JPH10154816A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH10154816A
JPH10154816A JP8326069A JP32606996A JPH10154816A JP H10154816 A JPH10154816 A JP H10154816A JP 8326069 A JP8326069 A JP 8326069A JP 32606996 A JP32606996 A JP 32606996A JP H10154816 A JPH10154816 A JP H10154816A
Authority
JP
Japan
Prior art keywords
active layer
gate electrode
gate
semiconductor device
insulating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP8326069A
Other languages
Japanese (ja)
Inventor
Masahiko Hayakawa
昌彦 早川
Yosuke Tsukamoto
洋介 塚本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP8326069A priority Critical patent/JPH10154816A/en
Priority to US08/970,542 priority patent/US6184559B1/en
Publication of JPH10154816A publication Critical patent/JPH10154816A/en
Priority to US09/736,139 priority patent/US6426517B2/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78696Thin film transistors, i.e. transistors with a channel being at least partly a thin film characterised by the structure of the channel, e.g. multichannel, transverse or longitudinal shape, length or width, doping structure, or the overlap or alignment between the channel and the gate, the source or the drain, or the contacting structure of the channel
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/1368Active matrix addressed cells in which the switching element is a three-electrode device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42384Gate electrodes for field effect devices for field-effect transistors with insulated gate for thin film field effect transistors, e.g. characterised by the thickness or the shape of the insulator or the dimensions, the shape or the lay-out of the conductor

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Thin Film Transistor (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a highly reliable semiconductor device. SOLUTION: In a thin film transistor of a multi-gate structure, the width of a channel formation region 108 closest to a drain region 102 is made the smallest. Thereby, it can be lightened that a transistor structure closest to the drain region is preferentially deteriorated. By intentionally making large the channel length of an active layer near its center, the amount of current flowing therethrough can be reduced to consequently prevent a deteriorating phenomenon caused by accumulated heat.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明が属する技術分野】本明細書で開示する発明は、
薄膜半導体を用いた半導体装置に関する。特に絶縁ゲイ
ト型トランジスタのゲイト電極の構成に関するものであ
る。
TECHNICAL FIELD [0001] The invention disclosed in the present specification is:
The present invention relates to a semiconductor device using a thin film semiconductor. In particular, the present invention relates to a configuration of a gate electrode of an insulated gate transistor.

【0002】[0002]

【従来の技術】薄膜半導体を用いた半導体装置として薄
膜トランジスタ(TFT)が注目されている。特に最近
では、結晶性珪素膜(例えばポリシリコン膜)を利用し
て高速動作の可能なTFTが実用化されている。
2. Description of the Related Art A thin film transistor (TFT) has attracted attention as a semiconductor device using a thin film semiconductor. Particularly recently, a TFT capable of operating at high speed using a crystalline silicon film (for example, a polysilicon film) has been put into practical use.

【0003】一方で、結晶性珪素膜を活性層として利用
した薄膜トランジスタは高いモビリティ(電界効果移動
度)を有する反面、オフ電流(TFTがオフ状態にある
時に流れる電流)が大きいという欠点を持っている。ま
た、移動度が高くなると耐圧が低くなり、劣化が顕著に
なるという問題がある。
On the other hand, a thin film transistor using a crystalline silicon film as an active layer has a high mobility (field-effect mobility), but has a disadvantage of a large off current (current flowing when the TFT is in an off state). I have. In addition, there is a problem that the higher the mobility, the lower the breakdown voltage, and the more the deterioration is remarkable.

【0004】この様な問題を解決する手段として、特公
平5-44195 号公報記載の技術が知られている。この技術
は等価的に複数の薄膜トランジスタを直列に接続した構
成(マルチゲイト構造とも呼ばれる)とすることで個々
の薄膜トランジスタに加わる電圧を分散させるものであ
る。
[0004] As a means for solving such a problem, a technique described in Japanese Patent Publication No. 5-44195 is known. This technique disperses voltages applied to individual thin film transistors by equivalently adopting a configuration in which a plurality of thin film transistors are connected in series (also referred to as a multi-gate structure).

