備が必要となり、そ
の管理や使用済みのキレート樹脂の処理が必要となる。
また、廃水中に含まれるアンモニアは、生物処理に用い
る微生物に対し、毒として作用し、高濃度のまま導入す
ると生物処理工程の代謝を阻害してしまう。[0003] As described above, even if a large number of facilities are installed, fluctuations in the properties of the wastewater flowing into the facilities must be operated by management techniques based on the long-term experience of many operation managers. In addition, there are problems in that a large amount of chemicals are used in the biological treatment and coagulation sedimentation treatment, and excess sludge is generated due to the use of many chemicals. In addition, when heavy metals are contained in the wastewater, a new chelate resin facility is required, and management and treatment of the used chelate resin are required.
Ammonia contained in wastewater acts as a poison for microorganisms used in biological treatment, and if introduced at a high concentration, inhibits metabolism in the biological treatment process.
【0004】前記高濃度廃水は、アンモニア含有量が比
較的低濃度な廃水であれば、直接処理可能な好気性生物
ろ過装置が開発されつつある。ところが、特に、多量の
固形物を含有する廃水やスラリーのような廃棄物は処理
不可能であり、揮発成分を蒸発し回収して、残分と別々
に処理することにより、効果的な処理が行える技術が提
案されている(特願平7−23280号参照)。しかし
ながら、前記技術においても、蒸発し回収される部分に
は、アンモニアが存在し、有機物に対するアンモニアの
比率が高い凝縮水が発生する。従って、多量のアンモニ
アが後続の生物処理を阻害するという問題を生じてい
る。An aerobic biofiltration apparatus capable of directly treating the high-concentration wastewater as long as the wastewater has a relatively low ammonia content is being developed. However, especially waste such as wastewater and slurry containing a large amount of solids cannot be treated.Efficient treatment is achieved by evaporating and recovering volatile components and treating them separately from the residue. A technique that can be performed has been proposed (see Japanese Patent Application No. Hei 7-23280). However, also in the above-mentioned technology, ammonia is present in a portion to be evaporated and collected, and condensed water having a high ratio of ammonia to organic matter is generated. Therefore, there is a problem that a large amount of ammonia inhibits the subsequent biological treatment.
【0005】[0005]
【発明が解決しようとする課題】本発明は、上記の従来
技術の諸問題を解消し、処理操作が容易で、有機物処理
に際し、アンモニアによる代謝阻害に基づく生物処理の
機能低下のない流動性廃棄物の処理方法を提供すること
を課題とする。DISCLOSURE OF THE INVENTION The present invention solves the above-mentioned problems of the prior art, facilitates the operation of the treatment, and removes the liquid waste without deteriorating the function of the biological treatment based on the inhibition of metabolism by ammonia in the treatment of organic substances. An object of the present invention is to provide a method for treating an object.
【0006】[0006]
【課題を解決するための手段】上記課題を解決するため
に、本発明では、アンモニアを含有する流動性廃棄物
を、下記(a)〜(c)の工程で順次処理することを特
徴とする流動性廃棄物の処理方法としたものである。 (a)アンモニアを含有する流動性廃棄物を蒸発し、ア
ンモニアを含む揮発成分を含有する蒸発凝縮液と、固形
分及び非揮発成分からなる蒸発残分とに分離する第1の
分離工程、(b)前記(a)工程の蒸発凝縮液を、更に
蒸留してアンモニア含有蒸気又はアンモニア含有水(以
下、安水という)と、残分とに分離する第2の分離工
程、(c)前記(b)工程のアンモニア含有蒸気又はア
ンモニア含有水を、触媒酸化する触媒酸化工程。In order to solve the above-mentioned problems, the present invention is characterized in that a fluid waste containing ammonia is sequentially treated in the following steps (a) to (c). It is a method for treating fluid waste. (A) a first separation step of evaporating a fluid waste containing ammonia and separating it into an evaporative condensate containing a volatile component containing ammonia and an evaporation residue consisting of a solid content and a non-volatile component; b) a second separation step of further distilling the evaporated condensate of the step (a) into ammonia-containing steam or ammonia-containing water (hereinafter referred to as "aqueous water") and a residue; b) a catalytic oxidation step of catalytically oxidizing the ammonia-containing steam or the ammonia-containing water in the step.
