JPH10154894A - Single layer magnetic wave absorbing material and use thereof - Google Patents

Single layer magnetic wave absorbing material and use thereof

Info

Publication number
JPH10154894A
JPH10154894A JP32761196A JP32761196A JPH10154894A JP H10154894 A JPH10154894 A JP H10154894A JP 32761196 A JP32761196 A JP 32761196A JP 32761196 A JP32761196 A JP 32761196A JP H10154894 A JPH10154894 A JP H10154894A
Authority
JP
Japan
Prior art keywords
oxide
iron
electromagnetic wave
melting point
reduction firing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32761196A
Other languages
Japanese (ja)
Inventor
Ario Yamamoto
有男 山本
Masaki Kobayashi
正樹 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tayca Corp
Original Assignee
Tayca Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tayca Corp filed Critical Tayca Corp
Priority to JP32761196A priority Critical patent/JPH10154894A/en
Publication of JPH10154894A publication Critical patent/JPH10154894A/en
Pending legal-status Critical Current

Links

Landscapes

  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Aerials With Secondary Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a single layer magnetic wave absorbing material which can be dismantled easily at the time of discard while preventing pollution by subjecting a titanate and an iron oxide or an oxide containing titanium and iron to reduction firing at a temperature higher than the melting point thereof, crushing a substance produced through quenching and subjecting the crushed substance again to reduction firing at a temperature lower than the melting point thereof. SOLUTION: A titanate and an iron oxide or an oxide containing titanium and iron containing 5-95wt.% of TiO2 for total 100% of TiO2 and Fe2 O3 expressed in term of oxide by weight ratio is subjected to reduction firing at a temperature higher than the melting point thereof. It is poured into a graphite container and cooled down with water to produce a mass of substance which is then crushed. It is subjected again to reduction firing at a temperature lower than the melting point thereof to produce a composition which is fixed and shaped with an insulating resin having dielectric constant of 4 or less. According to the method, a material which can be dismantled easily at the time of discard while preventing pollution can be produced.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】電磁波吸収体に関する。[0001] The present invention relates to an electromagnetic wave absorber.

【0002】[0002]

【従来の技術】従来から使用されている電磁波吸収材料
は、裏側に導体板を張り付けることにより電磁波を減衰
せしめるという方法が採用されている。(電波吸収体に
よる電波障害対策ガイドブック 昭和56年 日本放送
協会) この理由は、フェライトの磁気損失を最大限利用するた
めに、裏側に導体板を張り付けることにより、電磁波の
磁界成分を最大にしなければならないためである。(電
波吸収体 内藤喜之著 新OHM文庫 オーム社)
2. Description of the Related Art A conventionally used electromagnetic wave absorbing material employs a method of attenuating electromagnetic waves by attaching a conductor plate to the back side. (Guidebook for measures against radio interference caused by radio wave absorbers 1981 Japan Broadcasting Corporation) The reason for this is to maximize the magnetic loss of ferrite by attaching a conductor plate to the back side to maximize the magnetic loss of ferrite. Because it must be. (A radio wave absorber Yoshiyuki Naito New OHM Bunko Ohmsha)

【0003】[0003]

【発明が解決しょうとする課題】電磁波吸収体として誘
電体を使用する方法では、誘電体の厚みが大きく実用的
でない場合が多い。理論的には電磁波を完全吸収させる
ためには空間インピーダンスと電磁波吸収体のインピー
ダンスが等しい場合に限られることが解っているが、実
際にはそのような材料が得られていなかった。一方、イ
ンピーダンス整合させるために多層構造にしたり金属板
で裏打ちする構造とするための製造コストアップ、重量
増、施工コストアップが避けられない。また、当然のこ
とながら廃棄の際にも解体し易く公害を発生しない材料
が望まれている。
In the method using a dielectric as an electromagnetic wave absorber, the thickness of the dielectric is large and is not practical in many cases. Theoretically, it has been found that the complete absorption of electromagnetic waves is limited to the case where the spatial impedance and the impedance of the electromagnetic wave absorber are equal, but such a material has not been obtained in practice. On the other hand, an increase in manufacturing cost, an increase in weight, and an increase in construction cost due to a multilayer structure or a structure backed by a metal plate for impedance matching are inevitable. Naturally, there is a demand for a material that is easily dismantled even at the time of disposal and does not cause pollution.

