JPH10156140A - Decomposing method of gaseous halogenated hydrocarbon - Google Patents

Decomposing method of gaseous halogenated hydrocarbon

Info

Publication number
JPH10156140A
JPH10156140A JP8336395A JP33639596A JPH10156140A JP H10156140 A JPH10156140 A JP H10156140A JP 8336395 A JP8336395 A JP 8336395A JP 33639596 A JP33639596 A JP 33639596A JP H10156140 A JPH10156140 A JP H10156140A
Authority
JP
Japan
Prior art keywords
solution
halogenated hydrocarbon
gaseous halogenated
suspension
gas containing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP8336395A
Other languages
Japanese (ja)
Inventor
Yoshimune Aosaki
義宗 青嵜
Takeshi Teraue
武 寺上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP8336395A priority Critical patent/JPH10156140A/en
Publication of JPH10156140A publication Critical patent/JPH10156140A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Fire-Extinguishing Compositions (AREA)
  • Treating Waste Gases (AREA)

Abstract

PROBLEM TO BE SOLVED: To inexpensively and efficiency decompose a gaseous halogenated hydrocarbon or a gas containing the same by introducing the gaseous halogenated hydrocarbon or the gas containing the same in a closed vessel housing a solution or a suspension of an alkaline material while pressurizing, and treating it at a specific temp. SOLUTION: In the decomposition of the gaseous halogenerated hydrocarbon such as methyl chloride by-produced by various reactions and harmful to human body or the gas containing the same, the gaseous halogenated hydrocarbon or the gas containing the same is introduced into the closed vessel housing the solution or the suspension of the alkaline material while being pressurized in the condition of >=1kd/cm<2> G (20 deg.C), and treated at 20-100 deg.C. As the solution of the alkaline material, usually an aq. solution of the hydroxide of an alkali metal or an alkaline earth metal is suitably used and sodium hydroxide is preferably used, and as the suspension of the alkaline material, an aq. suspension of a regenerative type strong basic anion exchange resin is suitably used.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、気体状ハロゲン化
炭化水素の分解方法に関し、詳しくは、気体状ハロゲン
化炭化水素またはこれを含む気体の低コストにて効率的
な分解方法に関する。
The present invention relates to a method for decomposing gaseous halogenated hydrocarbons, and more particularly to a low-cost and efficient method for decomposing gaseous halogenated hydrocarbons or a gas containing the same.

【0002】[0002]

【従来の技術】気体状ハロゲン化炭化水素は、様々な反
応で副生するが、人体に対して有害であり、そのまま大
気中に放出すると環境を著しく汚染する。斯かる汚染を
防止するため、気体状ハロゲン化炭化水素の分解方法と
して、アルカリ水溶液で処理する方法が知られている。
しかし、気体状ハロゲン化炭化水素は、水への溶解度が
著しく低いことから、その分解速度は極めて遅い。そこ
で、分解速度を高めるため、様々な方法が検討されてき
た。
2. Description of the Related Art Gaseous halogenated hydrocarbons are by-produced in various reactions, but are harmful to the human body and, when released directly into the atmosphere, significantly pollute the environment. As a method for decomposing gaseous halogenated hydrocarbons in order to prevent such contamination, a method of treating with an aqueous alkaline solution is known.
However, gaseous halogenated hydrocarbons have a very low solubility in water, so their decomposition rate is extremely slow. Therefore, various methods have been studied to increase the decomposition rate.

【0003】特公昭50−28387号公報には、ハロ
ゲン化メチルを含む気体を溶剤に溶解した後、アミン含
有のアルカリ水溶液と接触させて処理する方法が記載さ
れている。この方法では、アミンの使用によりコスト高
となり、その上、添加したアミンも塩化メチルと反応し
四級アミンが生成して廃水中へ混入するため、廃水の処
理問題が惹起される。特公平6−79653号公報に
は、1,3−ジメチル−2−イミダゾリジノンを加えて
分解効率を高める方法が記載されている。しかしなが
ら、第三成分を加える方法は、第三成分のための余分な
コストを必要とし、しかも、加えた第三成分の処理問題
が惹起される。
[0003] Japanese Patent Publication No. 50-28387 discloses a method in which a gas containing methyl halide is dissolved in a solvent and then treated with an amine-containing alkaline aqueous solution. In this method, the use of the amine increases the cost, and furthermore, the added amine also reacts with the methyl chloride to form a quaternary amine and mix into the wastewater, thereby causing a wastewater treatment problem. Japanese Patent Publication No. Hei 6-79653 describes a method for increasing the decomposition efficiency by adding 1,3-dimethyl-2-imidazolidinone. However, the method of adding the third component requires extra cost for the third component, and raises the problem of processing the added third component.