【0007】前記処理方法において、(c)の触媒酸化
工程は、前記アンモニア含有蒸気又は水中の揮発性有機
物を分解する第1の触媒酸化工程と、アンモニアを分解
する第2の触媒酸化工程とを有しているのがよい。ま
た、前記(a)工程の蒸発残分及び/又は(b)工程の
残分は、好気的に生物処理することができ、そして、生
物処理した処理水は、活性炭吸着処理するのがよい。In the above treatment method, the catalytic oxidation step (c) includes a first catalytic oxidation step of decomposing the volatile organic matter in the ammonia-containing vapor or water and a second catalytic oxidation step of decomposing the ammonia. Good to have. Further, the evaporation residue in the step (a) and / or the residue in the step (b) can be aerobicly biologically treated, and the biologically treated water is preferably subjected to activated carbon adsorption treatment. .
【0008】[0008]
【発明の実施の形態】次に、本発明を詳細に説明する。
本発明は、流動性廃棄物中のアンモニアをアンモニア含
有蒸気又は安水の形態で抽出し、触媒酸化することによ
り、効率的なアンモニア除去を行い、共存する有機酸等
の揮発性物質に由来するBODを生物処理で阻害される
ことなく処理できる。本発明で処理できる流動性廃棄物
としては、高濃度のBOD、COD、SSと共にアンモ
ニアを含む廃液、特に埋立地の浸出水、汚泥、ふん尿、
産業廃液等の固形物を多量に含有する廃液やスラリーの
ような廃棄物等に好適に適用できる。また、廃棄物中に
粗大な固形物等を多量に含む場合は、前処理として、沈
殿分離や遠心分離等の固液分離工程を設けてもよい。Next, the present invention will be described in detail.
The present invention extracts ammonia in fluid waste in the form of ammonia-containing steam or low-temperature water and performs catalytic oxidation to efficiently remove ammonia, and is derived from volatile substances such as coexisting organic acids. BOD can be treated without being inhibited by biological treatment. The fluid wastes that can be treated in the present invention include waste fluids containing ammonia together with high concentrations of BOD, COD and SS, especially leachate, sludge, manure, and the like from landfills.
The present invention can be suitably applied to waste liquids containing a large amount of solids such as industrial waste liquids and wastes such as slurries. When the waste contains a large amount of coarse solids or the like, a solid-liquid separation step such as precipitation separation or centrifugation may be provided as a pretreatment.
【0009】本発明の(a)工程の第1の分離工程に
は、既知の蒸発凝縮装置や蒸留装置が用いられるが、特
に、薄膜流下式蒸発装置は好ましい装置の例である。
(a)工程で得られた蒸発凝縮液中には廃液等の廃棄物
中に含まれる揮発性の有機酸等の物質と共にアンモニア
が含まれている。また、この蒸発残分には、SSや塩分
や非揮発性の汚物(有機、無機物)が含まれている。こ
れらの蒸発残分は、脱水乾燥処理により処理しても良い
し、重金属等の有害物が少なく有機物が多い場合は、好
気的生物処理工程に導いて処理することもできる。 (a)工程で生じた蒸発凝縮液は、(b)工程の第2の
分離工程に導入される。(b)工程では、アンモニアコ
ンセントレータが用いられる。アンモニアコンセントレ
ータは、蒸気を用いた蒸留塔とコンデンサとより構成さ
れる装置であり、蒸留塔内部に充填された充填材間を前
記蒸発凝縮液が流下する間に、蒸気圧の差を利用して含
まれるアンモニアが気体となり除去される。除去された
アンモニアはコンデンサで冷却され、1〜10%程度の
安水として濃縮回収される。In the first separation step of the step (a) of the present invention, a known evaporating and condensing apparatus and a known distillation apparatus are used. In particular, a thin-film falling-down evaporating apparatus is a preferable example.