【0005】図4は上記公報記載の技術を用いて作製し
た薄膜トランジスタの活性層およびゲイト電極の構造図
である。図4において、401はソース領域、402は
ドレイン領域であり、活性層上方には図示しないゲイト
絶縁膜を介してゲイト電極403〜406が配置され
る。この時、ゲイト電極403〜406は共通に接続さ
れた同一電極である。
FIG. 4 is a structural diagram of an active layer and a gate electrode of a thin film transistor manufactured by using the technique described in the above publication. In FIG. 4, reference numeral 401 denotes a source region, 402 denotes a drain region, and gate electrodes 403 to 406 are arranged above the active layer via a gate insulating film (not shown). At this time, the gate electrodes 403 to 406 are the same electrode commonly connected.

【0006】また、ゲイト電極403〜406の直下に
は、ゲイト電極403〜406の形状に対応してチャネ
ル形成領域407〜410が形成され、実質的に複数の
薄膜トランジスタを直列に接続した構成としている点に
特徴がある。
[0006] Channel formation regions 407 to 410 are formed immediately below the gate electrodes 403 to 406 corresponding to the shapes of the gate electrodes 403 to 406, respectively, so that a plurality of thin film transistors are connected in series. There is a feature in the point.

【0007】しかしながら、本発明者らが図4の様な構
成のTFTを用いて実験的に確かめたところ、ドレイン
領域402に最も近い薄膜トランジスタが最も激しく劣
化することが判明した。そして、ソース/ドレイン間に
高電圧を印加していくとドレイン領域に近い側のトラン
ジスタから順次破壊または劣化が進行してしまうことが
判明した。
However, the present inventors have experimentally confirmed using a TFT having a configuration as shown in FIG. 4, and found that the thin film transistor closest to the drain region 402 is most severely deteriorated. Then, it has been found that when a high voltage is applied between the source and the drain, destruction or deterioration proceeds sequentially from the transistor closer to the drain region.

【0008】また、別の実験によるとチャネル幅の広い
活性層で構成したTFTにおいては、活性層の中央付近
(チャネル幅方向における中央付近)が最も激しく劣化
することが判明した。
According to another experiment, it has been found that, in a TFT constituted by an active layer having a wide channel width, the vicinity of the center of the active layer (near the center in the channel width direction) is most severely deteriorated.

【0009】[0009]

【発明が解決しようとする課題】本発明では上記複数の
半導体装置を等価的に直列に接続した構成において、ド
レイン側に近い半導体装置に電界が集中するのを緩和し
て半導体装置の破壊または劣化を防止することを課題と
する。
SUMMARY OF THE INVENTION In the present invention, in a configuration in which a plurality of semiconductor devices are connected in series equivalently, the concentration of an electric field on a semiconductor device near the drain side is alleviated and the breakdown or deterioration of the semiconductor device is prevented. It is an object to prevent the above.

【0010】また、活性層の中央付近を流れる電流を抑
制し、活性層中央において引き起こされる劣化を防止す
ることを課題とする。
It is another object of the present invention to suppress a current flowing near the center of the active layer and prevent deterioration caused at the center of the active layer.

【0011】[0011]

【課題を解決するための手段】本明細書で開示する第1
の発明の構成は、活性層と、ゲイト絶縁膜と、前記ゲイ
ト絶縁膜を介して前記活性層と重畳するゲイト電極と、
を少なくとも有する半導体装置であって、前記ゲイト電
極は共通に接続された実質的に複数のゲイト電極と見な
せる構造を有し、前記複数のゲイト電極の内、ドレイン
領域に最も近いゲイト電極の幅が最も狭いことを特徴と
する。
The first aspect disclosed in the present specification is described below.
The configuration of the invention of the active layer, a gate insulating film, a gate electrode that overlaps with the active layer via the gate insulating film,
Wherein the gate electrode has a structure that can be regarded as substantially a plurality of gate electrodes connected in common, and a width of a gate electrode closest to a drain region among the plurality of gate electrodes is It is characterized by being the narrowest.

【0012】上記構成において、ドレイン領域に最も近
いゲイト電極の幅が最も狭いということはゲイト電極直
下に形成されるチャネル形成領域の幅(チャネル長とも
言い換えられる)が最も狭いことを意味している。
In the above structure, the fact that the width of the gate electrode closest to the drain region is the narrowest means that the width of the channel formation region formed directly below the gate electrode (also referred to as the channel length) is the narrowest. .