【0004】[0004]

【課題を解決するための手段】本発明者らは、チタン酸
化物及び鉄酸化物、またはチタン及び鉄を含有する酸化
物を、該物質の溶融温度以上で還元焼成し、急速冷却し
て得らた物質を粉砕し、溶融温度以下で再度還元焼成し
て得られることを特徴とする組成物(特公平5−156
64号公報)とその他の充填材の組合わせが、磁気損失
と誘電損失を同時に起こすことができるので、吸収すべ
き不用の電磁波を磁気損失主体で消滅させるために用い
てきた金属板の取り付けが不用となることを見出した。
また、この組み合わせを電磁波吸収体とした場合、裏側
に導体板の不要な一層型構造でよいために、製造が容易
で、重量が軽く、施工が簡単となり、総合的にコストダ
ウンが可能となることも見出した。さらに主要材料とし
て無公害の鉄とチタンを用いているので製造から廃棄に
至るまでのすべての過程で環境対策上の問題がない。
Means for Solving the Problems The inventors of the present invention obtain a titanium oxide and an iron oxide, or an oxide containing titanium and iron, by reducing and firing the material at a temperature equal to or higher than the melting temperature of the material and rapidly cooling the material. A composition obtained by pulverizing the refractory substance and reducing and firing it again at a melting temperature or lower (Japanese Patent Publication No. 5-156).
No. 64) and other fillers can cause magnetic loss and dielectric loss at the same time. Therefore, it is necessary to attach a metal plate which has been used to eliminate unnecessary electromagnetic waves to be absorbed mainly by magnetic loss. I found it unnecessary.
In addition, when this combination is used as an electromagnetic wave absorber, a single-layer structure that does not require a conductor plate on the back side may be used, so that it is easy to manufacture, light in weight, simple in construction, and can reduce overall cost. I also found that. Furthermore, since non-polluting iron and titanium are used as main materials, there is no problem in environmental measures in all processes from production to disposal.

【0005】以下に本発明を具体的に説明する。特公平
5−15664号公報による組成物の製造法の例として
は、磁気損失を発現させる材料には酸化鉄、Fe2 3
を、誘電損失を発現させる材料には酸化チタン、TiO
2 を用いる。両材料をよく混合して誘導炉で溶融し、直
ちに融液を水冷し破砕、粉砕、篩い分けする。さらに水
素還元した後、再度粉砕、篩い分けして微粉を得る。こ
の微粉に種々の添加物やバインダーを加えて成形、加工
する。一般に、電磁波吸収材料は次の式を満たす場合に
は、電磁波吸収材料表面に対し垂直に到達する電磁波を
完全に吸収することが知られている。(電波吸収体内藤
喜之著 新OHM文庫オーム社) (√(μ/ε))・tanh(j・ω・(√(ε・μ))・
d)=377[Ω] μ:電磁波吸収材料の複素透磁率 ε:電磁波吸収材料の複素誘電率 j:虚数単位ベクトル ω:電磁波の角周波数 d:電磁波吸収体の厚さ この式が満たされる場合には電磁波吸収材料だけで電磁
波をすべて吸収できる。
Hereinafter, the present invention will be described specifically. As an example of a method for producing a composition according to Japanese Patent Publication No. 5-15664, iron oxide, Fe 2 O 3
And titanium oxide, TiO
Use 2 . The two materials are mixed well and melted in an induction furnace, and the melt is immediately cooled with water, crushed, crushed and sieved. After further hydrogen reduction, pulverization and sieving are performed again to obtain fine powder. Various additives and binders are added to the fine powder to form and process. In general, it is known that an electromagnetic wave absorbing material completely absorbs an electromagnetic wave that reaches vertically to the surface of the electromagnetic wave absorbing material when the following formula is satisfied. (Yoshiyuki Fujitsu, Radio Wave Absorber New OHM Bunko Ohmsha) (√ (μ / ε)) ・ tanh (j ・ ω ・ (√ (ε ・ μ)) ・
d) = 377 [Ω] μ: complex permeability of electromagnetic wave absorbing material ε: complex permittivity of electromagnetic wave absorbing material j: imaginary unit vector ω: angular frequency of electromagnetic wave d: thickness of electromagnetic wave absorber When this formula is satisfied Can absorb all electromagnetic waves using only electromagnetic wave absorbing materials.