【0004】特開昭51−11065号公報には、触媒
で酸化分解する方法や燃焼方法で分解する方法が記載さ
れている。これらの方法では、装置も高価であり、しか
も、高温処理を行なうため、副生するハロゲン化水素に
よる燃焼炉の腐食の問題が避けられない。
[0004] Japanese Patent Application Laid-Open (JP-A) No. 51-11065 describes a method of oxidative decomposition with a catalyst and a method of decomposition with a combustion method. In these methods, the equipment is expensive and high-temperature treatment is performed, so that the problem of corrosion of the combustion furnace due to by-produced hydrogen halide is inevitable.

【0005】特開平4−114736号公報には、液吸
収法や活性炭吸着法が記載されている。これらの方法で
は、吸収または吸着されたハロゲン化炭化水素の処理の
ための燃焼または分解などの方法を必要とする。また、
特開平3−221121号公報や特開平7−21364
3号公報には、光分解の方法が記載されている。これら
の方法では、装置が非常に高価になり、工業的に大規模
な装置を使用することは困難である。
Japanese Patent Application Laid-Open No. 4-114736 describes a liquid absorption method and an activated carbon adsorption method. These methods require methods such as combustion or decomposition for treatment of the absorbed or adsorbed halogenated hydrocarbons. Also,
JP-A-3-221121 and JP-A-7-21364.
No. 3 discloses a photolysis method. In these methods, the equipment becomes very expensive, and it is difficult to use a large-scale equipment industrially.

【0006】[0006]

【発明が解決しようとする課題】本発明は、上記の実情
に鑑みなされたものであり、その目的は、気体状ハロゲ
ン化炭化水素またはこれを含む気体の分解方法であっ
て、高価な装置を使用せずに低コストにて且つ効率的に
処理することが出来る工業的に有利な方法を提供するこ
とにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a method for decomposing a gaseous halogenated hydrocarbon or a gas containing the same. It is an object of the present invention to provide an industrially advantageous method that can efficiently and economically process without using it.

【0007】[0007]

【課題を解決するための手段】すなわち、本発明の要旨
は、アルカリ性物質の溶液または懸濁液を収容した密閉
容器内に、気体状ハロゲン化炭化水素またはこれを含む
気体を加圧導入し、20〜100℃で処理することを特
徴とする気体状ハロゲン化炭化水素の分解方法に存す
る。
That is, the gist of the present invention is that a gaseous halogenated hydrocarbon or a gas containing the same is introduced under pressure into a closed vessel containing a solution or suspension of an alkaline substance, The present invention relates to a method for decomposing gaseous halogenated hydrocarbons, which comprises treating at 20 to 100 ° C.

【0008】[0008]

【発明の実施の形態】以下、本発明を詳細に説明する。
本発明は、アルカリ性物質の溶液または懸濁液を収容し
た密閉容器に、気体状ハロゲン化炭化水素またはこれを
含む気体を加圧導入する方法である。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail.
The present invention is a method for pressurizing and introducing a gaseous halogenated hydrocarbon or a gas containing the same into a closed container containing a solution or suspension of an alkaline substance.

【0009】上記のアルカリ性物質の溶液としては、通
常、アルカリ金属またはアルカリ土類金属の水酸化物の
水溶液が好適に使用される。アルカリ金属またはアルカ
リ土類金属の種類は、特に制限されないが、好ましく
は、水酸化ナトリウム、水酸化カリウム、水酸化カルシ
ウム等が挙げられる。これらの中では、水酸化ナトリウ
ムが安価なため、より好ましい。水溶液のアルカリ濃度
は、処理する気体状ハロゲン化炭化水素のモル数よりも
過剰であればよいが、処理に十分なアルカリ濃度を確保
するため、通常5〜50重量%、好ましくは10〜30
重量%の範囲とされる。
As the solution of the alkaline substance, an aqueous solution of an alkali metal or alkaline earth metal hydroxide is preferably used. The type of alkali metal or alkaline earth metal is not particularly limited, but preferably includes sodium hydroxide, potassium hydroxide, calcium hydroxide, and the like. Among them, sodium hydroxide is more preferable because it is inexpensive. The alkali concentration of the aqueous solution may be in excess of the number of moles of the gaseous halogenated hydrocarbon to be treated, but is usually 5 to 50% by weight, preferably 10 to 30% by weight in order to secure a sufficient alkali concentration for the treatment.
% By weight.