In the evaporative condensate obtained in the step (a), ammonia is contained together with substances such as volatile organic acids contained in waste such as waste liquid. Further, the evaporation residue contains SS, salt, and non-volatile contaminants (organic and inorganic substances). These evaporation residues may be treated by a dehydration / drying treatment, or when there are few harmful substances such as heavy metals and a lot of organic substances, they can be treated by leading to an aerobic biological treatment step. The evaporative condensate generated in the step (a) is introduced to the second separation step in the step (b). In the step (b), an ammonia concentrator is used. The ammonia concentrator is a device composed of a distillation column using steam and a condenser, and utilizes the difference in vapor pressure while the evaporating condensate flows between the packing materials filled in the distillation column. The contained ammonia becomes gas and is removed. The removed ammonia is cooled by a condenser, and concentrated and recovered as about 1 to 10% low-temperature water.
【0010】この工程で原廃棄物中のアンモニアの90
〜98%程度が除去される。この時のアンモニアコンセ
ントレータ内の反応条件は、常圧下、60〜100℃、
好ましくは80℃前後である。従って、蒸発凝縮液中に
含有される揮発性物質(有機酸等)の一部も、また安水
中に移行する。前記(b)工程での残分には、極く微量
のアンモニアが残るが、その量は好気性微生物の活動を
阻害する程ではない。このため、後段の生物処理工程
で、残分中の有機酸等の揮発性物質が効率的に処理でき
る。該生物処理工程では、好気性生物ろ床法が好ましく
用いられる。また、より高度の処理として、活性炭塔を
通すことで吸着処理を行い、色度や微量のCOD等を除
去することができる。In this process, 90% of the ammonia in the raw waste is removed.
About 98% is removed. At this time, the reaction conditions in the ammonia concentrator are as follows:
Preferably it is around 80 ° C. Therefore, some of the volatile substances (organic acids and the like) contained in the evaporative condensate also move into the low-temperature water. A very small amount of ammonia remains in the residue in the step (b), but the amount is not enough to inhibit the activity of the aerobic microorganism. Therefore, volatile substances such as organic acids in the residue can be efficiently treated in the subsequent biological treatment step. In the biological treatment step, an aerobic biological filter method is preferably used. In addition, as a more advanced treatment, adsorption treatment is performed by passing through an activated carbon tower to remove chromaticity, trace COD, and the like.
【0011】一方、(b)工程で得られるアンモニア含
有蒸気又は安水中には数%レベルの濃縮されたアンモニ
アが存在し、これらは、次の(c)工程の触媒酸化工程
で分解され、窒素ガスと水(H2 O)となり、環境中に
放出される。触媒酸化を行う場合には、蒸留成分の一部
を凝縮させて蒸留塔内に戻す(一般には還流と呼ぶ)こ
とも行なわれる。また、ほとんどは蒸気のまま触媒酸化
装置へ導入して、気体の状態で酸化分解を図る。(c)
工程で用いるアンモニア酸化分解触媒は、白金触媒を、
例えばハニカム状等で好適に用いることができる。ま
た、前記安水中には、一部有機酸等の揮発性物質が共存
することがあるため、アンモニア酸化分解に先立ち、こ
れらの有機成分を除去する必要がある。このため、触媒
酸化工程を2段処理とし、先ず、Fe/Me触媒(ペレ
ット状が好ましい)により有機物を分解後に、前記白金
触媒によるアンモニア酸化分解を行うことが好ましい。On the other hand, concentrated ammonia at a level of several percent is present in the ammonia-containing steam or the aqua water obtained in the step (b), and these are decomposed in the catalytic oxidation step of the next step (c), It becomes gas and water (H 2 O) and is released into the environment. When performing catalytic oxidation, a part of the distillation components is condensed and returned to the distillation column (generally referred to as reflux). In addition, most of the gas is introduced into the catalytic oxidation device as it is, so as to perform oxidative decomposition in a gas state. (C)
The ammonia oxidation decomposition catalyst used in the process is a platinum catalyst,
For example, it can be suitably used in a honeycomb shape or the like. In addition, some volatile substances such as organic acids may coexist in the above-mentioned water, and therefore it is necessary to remove these organic components prior to ammonia oxidative decomposition. For this reason, it is preferable that the catalytic oxidation step be a two-stage treatment, in which the organic matter is first decomposed by the Fe / Me catalyst (preferably in the form of pellets), and then the ammonia oxidative decomposition by the platinum catalyst is performed.