【0013】また、他の発明の構成は、活性層と、ゲイ
ト絶縁膜と、前記ゲイト絶縁膜を介して前記活性層と重
畳するゲイト電極と、を少なくとも有する半導体装置で
あって、前記ゲイト電極は共通に接続された実質的に複
数のゲイト電極と見なせる構造を有し、前記複数のゲイ
ト電極の幅はドレイン領域に近づくほどに順次狭くなっ
ていることを特徴とする。
According to another aspect of the present invention, there is provided a semiconductor device having at least an active layer, a gate insulating film, and a gate electrode overlapping the active layer via the gate insulating film. Has a structure that can be regarded as substantially a plurality of gate electrodes connected in common, and the width of the plurality of gate electrodes is gradually reduced as approaching the drain region.

【0014】この場合も、ドレイン領域に近づくにつれ
てチャネル形成領域の幅が順次狭くなっていくことを意
味している。
[0014] In this case as well, it means that the width of the channel forming region gradually decreases as approaching the drain region.

【0015】これらの構成は、ドレイン領域に近いゲイ
ト電極幅、即ちチャネル形成領域の幅を狭くすることで
そのチャネル形成領域の抵抗成分を低減し、そのチャネ
ル形成領域にかかる電圧を低減することを目的としてい
る。
These structures reduce the resistance component of the channel formation region by reducing the width of the gate electrode near the drain region, that is, the width of the channel formation region, and reduce the voltage applied to the channel formation region. The purpose is.

【0016】また、本明細書で開示する第2の発明の構
成は、活性層と、ゲイト絶縁膜と、前記ゲイト絶縁膜を
介して前記活性層と重畳するゲイト電極と、を少なくと
も有する半導体装置であって、前記活性層のチャネル幅
方向において前記ゲイト電極の幅が変化することを特徴
とする。
According to a second aspect of the present invention, there is provided a semiconductor device having at least an active layer, a gate insulating film, and a gate electrode overlapping the active layer via the gate insulating film. Wherein the width of the gate electrode changes in the channel width direction of the active layer.

【0017】また、他の発明の構成は、活性層と、ゲイ
ト絶縁膜と、前記ゲイト絶縁膜を介して前記活性層と重
畳するゲイト電極と、を少なくとも有する半導体装置で
あって、前記活性層のチャネル幅方向における端部から
該活性層の内部に近づくほどに前記ゲイト電極の幅が広
くなることを特徴とする。
According to another aspect of the present invention, there is provided a semiconductor device having at least an active layer, a gate insulating film, and a gate electrode overlapping the active layer via the gate insulating film. The width of the gate electrode increases from the end in the channel width direction to the inside of the active layer.

【0018】上記2つの構成は、活性層の中央付近のゲ
イト電極幅を広くすることでチャネル形成領域を広く
し、抵抗成分を増加させて流れる電流量を抑制させるこ
とを目的とした構成である。
The above two configurations are intended to increase the width of the gate electrode near the center of the active layer to widen the channel formation region, increase the resistance component, and suppress the amount of current flowing. .

【0019】以上の様に、本発明の基本的な主旨は活性
層内におけるチャネル形成領域の幅を意図的に変化させ
ることで、チャネル形成領域の抵抗成分を所望の特性が
得られる様に設定することにある。即ち、チャネル形成
領域にかかる電圧の配分やチャネル形成領域の特定箇所
を流れる電流量を制御するための技術である。
As described above, the basic purpose of the present invention is to intentionally change the width of the channel forming region in the active layer, thereby setting the resistance component of the channel forming region to obtain desired characteristics. Is to do. That is, this is a technique for controlling the distribution of voltage applied to the channel formation region and the amount of current flowing through a specific portion of the channel formation region.