【0010】上記のアルカリ性物質の懸濁液としては、
特に制限されないが、好ましくは、再生型強塩基性のア
ニオン交換樹脂の水懸濁が好適に使用される。斯かるア
ニオン交換樹脂としては、例えば、ゲル型(三菱化学社
製、商品名「SA10AOH」)、ポーラス型(三菱化
学社製、商品名「PA312LOH」)等が挙げられ
る。これらの中では、ポーラス型が好ましく、その平均
粒径は、通常300〜1200μmの範囲とされる。ア
ニオン交換樹脂は、2種類以上を併用してもよい。懸濁
液中のアルカリ物質の濃度は、通常5〜50重量%、好
ましくは10〜30重量%の範囲とされる。また、懸濁
液は、アルカリ金属またはアルカリ土類金属を適宜含有
していてもよい。
As a suspension of the above-mentioned alkaline substance,
Although not particularly limited, preferably, aqueous suspension of a regenerative strong basic anion exchange resin is suitably used. Examples of such an anion exchange resin include a gel type (trade name “SA10AOH” manufactured by Mitsubishi Chemical Corporation) and a porous type (trade name “PA312LOH” manufactured by Mitsubishi Chemical Corporation). Among these, the porous type is preferable, and the average particle size is usually in the range of 300 to 1200 μm. Two or more anion exchange resins may be used in combination. The concentration of the alkali substance in the suspension is usually in the range of 5 to 50% by weight, preferably 10 to 30% by weight. In addition, the suspension may appropriately contain an alkali metal or an alkaline earth metal.

【0011】上記の気体状ハロゲン化炭化水素又はこれ
を含む気体としては、常温で気体であれば特に制限され
ないが、特に、塩化メチル又はこれを含む気体に対して
本発明の方法は著効を示す。
The above-mentioned gaseous halogenated hydrocarbon or a gas containing the same is not particularly limited as long as it is a gas at ordinary temperature, but the method of the present invention is particularly effective for methyl chloride or a gas containing the same. Show.

【0012】アルカリ性物質の溶液または懸濁液の調製
に使用される溶媒または懸濁媒体としては、前述の水以
外に、メタノール、エタノール、トルエン等の有機溶媒
が挙げられる。有機溶媒は、アルカリ性物質の水溶液ま
たは水懸濁液と併用して使用してもよい。
Examples of the solvent or suspending medium used for preparing the solution or suspension of the alkaline substance include organic solvents such as methanol, ethanol and toluene, in addition to the above-mentioned water. The organic solvent may be used in combination with an aqueous solution or suspension of an alkaline substance.

【0013】上記の気体状ハロゲン化炭化水素またはこ
れを含む気体は、密閉容器に加圧導入されて処理され
る。この際、加圧導入は、1kg/cm2 G(20℃)
以上で行われ、これにより、アルカリ性物質の溶液また
は懸濁液への気体状ハロゲン化炭化水素の溶解度が増加
し、反応効率を向上させることが出来る。また、分解さ
れるハロゲン化炭化水素の蒸気圧より大きい圧力で導入
すると、一旦アルカリ性溶液へ溶解した気体状ハロゲン
化炭化水素が再び気化することを防ぐことができ、気体
状ハロゲン化炭化水素の処理が促進されるので更に好ま
しい。
The above-mentioned gaseous halogenated hydrocarbon or a gas containing the same is introduced into a closed vessel under pressure to be treated. At this time, the pressure is introduced at 1 kg / cm 2 G (20 ° C.).
As described above, the solubility of the gaseous halogenated hydrocarbon in the solution or suspension of the alkaline substance is increased, and the reaction efficiency can be improved. Also, when introduced at a pressure higher than the vapor pressure of the halogenated hydrocarbon to be decomposed, the gaseous halogenated hydrocarbon once dissolved in the alkaline solution can be prevented from being vaporized again, and the processing of the gaseous halogenated hydrocarbon is prevented. Is more preferred because it is promoted.