【0012】次に、本発明を図面を用いて説明する。図
1に、本発明の処理方法を用いる装置の全体構成図を示
す。図1において、1は固形物分離装置、2は工程
(a)の第1の分離工程を行う薄膜流下式蒸発装置、3
は工程(b)の第2の分離工程を行う蒸留塔、4はコン
デンサであり、この3と4でアンモニアコンセントレー
タを構成し、5は工程(c)の触媒酸化工程を行う触媒
酸化装置であり、6は生物処理装置である。流動性廃棄
物10は、固形物分離装置1で粗大固形物が分離され、
薄膜流下式蒸発装置2に導入され、アンモニアを含む揮
発成分を含有する蒸発液12と、固形分及び非揮発成分
からなる蒸発残分11に分離される。蒸発液12は、ア
ンモニアコンセントレータ3に導入され、アンモニア含
有蒸気又は安水13と残分14に分離される。アンモニ
ア含有蒸気又は安水は、触媒酸化装置5でアンモニア及
び有機物が酸化分解される。Next, the present invention will be described with reference to the drawings. FIG. 1 shows an overall configuration diagram of an apparatus using the processing method of the present invention. In FIG. 1, 1 is a solids separation device, 2 is a thin film falling-down type evaporator for performing the first separation step of step (a), 3
Is a distillation column for performing the second separation step of step (b), 4 is a condenser, and these 3 and 4 constitute an ammonia concentrator, and 5 is a catalytic oxidation apparatus for performing the catalytic oxidation step of step (c). , 6 are biological treatment devices. The fluid waste 10 is separated into coarse solids by the solid separation device 1,
It is introduced into the thin film falling-down type evaporator 2 and is separated into an evaporating liquid 12 containing a volatile component including ammonia and an evaporation residue 11 composed of a solid component and a non-volatile component. The evaporating liquid 12 is introduced into the ammonia concentrator 3 and separated into ammonia-containing steam or low-temperature water 13 and a residue 14. Ammonia and organic matter are oxidized and decomposed in the catalytic oxidation device 5 in the ammonia-containing steam or the low-temperature water.
【0013】前記アンモニア除去部分の拡大構成図を図
2に示す。図2に示すように、アンモニアコンセントレ
ータ7は、底部をスチーム16に加熱し、内部に充填材
8が充填されている蒸留塔3と、蒸留塔3からの蒸気を
凝縮するコンデンサ4とからなっている。アンモニア含
有蒸気又は安水は触媒酸化装置5に導入されてアンモニ
アが酸化分解され、コンデンサ4で凝縮された安水13
は一部が蒸留塔に循環される。一方、蒸留塔の残分14
は生物処理するための生物処理装置6に導入される。生
物処理装置からの処理水はそのまま、或いは活性炭処理
して再利用又は放流される。この際蒸発残分11に有機
分をほとんど含まない場合は、生物処理工程に導入せず
にそのまま処分される。なお、各段階のアンモニア濃度
は、原水50〜1000mg/リットル、安水0.5〜
10%、2次残分10〜100mg/リットルとするこ
とができる。FIG. 2 is an enlarged view of the ammonia removing portion. As shown in FIG. 2, the ammonia concentrator 7 includes a distillation column 3 in which a bottom portion is heated to steam 16 and a filler 8 is filled therein, and a condenser 4 that condenses vapor from the distillation column 3. I have. The ammonia-containing steam or the low-temperature water is introduced into the catalytic oxidizer 5 to oxidize and decompose the ammonia, and the low-temperature water 13
Is partially recycled to the distillation column. On the other hand, the remaining 14
Is introduced into the biological treatment apparatus 6 for biological treatment. Treated water from the biological treatment device is reused or discharged as it is or after activated carbon treatment. At this time, when the evaporation residue 11 contains almost no organic components, it is disposed without being introduced into the biological treatment step. In addition, the ammonia concentration of each stage is 50-1000 mg / liter of raw water, 0.5-
It can be 10%, the secondary residue 10 to 100 mg / liter.