【0006】本発明の電磁波吸収体は、上記の特公平5
−15664号公報による組成物に上記式を満足するよ
うな材料特性を持つバインダーを組み合わせることによ
り、電磁波吸収体の裏側に導体板を張り付ける必要がな
いことを実現した。上記バインダーの材質としては、比
誘電率が4以下の絶縁性材料、たとえば各種の樹脂、ガ
ラス、セラミクス、コンクリート、紙などが利用可能で
ある。
[0006] The electromagnetic wave absorber of the present invention is characterized in that
By combining the composition according to JP-A-156664 with a binder having material properties satisfying the above formula, it was realized that there was no need to attach a conductor plate to the back side of the electromagnetic wave absorber. As the material of the binder, an insulating material having a relative dielectric constant of 4 or less, for example, various resins, glass, ceramics, concrete, paper, and the like can be used.

【0007】従来においても鉄骨、鉄筋などが存在する
ことにより導体板が不用になることがあったが、その場
合には鉄骨の構造や鉄筋のピッチ間隔を勘案して細心の
注意を払って施工しなければならなかった。しかしなが
ら、本発明の電磁波吸収体を、たとえば、乾燥塗膜とし
て形成されるように固形分調整した塗料を建物、容器、
ケースなどの内外壁に塗装して塗膜を形成させれば、従
来のように電磁波吸収体の成形物を取り付けるための材
料や工事が不要となる。その結果、スペースの効率的使
用、重量減、施工法の単純化などが達成できて総合的に
大幅なコスト削減が可能となる。さらに、一般に構造物
に応用する電磁波吸収材料の使用期間は長期に渡るの
で、従来品ではその間に裏側に張り付けた導体板の腐食
による電磁波吸収効果がなくなり、再度施工しなおすと
いう問題を有していたが、本発明品ではそのような問題
も解消される。
Conventionally, the presence of a steel frame, a reinforcing bar, or the like may make the conductor plate unnecessary, but in such a case, pay close attention to the construction taking into account the structure of the steel frame and the pitch of the reinforcing bar. I had to. However, the electromagnetic wave absorber of the present invention, for example, a solid content adjusted paint to be formed as a dry coating film building, container,
If a coating film is formed by coating the inner and outer walls of a case or the like, materials and construction for attaching a molded article of the electromagnetic wave absorber as in the related art are not required. As a result, efficient use of space, weight reduction, simplification of the construction method, and the like can be achieved, and a significant cost reduction can be achieved overall. Furthermore, since the use period of the electromagnetic wave absorbing material applied to a structure generally extends for a long time, the conventional product has the problem that the electromagnetic wave absorbing effect due to the corrosion of the conductor plate adhered to the back side is lost during that time, and the work is performed again. However, such a problem is solved in the product of the present invention.

【0008】[0008]

【発明の実施の形態】次に本発明を実施例に従って、更
に詳細に説明するが、本発明はこれらの実施例に限定さ
れるものではない。
Next, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.