【0014】上記の処理温度は、20〜100℃の範囲
とする必要がある。処理温度が20℃未満の場合は処理
が促進されない。処理温度が100℃を超える場合は気
体状ハロゲン化炭化水素の溶解度が低下する。
The above processing temperature must be in the range of 20 to 100 ° C. When the processing temperature is lower than 20 ° C., the processing is not accelerated. When the treatment temperature exceeds 100 ° C., the solubility of the gaseous halogenated hydrocarbon decreases.

【0015】本発明の特徴は、気体状ハロゲン化炭化水
素またはこれを含む気体を密閉容器に加圧導入すること
により、アルカリ性物質の溶液または懸濁液に対する気
体状ハロゲン化炭化水素の溶解度を増大させ、多量の気
体状ハロゲン化炭化水素を低コストにて効率よく処理す
ることを可能にした点にある。
A feature of the present invention is to increase the solubility of a gaseous halogenated hydrocarbon in a solution or suspension of an alkaline substance by introducing a gaseous halogenated hydrocarbon or a gas containing the same into a closed vessel under pressure. Thus, a large amount of gaseous halogenated hydrocarbons can be efficiently treated at low cost.

【0016】また、本発明において、気体状ハロゲン化
炭化水素が塩化メチルである場合は、アルカリ処理によ
り生成するメタノールを連続的に留去回収することも可
能である。
In the present invention, when the gaseous halogenated hydrocarbon is methyl chloride, it is also possible to continuously distill and recover methanol generated by the alkali treatment.

【0017】[0017]

【実施例】以下、本発明を実施例により更に詳細に説明
するが、本発明はその要旨を超えない限り、以下の実施
例に限定されない。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to the following examples unless it exceeds the gist of the present invention.

【0018】実施例1 25重量%の水酸化ナトリウム水溶液2Lを収容したス
テンレス製オートクレーブに、塩化メチル16gを22
℃においてボンベ圧4kg/cm2 Gで導入した後に密
閉し、50℃で6時間攪拌した。ゲージ圧は、−0.5
kg/cm2 Gまで減少した。その後、下記の式(1)
に示される塩化メチルの処理により生成したNaClを
測定し、導入した塩化メチルのモル数との比較より塩化
メチルの分解率を計算した。塩化メチルの分解率は99
%であった。塩化メチルは殆ど分解されることが分かっ
た。
Example 1 A stainless steel autoclave containing 2 L of a 25% by weight aqueous sodium hydroxide solution was charged with 22 g of methyl chloride for 22 g.
After introducing with a cylinder pressure of 4 kg / cm 2 G at 0 ° C., the container was sealed and stirred at 50 ° C. for 6 hours. Gauge pressure is -0.5
kg / cm 2 G. Then, the following equation (1)
Was measured by measuring the amount of NaCl produced by the treatment of methyl chloride, and the decomposition rate of methyl chloride was calculated from the comparison with the number of moles of methyl chloride introduced. The decomposition rate of methyl chloride is 99
%Met. Methyl chloride was found to be almost completely decomposed.

【0019】[0019]

【化1】 CH3 Cl+NaOH→CH3 OH+NaCl (1)Embedded image CH 3 Cl + NaOH → CH 3 OH + NaCl (1)

【0020】実施例2 47重量%の水酸化ナトリウム水溶液2Lを収容したス
テンレス製オートクレーブに、塩化メチル16gを22
℃においてボンベ圧4kg/cm2 Gで導入した後に密
閉し、100℃で4時間攪拌した。ゲージ圧は0.5k
g/cm2 Gまで減少した。実施例1と同様にして求め
た塩化メチルの分解率は68%であった。
Example 2 A stainless steel autoclave containing 2 L of a 47% by weight aqueous sodium hydroxide solution was charged with 22 g of methyl chloride in an amount of 22 g.
After introducing with a cylinder pressure of 4 kg / cm 2 G at 0 ° C., the container was sealed and stirred at 100 ° C. for 4 hours. Gauge pressure is 0.5k
g / cm 2 G. The decomposition rate of methyl chloride determined in the same manner as in Example 1 was 68%.