【0014】[0014]
【実施例】以下、本発明を実施例により具体的に説明す
る。 実施例1 図1に示す装置を用いて、廃棄物処分場の浸出水を原水
として処理した。原水の性状は次のとおりである。 pH(−):7.4 BOD(mg/リットル):350 COD(mg/リットル):656 TOC(mg/リットル):539 SS(mg/リットル):− Cl(mg/リットル):4740 NH3 −N(mg/リットル):512The present invention will be described below in more detail with reference to examples. Example 1 Leachate from a waste disposal site was treated as raw water using the apparatus shown in FIG. The properties of raw water are as follows. pH (-): 7.4 BOD ( mg / l): 350 COD (mg / l): 656 TOC (mg / l): 539 SS (mg / l): - Cl (mg / l): 4740 NH 3 -N (mg / liter): 512
【0015】この原水中には粗大固形物は含まれていな
いので、そのまま薄膜流下式蒸発器に導入して処理し
た。得られた蒸留液の性状は次のとおりである。 pH(−):10 BOD(mg/リットル):<5 COD(mg/リットル):32 TOC(mg/リットル):<5 Cl(mg/リットル):<100 NH3 −N(mg/リットル):348 次いで、この蒸留液をアンモニアコンセントレータを用
いて蒸留した。安水である蒸留液の性状は次のようであ
った。 NH3 −N:1.9% TOC:1%Since this raw water does not contain coarse solids, it was directly introduced into a thin film falling evaporator for treatment. The properties of the obtained distillate are as follows. pH (-): 10 BOD ( mg / l): <5 COD (mg / l): 32 TOC (mg / l): <5 Cl (mg / l): <100 NH 3 -N ( mg / l) : 348 Next, the distillate was distilled using an ammonia concentrator. The properties of the distillate, which is an aqua water, were as follows. NH 3 -N: 1.9% TOC: 1%
【0016】この安水を触媒酸化装置で、第1段目にF
e/Mn−ペレット触媒、第2段目に白金ハニカム触媒
を用いて、1段目で有機物を、2段目でアンモニアを酸
化分解した。その結果、アンモニア分解率99.97
%、TOC分解率99.95%の分解率を得ることがで
きた。一方、アンモニアコンセントレータからの残分は
次のような性状であった。 pH(−):9.7 BOD(mg/リットル):<5 COD(mg/リットル):− TOC(mg/リットル):15.6 SS (mg/リットル):<5 Cl(mg/リットル):<100 NH3 −N(mg/リットル):12The low-temperature water is subjected to catalytic oxidation at the first stage in a catalytic oxidation device.
Using an e / Mn-pellet catalyst and a platinum honeycomb catalyst in the second stage, organic substances were oxidized in the first stage and ammonia was oxidized in the second stage. As a result, the ammonia decomposition rate was 99.97.
%, A TOC decomposition rate of 99.95%. On the other hand, the residue from the ammonia concentrator had the following properties. pH (-): 9.7 BOD (mg / liter): <5 COD (mg / liter):-TOC (mg / liter): 15.6 SS (mg / liter): <5 Cl (mg / liter) : <100 NH 3 -N (mg / l): 12
【0017】次に、この残分を好気性生物ろ床で生物処
理し、活性炭吸着処理した。それぞれの処理水の性状は
表1のようであった。Next, this residue was subjected to biological treatment in an aerobic biological filter, followed by activated carbon adsorption treatment. Table 1 shows the properties of each treated water.