【0020】[0020]

【発明の実施の形態】第1の発明は、マルチゲイト構造
の薄膜トランジスタにおいてドレイン領域に近いチャネ
ル形成領域に電界が集中するのを防ぐための技術であ
る。そのために、図1に示す様な構成とする。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The first invention is a technique for preventing an electric field from being concentrated on a channel forming region near a drain region in a multi-gate thin film transistor. For this purpose, a configuration as shown in FIG. 1 is adopted.

【0021】活性層にはゲイト電極の形状に合わせてチ
ャネル形成領域106〜108が形成されている。ゲイ
ト電極103、104、105の順にだんだんゲイト幅
が狭くなっているのでチャネル形成領域106、10
7、108の順にチャネル長が短くなる(チャネル形成
領域108は最も短い)。
Channel formation regions 106 to 108 are formed in the active layer according to the shape of the gate electrode. Since the gate width is gradually reduced in the order of the gate electrodes 103, 104, and 105, the channel formation regions 106, 10
The channel length becomes shorter in the order of 7 and 108 (the channel forming region 108 is the shortest).

【0022】この様な構成とすると、オームの法則に従
い、チャネル形成領域108にかかる電圧が最も小さく
なり、チャネル形成領域108のドレイン側端部に集中
して形成される電界も小さいものとなる。そのため、従
来の様に、ドレイン領域に近づくほどに電界が集中する
現象を緩和することが可能となる。
With such a structure, the voltage applied to the channel formation region 108 is minimized in accordance with Ohm's law, and the electric field concentrated on the drain-side end of the channel formation region 108 is also reduced. Therefore, it is possible to reduce the phenomenon that the electric field is concentrated closer to the drain region as in the related art.

【0023】第2の発明は、活性層の中央付近において
優先的に劣化または破壊が進行するのを防ぐための技術
である。そのために、図5に示す様な構成とする。
The second invention is a technique for preventing the deterioration or destruction from proceeding preferentially near the center of the active layer. For this purpose, the configuration is as shown in FIG.

【0024】図5において、ゲイト電極503は活性層
の中央付近が最も広くなる様な形状にパターニングされ
ている。そのため、チャネル形成領域504は、活性層
の中央付近で最もチャネル長が長くなる。
In FIG. 5, the gate electrode 503 is patterned so that the area near the center of the active layer is the largest. Therefore, the channel formation region 504 has the longest channel length near the center of the active layer.

【0025】この様な構成とすると、活性層の中央付近
において流れる電流量を抑制することができ、熱の発生
量を低減することができる。従って、熱の蓄積によると
思われる劣化現象を防止することが可能となる。
With this configuration, the amount of current flowing near the center of the active layer can be suppressed, and the amount of generated heat can be reduced. Therefore, it is possible to prevent a deterioration phenomenon that is considered to be caused by heat accumulation.

【0026】[0026]

【実施例】【Example】

〔実施例1〕本実施例では半導体装置として薄膜トラン
ジスタを例にとり、第1の発明を利用した薄膜トランジ
スタの活性層およびゲイト電極の構成について説明す
る。なお、ゲイト電極は活性層と重畳する領域において
3本に分割されるトリプルゲイト型のマルチゲイト電極
構造を例とするが、これに限定されるものではない。
[Embodiment 1] In this embodiment, the structure of an active layer and a gate electrode of a thin film transistor using the first invention will be described using a thin film transistor as an example of a semiconductor device. Note that the gate electrode has a triple-gate type multi-gate electrode structure divided into three in a region overlapping with the active layer, but is not limited thereto.

【0027】図1において、101はソース領域、10
2はドレイン領域であって一導電性を付与する不純物元
素(リンやボロン等)を添加して形成される。また、1
03は幅aのゲイト電極、104は幅bのゲイト電極、
105は幅cのゲイト電極である。図1に示す様にゲイ
ト電極103〜105は共通に接続されている。
In FIG. 1, reference numeral 101 denotes a source region, 10
Reference numeral 2 denotes a drain region, which is formed by adding an impurity element imparting one conductivity (such as phosphorus or boron). Also, 1
03 is a gate electrode of width a, 104 is a gate electrode of width b,
Reference numeral 105 denotes a gate electrode having a width c. As shown in FIG. 1, the gate electrodes 103 to 105 are commonly connected.