【0009】[0009]

【実施例1】酸化鉄、Fe2 3 粉体を800g、酸化
チタン、TiO2 粉体を200gそれぞれ秤量し、ミキ
サーで十分混合して黒鉛製坩堝に入れ誘導炉にて180
0℃で溶融し、直ちに別の黒鉛製容器に注ぎ込み水冷し
た。次にこの塊状物質を破砕し、アルミナ製乳鉢で擂潰
(らいかい)し、ジルコニア製ボールミルで12時間湿
式粉砕した後、105℃で24時間乾燥して150メッ
シュパスの粉体を得た。この粉体をステンレス箔上に厚
さ5ミリメートル程度に敷きつめて、1150℃で5時
間水素還元した。その後、再度アルミナ乳鉢で擂潰し、
150メッシュパスの粉体を得た。
Example 1 800 g of iron oxide and Fe 2 O 3 powder and 200 g of titanium oxide and TiO 2 powder were weighed, mixed well with a mixer, placed in a graphite crucible, and placed in an induction furnace for 180 minutes.
It was melted at 0 ° C., immediately poured into another graphite container and cooled with water. Next, this lump was crushed, ground in an alumina mortar, wet-pulverized with a zirconia ball mill for 12 hours, and dried at 105 ° C. for 24 hours to obtain a powder of 150 mesh pass. This powder was spread on a stainless steel foil to a thickness of about 5 mm, and hydrogen reduced at 1150 ° C. for 5 hours. Then, crush it again in an alumina mortar,
A powder of 150 mesh pass was obtained.

【0010】[0010]

【実施例2】実施例1において得られた水素還元粉体、
200gにポリアミド樹脂(富士化成工業社製トーマイ
ド225−X)、8gを加え、さらにエポキシ樹脂(シ
ェル化学社製エピコート828)、13.3gとキシレ
ン溶剤、50g、及びハイアルミナビーズ、150gを
ステンレス製容器に入れ、2時間震盪して塗料化した。
(P/B=9.38)
Example 2 The hydrogen-reduced powder obtained in Example 1,
8 g of polyamide resin (Tomide 225-X manufactured by Fuji Kasei Kogyo Co., Ltd.) was added to 200 g, and 13.3 g of epoxy resin (Epicoat 828 manufactured by Shell Chemical Co., Ltd.), 50 g of xylene solvent, and 150 g of high alumina beads were made of stainless steel. The mixture was placed in a container and shaken for 2 hours to form a paint.
(P / B = 9.38)

【0011】この塗料を厚さ10mm、外径20.7m
m,内径9.0mmのコンクリート製中空円板に乾燥時
の塗膜厚が2mm及び3mmとなるように塗装して試料
板A,Bとした。電波吸収能の測定には、ネットワーク
アナライザ(ウイルトロン社製37629A)を使用し
た。表1に測定結果を示す。
This paint is 10 mm thick and 20.7 m in outer diameter.
Samples A and B were obtained by coating a hollow hollow disc made of concrete having a diameter of 9.0 mm and an inner diameter of 9.0 mm so that the coating film thickness when dried was 2 mm and 3 mm. A network analyzer (37629A manufactured by Wiltron) was used for measuring the radio wave absorption capacity. Table 1 shows the measurement results.

【0012】[0012]

【表1】 [Table 1]