【表1】 [Table 1]
【0018】[0018]
【発明の効果】本発明によると次のような効果を奏する
ことができる。 (1)アンモニアの分離・回収を蒸留により行うことに
より、 (a)薄膜流下式蒸発装置と組み合わせることにより、
アンモニアや有機酸のような揮発性の高い物質を効率よ
く取り出して処理することができる。 (b)アンモニア濃度によらず、高い除去効率を得るこ
とができる。 (c)生物学的脱窒素処理に比べて、装置がコンパクト
であり、設備費が廉価である。 (d)生物学的脱窒素処理のように、メタノールや苛性
ソーダといった薬品を使用しなくてすむ。 (e)アンモニア濃度が、100mg/リットルを越え
ると、生物処理にとって阻害要因となる。According to the present invention, the following effects can be obtained. (1) By separating and recovering ammonia by distillation, (a) By combining with a thin film falling down type evaporator,
Highly volatile substances such as ammonia and organic acids can be efficiently taken out and processed. (B) High removal efficiency can be obtained regardless of the ammonia concentration. (C) Compared with biological denitrification treatment, the apparatus is compact and equipment costs are low. (D) There is no need to use chemicals such as methanol and caustic soda as in the biological denitrification treatment. (E) If the ammonia concentration exceeds 100 mg / liter, it becomes an inhibiting factor for biological treatment.
【0019】(2)触媒酸化処理することにより、 (a)アンモニア分解率は、99.9%以上と高い分解
効率である。 (b)Fe/Mn触媒・白金触媒を組み合わすことによ
り、装置がコンパクトで設備費が廉価となる。 (c)Fe/Mn触媒・白金触媒を組み合わすことによ
り、アンモニア水中に含まれるアンモニア以外の有機物
も効率よく除去することができ、安定した分解効率が得
られる。(2) By performing the catalytic oxidation treatment, (a) the decomposition efficiency of ammonia is as high as 99.9% or more. (B) By combining the Fe / Mn catalyst and the platinum catalyst, the apparatus is compact and the equipment cost is low. (C) By combining the Fe / Mn catalyst and the platinum catalyst, organic substances other than ammonia contained in the ammonia water can be efficiently removed, and stable decomposition efficiency can be obtained.
【図1】本発明の処理方法に用いる装置の一例を示す全
体構成図。FIG. 1 is an overall configuration diagram showing an example of an apparatus used for a processing method of the present invention.
【図2】図1のアンモニア除去部分は拡大構成図。FIG. 2 is an enlarged configuration diagram of an ammonia removing portion in FIG. 1;
1:固形物分離装置、2:薄膜流下式蒸発装置、3:蒸
留塔、4:コンデンサ、5:触媒酸化装置、6:生物処
理装置、7:アンモニアコンセントレータ、8:充填材1: solid substance separation device, 2: thin film falling evaporator, 3: distillation column, 4: condenser, 5: catalytic oxidation device, 6: biological treatment device, 7: ammonia concentrator, 8: packing material
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C02F 1/28 C02F 1/58 CDJP 1/58 CDJ 3/02 Z 3/02 11/12 A 11/12 B01D 53/36 ZABE ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification code FI C02F 1/28 C02F 1/58 CDJP 1/58 CDJ 3/02 Z 3/02 11/12 A 11/12 B01D 53/36 ZABE
Claims (4)
下記(a)〜(c)の工程で順次処理することを特徴と
する流動性廃棄物の処理方法。 (a)アンモニアを含有する流動性廃棄物を蒸発し、ア
ンモニアを含む揮発成分を含有する蒸発凝縮液と、固形
分及び非揮発成分からなる蒸発残分とに分離する第1の
分離工程、(b)前記(a)工程の蒸発凝縮液を、更に
蒸留してアンモニア含有蒸気又はアンモニア含有水と、
残分とに分離する第2の分離工程、(c)前記(b)工
程のアンモニア含有蒸気又はアンモニア含有水を、触媒
酸化する触媒酸化工程。1. A flowable waste containing ammonia,
A method for treating fluid waste, comprising sequentially treating in the following steps (a) to (c). (A) a first separation step of evaporating a fluid waste containing ammonia and separating it into an evaporative condensate containing a volatile component containing ammonia and an evaporation residue consisting of a solid content and a non-volatile component; b) The evaporative condensate of the step (a) is further distilled to obtain ammonia-containing steam or ammonia-containing water;
(C) a catalytic oxidation step of catalytically oxidizing the ammonia-containing steam or ammonia-containing water of the step (b).