【0028】また、106〜108で示される領域はそ
れぞれゲイト電極103〜105に対応して形成される
チャネル形成領域であり、意図的に不純物元素が添加さ
れていない実質的に真性な領域(アンドープな領域)で
ある。
The regions indicated by reference numerals 106 to 108 are channel formation regions formed corresponding to the gate electrodes 103 to 105, respectively, and are substantially intrinsic regions to which no impurity element is intentionally added (undoped regions). Area).

【0029】第1の発明の構成は、ドレイン領域102
に近づくにつれてゲイト電極の幅(チャネル形成領域の
幅)が狭くなっていることに特徴があり、図1において
はa、b、cの順に狭くなる。
The structure of the first invention is that the drain region 102
It is characterized in that the width of the gate electrode (the width of the channel formation region) becomes narrower as the distance approaches, and in FIG. 1, the width becomes smaller in the order of a, b, and c.

【0030】なお、第1の発明の適用範囲は図1に示す
活性層およびゲイト電極の形状に限定されるものではな
く、実施者が自由に決定することができる。また、チャ
ネル形成領域の幅(チャネル長)等の具体的な数値は実
施者が実験的に求めれる必要がある。
The scope of application of the first invention is not limited to the shapes of the active layer and the gate electrode shown in FIG. 1, but can be freely determined by a practitioner. Further, specific numerical values such as the width (channel length) of the channel formation region need to be experimentally obtained by the practitioner.

【0031】また、本実施例ではドレイン領域に近づく
につれてゲイト電極の幅が順次狭くなる構成を説明した
が、最もドレイン領域に近いゲイト電極のみを他の全て
のゲイト電極よりも細くして、他の全てのゲイト電極の
幅を同一のものとしても第1の発明の効果を得ることが
できる。
Further, in this embodiment, the configuration in which the width of the gate electrode is gradually reduced as approaching the drain region has been described. However, only the gate electrode closest to the drain region is made thinner than all the other gate electrodes. Even if the widths of all the gate electrodes are the same, the effect of the first invention can be obtained.

【0032】ここで本発明者が第1の発明に至るまでの
過程について説明する。チャネル形成領域は実質的に真
性であるため高抵抗な領域として振る舞う。従って、薄
膜トランジスタがオン状態にある時も、チャネル長が長
くなるほど高い抵抗成分になると考えられる。即ち、図
1に示す構成では108で示されるチャネル形成領域の
抵抗が最も低いと考えられる。
Here, a process until the present inventor reaches the first invention will be described. Since the channel formation region is substantially intrinsic, it behaves as a high resistance region. Therefore, even when the thin film transistor is in the ON state, it is considered that the longer the channel length is, the higher the resistance component becomes. That is, in the configuration shown in FIG. 1, the resistance of the channel formation region indicated by 108 is considered to be the lowest.

【0033】そして、ソース/ドレイン間を流れる電流
量を一定として仮定する時、オームの法則により抵抗の
高い領域ほど大きい電圧が印加される。即ち、108で
示されるチャネル形成領域に印加される電圧が最も低く
なる。
When it is assumed that the amount of current flowing between the source and the drain is constant, a higher voltage is applied to a region having a higher resistance according to Ohm's law. That is, the voltage applied to the channel formation region 108 is the lowest.

【0034】また、通常チャネル形成領域の両端に印加
される電圧は、そのチャネル形成領域のドレイン側に近
い端部(チャネル/ドレイン接合部)に集中して印加さ
れて高電界を形成すると考えられている。従って、チャ
ネル形成領域に印加される電圧が低いほどドレイン側端
部に集中する電界は小さくなると言える。
Further, it is considered that the voltage applied to both ends of the channel forming region is applied concentratedly to the end (channel / drain junction) near the drain side of the channel forming region to form a high electric field. ing. Therefore, it can be said that the lower the voltage applied to the channel formation region, the smaller the electric field concentrated on the drain side end.

【0035】以上の考察をまとめると、図1に示す構成
では106、107、108で示されるチャネル形成領
域の順に、ドレイン側端部に形成される電界が小さくな
っていくことが理解される。
Summarizing the above considerations, it is understood that in the configuration shown in FIG. 1, the electric field formed at the drain side end portion decreases in the order of the channel forming regions indicated by 106, 107 and 108.