【0021】実施例3 25重量%の水酸化ナトリウム水溶液2Lを収容したス
テンレス製オートクレーブに、塩化メチルを4kg/c
2 Gのゲージ圧で導入しつつ50℃で7時間攪拌し
た。処理された塩化メチルガス量は、生成したClイオ
ン量より求めたところ144gであった。反応後のアル
カリ水溶液からガスクロマトグラフィーによりメタノー
ルが検出された。
Example 3 In a stainless steel autoclave containing 2 L of a 25% by weight aqueous sodium hydroxide solution, methyl chloride was added at 4 kg / c.
The mixture was stirred at 50 ° C. for 7 hours while introducing at a gauge pressure of m 2 G. The amount of the treated methyl chloride gas was 144 g as determined from the amount of generated Cl ions. Methanol was detected from the aqueous alkali solution after the reaction by gas chromatography.

【0022】比較例1 20重量%の水酸化ナトリウム水溶液200mlを収容
したフラスコに、50℃で攪拌しつつ3時間で13gの
塩化メチルを大気圧下にて導入した。水酸化ナトリウム
の消費量から求めた塩化メチルの分解率は17.7%で
あった。
Comparative Example 1 To a flask containing 200 ml of a 20% by weight aqueous sodium hydroxide solution, 13 g of methyl chloride was introduced under atmospheric pressure over 3 hours while stirring at 50 ° C. The decomposition rate of methyl chloride determined from the consumption of sodium hydroxide was 17.7%.

【0023】比較例2 47重量%の水酸化ナトリウム水溶液327mlを収容
したフラスコに、95℃で攪拌しつつ6時間で26gの
塩化メチルを大気圧下にて導入した。水酸化ナトリウム
の消費量は、測定できないほど少量であった。
Comparative Example 2 To a flask containing 327 ml of a 47% by weight aqueous sodium hydroxide solution, 26 g of methyl chloride was introduced under atmospheric pressure over 6 hours while stirring at 95 ° C. The consumption of sodium hydroxide was so small that it could not be measured.

【0024】比較例3 47.6gの水酸化ナトリウムを133mlのメタノー
ルに溶解し、水を加えて198mlとした溶液を収容し
たフラスコに、50℃で攪拌しつつ3時間で17gの塩
化メチルを大気圧下にて導入した。水酸化ナトリウムの
消費量から求めた塩化メチルの分解率は57%であっ
た。
Comparative Example 3 In a flask containing a solution prepared by dissolving 47.6 g of sodium hydroxide in 133 ml of methanol and adding water to 198 ml, 17 g of methyl chloride was added in 3 hours while stirring at 50 ° C. It was introduced under atmospheric pressure. The decomposition rate of methyl chloride determined from the consumption of sodium hydroxide was 57%.

【0025】[0025]