モニア含有蒸気又はアンモニア含有水中の揮発性有機物
を分解する第1の触媒酸化工程と、アンモニアを分解す
る第2の触媒酸化工程を有することを特徴とする請求項
1記載の流動性廃棄物の処理方法。2. The catalyst oxidation step (c) includes a first catalyst oxidation step of decomposing volatile organic substances in the ammonia-containing vapor or the ammonia-containing water, and a second catalyst oxidation step of decomposing ammonia. The method for treating fluid waste according to claim 1, wherein:
(b)工程の残分は、好気的に生物処理することを特徴
とする請求項1又は2記載の流動性廃棄物の処理方法。3. The fluid waste according to claim 1, wherein the evaporation residue in the step (a) and / or the residue in the step (b) are subjected to aerobic biological treatment. Processing method.
処理することを特徴とする請求項3記載の流動性廃棄物
の処理方法。4. The method according to claim 3, wherein the biologically treated water is subjected to activated carbon adsorption treatment.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33016896A JPH10156390A (en) | 1996-11-27 | 1996-11-27 | Treatment of ammonia-containing fluid waste |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33016896A JPH10156390A (en) | 1996-11-27 | 1996-11-27 | Treatment of ammonia-containing fluid waste |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH10156390A true JPH10156390A (en) | 1998-06-16 |
Family
ID=18229587
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP33016896A Pending JPH10156390A (en) | 1996-11-27 | 1996-11-27 | Treatment of ammonia-containing fluid waste |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH10156390A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014097457A (en) * | 2012-11-14 | 2014-05-29 | Tsukishima Kankyo Engineering Ltd | Treatment method and treatment apparatus of effluent |
-
1996
- 1996-11-27 JP JP33016896A patent/JPH10156390A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014097457A (en) * | 2012-11-14 | 2014-05-29 | Tsukishima Kankyo Engineering Ltd | Treatment method and treatment apparatus of effluent |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5205906A (en) | Process for the catalytic treatment of wastewater | |
Glaze et al. | Destruction of pollutants in water with ozone in combination with ultraviolet radiation. II. Natural trihalomethane precursors | |
US3977966A (en) | Purification of non-biodegradable industrial wastewaters | |
JP3009535B2 (en) | Method and apparatus for biologically purifying sewage | |
US2690425A (en) | Waste disposal process | |
JP3103027B2 (en) | Exhaust gas treatment method and apparatus using ammonia in sewage | |
US5160636A (en) | Process for the treatment of mixed wastes | |
AU625901B2 (en) | Process for the catalytic treatment of wastewater | |
US4640769A (en) | Apparatus for photographic film processor pollution control | |
JP5020490B2 (en) | Organic sludge treatment method and organic sludge treatment equipment | |
Tucker et al. | Deactivation of hazardous chemical wastes | |
JP4164896B2 (en) | Landfill leachate treatment method | |
KR100462943B1 (en) | The Waste disposal system | |
JPH10156390A (en) | Treatment of ammonia-containing fluid waste | |
WO1994011307A1 (en) | Ozone treatment of landfill waste-water | |
JPH074598B2 (en) | Human waste system treatment equipment | |
JP3444783B2 (en) | Removal method of dioxins in sludge | |
KR100991864B1 (en) | Treatment method and its process of chemical cleaning waste solution generated from nuclear power plants using coagulation and filtration technologies | |
JP2003211149A (en) | Device for treating plating washing waste liquid and treatment method thereof | |
JPH0135719B2 (en) | ||
Van Leeuwen et al. | The Effect of Various Oxidants on the Performance of Activated Carbon used in Water Reclamatoin | |
JPH0757358B2 (en) | Wastewater treatment method | |
JPH0889991A (en) | Treatment of waste water | |
JP2001340854A (en) | Method for decoloring biologically treated water | |
Maeda | Re-use of treated laboratory effluents by a treatment system incorporating the'sirotherm'desalination process |