【0013】表1の結果より、本発明の電磁波吸収体は
厚みが薄く、かつ、性能を示す比帯域幅が広いことが明
らかとなり、在来の裏打ち板を使用した電磁波吸収体に
比較して遜色がないものである。
From the results shown in Table 1, it is clear that the electromagnetic wave absorber of the present invention has a small thickness and a wide specific bandwidth showing performance, and is compared with an electromagnetic wave absorber using a conventional backing plate. There is no inferiority.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 重量比率で酸化物換算でTiO2 とFe
2 3 との合計を100%としたとき、TiO2 含有分
が5〜95重量%である、チタン酸化物及び鉄酸化物、
またはチタン及び鉄を含有する酸化物を、該物質の溶融
温度以上で還元焼成し、その後急速冷却した後粉砕し、
さらに溶融温度以下で再度還元焼成して得られた組成物
を、比誘電率が4以下の絶縁性樹脂で固定、成形するこ
とを特徴とする、一層型の電磁波吸収体。
1. An oxide-based TiO 2 and Fe 2 by weight ratio.
A titanium oxide and an iron oxide having a TiO 2 content of 5 to 95% by weight, when the total with 2 O 3 is 100%,
Or, an oxide containing titanium and iron is reduced and calcined at a temperature equal to or higher than the melting temperature of the substance, and then rapidly cooled and pulverized,
A single-layered electromagnetic wave absorber characterized by fixing and molding a composition obtained by reducing and firing again at a melting temperature or lower with an insulating resin having a relative dielectric constant of 4 or less.
【請求項2】 請求項1の電磁波吸収体を、塗装された
塗膜として使用する方法。
2. A method of using the electromagnetic wave absorber of claim 1 as a coated film.
JP32761196A 1996-11-22 1996-11-22 Single layer magnetic wave absorbing material and use thereof Pending JPH10154894A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32761196A JPH10154894A (en) 1996-11-22 1996-11-22 Single layer magnetic wave absorbing material and use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32761196A JPH10154894A (en) 1996-11-22 1996-11-22 Single layer magnetic wave absorbing material and use thereof

Publications (1)

Publication Number Publication Date
JPH10154894A true JPH10154894A (en) 1998-06-09

Family

ID=18200994

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32761196A Pending JPH10154894A (en) 1996-11-22 1996-11-22 Single layer magnetic wave absorbing material and use thereof

Country Status (1)

Country Link
JP (1) JPH10154894A (en)

Similar Documents

Publication Publication Date Title
Sugimoto et al. M-type ferrite composite as a microwave absorber with wide bandwidth in the GHz range
KR100670914B1 (en) Composite dielectric material, substrate and production method of substrate
Hutagalung et al. Effect of MnO2 additive on the dielectric and electromagnetic interference shielding properties of sintered cement-based ceramics
CN103275591A (en) 0.6-18GHz-frequency-band microwave-absorbing/epoxy anti-electromagnetic interference coating material and preparation method thereof
KR102000446B1 (en) Cement composition capable of shielding electro magnetic interference, cement mortar and cement concrete using the compositioon
KR100627112B1 (en) Dielectric Ceramics Powder, Method of Preparing Dielectric Ceramics Powder and Complex Dielectric Material
CN103275529B (en) Suction ripple powder/inorganic silicate electromagnetism interference coated material of a kind of 0.6-18GHz frequency range and preparation method thereof
US20030108744A1 (en) Electromagnetic absorber materia, method for the production thereof and method for the production of shielding devices thereof
CN112812612A (en) Building wave-absorbing coating based on magnesium oxide excited steel slag and preparation method thereof
CN108439968A (en) A kind of microwave-medium ceramics and preparation method thereof of low-k and ultra-low loss
KR100687180B1 (en) Composite deelectric material and substrate
JPH10154894A (en) Single layer magnetic wave absorbing material and use thereof
CN103898350A (en) Method for preparing foamed aluminum/ferrite composite wave-absorbing material
JPS6177208A (en) Almina ceramic composition
Abbas et al. Synthesis and microwave absorption studies of ferrite paint
JP2005231931A (en) Cement type radio wave absorber
JP3796682B2 (en) Electromagnetic wave absorber
CN103332933A (en) Preparation method of LaAgMnO3/Ni2Z composite wave-absorbing material
RU2100312C1 (en) Ceramic mass for ceramic article making
CN113060989A (en) Method for enhancing concrete resistance and electromagnetic shielding performance by using carbon nanofibers
KR100730597B1 (en) Ceramic Panel for Building Having Electromagnetic Wave in Broad Frequency Range and Manufacturing Method Thereof
JP3339989B2 (en) Low dielectric loss material
JPH0516679B2 (en)
US6369150B1 (en) Electromagnetic radiation absorption composition
JP3796680B2 (en) Electromagnetic wave absorbing material

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050415

A131 Notification of reasons for refusal

Effective date: 20050517

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050927