【発明の効果】以上説明した本発明によれば、気体状ハ
ロゲン化炭化水素またはこれを含む気体の分解方法であ
って、高価な装置を使用せずに低コストにて且つ効率的
に処理することが出来る工業的に有利な方法が提供さ
れ、本発明の工業的価値は顕著である。
According to the present invention described above, there is provided a method for decomposing a gaseous halogenated hydrocarbon or a gas containing the same, wherein the treatment is carried out efficiently at low cost without using expensive equipment. The industrial value of the present invention is remarkable.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 アルカリ性物質の溶液または懸濁液を収
容した密閉容器内に、気体状ハロゲン化炭化水素または
これを含む気体を加圧導入し、20〜100℃で処理す
ることを特徴とする気体状ハロゲン化炭化水素の分解方
法。
1. A gaseous halogenated hydrocarbon or a gas containing the same is introduced under pressure into a sealed container containing a solution or suspension of an alkaline substance, and the mixture is treated at 20 to 100 ° C. A method for decomposing gaseous halogenated hydrocarbons.
【請求項2】 加圧導入が1kg/cm2 G(20℃)
以上で行われる請求項1記載の分解方法。
2. The pressure introduction is 1 kg / cm 2 G (20 ° C.).
The decomposition method according to claim 1, which is performed as described above.
【請求項3】 アルカリ性物質の溶液が水酸化ナトリウ
ム水溶液である請求項1記載の分解方法。
3. The decomposition method according to claim 1, wherein the alkaline substance solution is an aqueous sodium hydroxide solution.
【請求項4】 アルカリ性物質が強塩基性アニオン交換
樹脂である請求項1記載の分解方法。
4. The method according to claim 1, wherein the alkaline substance is a strongly basic anion exchange resin.
【請求項5】 気体状ハロゲン化炭化水素が塩化メチル
である請求項1記載の分解方法。
5. The method according to claim 1, wherein the gaseous halogenated hydrocarbon is methyl chloride.
【請求項6】 アルカリ性物質の溶液または懸濁液が有
機溶媒を含有する請求項1記載の分解方法。
6. The decomposition method according to claim 1, wherein the solution or suspension of the alkaline substance contains an organic solvent.
【請求項7】 気体状ハロゲン化炭化水素が塩化メチル
であり、当該塩化メチルの処理で生じたメタノールを留
去して回収する請求項1記載の分解方法。
7. The decomposition method according to claim 1, wherein the gaseous halogenated hydrocarbon is methyl chloride, and methanol produced in the treatment of the methyl chloride is recovered by distillation.
JP8336395A 1996-12-02 1996-12-02 Decomposing method of gaseous halogenated hydrocarbon Withdrawn JPH10156140A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8336395A JPH10156140A (en) 1996-12-02 1996-12-02 Decomposing method of gaseous halogenated hydrocarbon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8336395A JPH10156140A (en) 1996-12-02 1996-12-02 Decomposing method of gaseous halogenated hydrocarbon

Publications (1)

Publication Number Publication Date
JPH10156140A true JPH10156140A (en) 1998-06-16

Family

ID=18298699

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8336395A Withdrawn JPH10156140A (en) 1996-12-02 1996-12-02 Decomposing method of gaseous halogenated hydrocarbon

Country Status (1)

Country Link
JP (1) JPH10156140A (en)

Similar Documents

Publication Publication Date Title
JPH1160521A (en) Hydrolysis of alkyl monohalide and apparatus therefor
JPWO2009087994A1 (en) Aromatic halide dehalogenation method
JPH05194288A (en) Catalyst hydrogen chloride treatment system and process for producing vinyl chloride from acetylene and hydrogen chloride in the presence of this system
JP5344684B2 (en) Aromatic halide dehalogenation method
JP2976041B2 (en) How to remove organic halides
JPH10156140A (en) Decomposing method of gaseous halogenated hydrocarbon
US4447667A (en) Process for the dehalogenation of organic compounds
JP3017982B2 (en) Large-scale batch production of diazomethane
JP2004201967A (en) Method and apparatus for treating organohalogen compound
JP2001158622A (en) Method of treating organoarsenic compound
WO2000071472A1 (en) Method of decomposing organochlorine compound
JP4834811B2 (en) Method for producing formic acid
CN113943204A (en) Method for recycling pentafluoro-chloroethane
JP2008194063A (en) Method of degrading highly-concentrated organic chlorine compound
JP4696287B2 (en) Method for degrading crosslinked organic polymers
JPH0975473A (en) Dechlorination method for aromatic chloride with formate using palladium and phase-transfer catalyst
JP2533596B2 (en) Hydrogen peroxide production method
JP4182033B2 (en) Energy-saving decomposition method of organic halogen compounds
JP4963014B2 (en) Decomposition method of organic halogen compounds
JPH11226399A (en) Treatment of halogenated aliphatic hydrocarbon
CN115504453B (en) Method for combining fluorine-containing greenhouse gas with fluorocarbon material by mechanochemical treatment
JPH10216479A (en) Detoxifying method of gaseous nitrogen trifluoride
JP3678739B1 (en) Dechlorination method for high concentration PCB
JP4931043B2 (en) Modification method of cross-linked organic polymer
JP2004276001A (en) Method for completely dechlorinating organic chlorine compound such as trichloroethylene or tetrachloroethylene in/on ground by generating hydrogen by chemical reaction by using raney nichel as reduction catalyst

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040210

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20040304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040311