【0036】従って、従来はドレイン領域に近いチャネ
ル/ドレイン接合部ほど高電界が形成されやすく、劣化
または破壊しやすい傾向にあったが、第1の発明を実施
することでドレイン領域に近づくにつれてチャネル/ド
レイン接合部にかかる電界を小さくできるので劣化を緩
和することが可能である。
Therefore, in the prior art, a higher electric field was apt to be formed, and the channel / drain junction was closer to the drain region, and was likely to be deteriorated or destroyed. However, by implementing the first invention, the channel becomes closer to the drain region. Since the electric field applied to the drain / drain junction can be reduced, deterioration can be alleviated.

【0037】〔実施例2〕本実施例では実施例1の構成
において活性層の形状が異なる場合の例について図2を
用いて説明する。なお、図2において、図1に対応する
箇所の符号は同一のものを使用することとする。
[Embodiment 2] In this embodiment, an example in which the configuration of the active layer is different from that of Embodiment 1 will be described with reference to FIG. In FIG. 2, the same reference numerals are used for the portions corresponding to those in FIG.

【0038】図2に示す構成において、図1と異なる点
はまず活性層がジグザグまたは蛇行形状となっている点
である。この様な形状は活性層の占有面積を低減する上
で有効である。そして、図1と異なる点の第2はゲイト
電極の形状である。
The configuration shown in FIG. 2 differs from that shown in FIG. 1 in that the active layer has a zigzag or meandering shape. Such a shape is effective in reducing the area occupied by the active layer. The second different point from FIG. 1 is the shape of the gate electrode.

【0039】ゲイト電極の設計パターンを調節すること
で所望の幅のチャネル形成領域を形成することができ
る。本実施例ではチャネル長aのチャネル形成領域10
6を形成するために201で示される様なゲイト電極部
を形成する。また、チャネル長bのチャネル形成領域1
07、チャネル長cのチャネル形成領域108を形成す
るために、それぞれ202、203で示されるゲイト電
極部を形成する。
By adjusting the design pattern of the gate electrode, a channel forming region having a desired width can be formed. In this embodiment, the channel forming region 10 having the channel length a is used.
In order to form 6, a gate electrode portion as shown by 201 is formed. Further, a channel forming region 1 having a channel length b
In order to form the channel formation region 108 having a channel length of 07 and a channel length c, gate electrode portions 202 and 203 are formed, respectively.

【0040】勿論、第1の発明を適用しうる活性層の形
状およびゲイト電極の形状は本実施例で示した形状に限
定されるものではなく、実施者が必要に応じて手適宜決
定すれば良いことは言うまでもない。
Of course, the shape of the active layer and the shape of the gate electrode to which the first invention can be applied are not limited to the shapes shown in this embodiment, but may be appropriately determined by the practitioner as needed. Needless to say, it's good.

【0041】以上の様なゲイト電極を用いることで、ド
レイン領域102に近づくほどにチャネル形成領域の幅
が狭くなっていく(図中においてa>b>c)様な活性
層を構成することができる。
By using the gate electrode as described above, it is possible to form an active layer in which the width of the channel formation region becomes narrower as approaching the drain region 102 (a>b> c in the figure). it can.

【0042】〔実施例3〕実施例1および実施例2に示
した構成はソース領域とドレイン領域の位置が固定され
ている場合に有効である。例えば、アクティブマトリク
ス型電気光学装置の駆動回路などを構成する場合にはソ
ース/ドレイン領域が固定される。
[Embodiment 3] The configurations shown in the embodiments 1 and 2 are effective when the positions of the source region and the drain region are fixed. For example, when configuring a drive circuit of an active matrix electro-optical device, the source / drain regions are fixed.

【0043】ところが、同じくアクティブマトリクス型
電気光学装置の画素マトリクス回路に配置される画素T
FTは電荷の充電および放電を繰り返すため、ソース領
域とドレイン領域が充・放電のたびに入れ替わることに
なる。この場合、実施例1および実施例2に示した構成
では第1の発明を実施することができなくなる。
However, the pixels T arranged in the pixel matrix circuit of the active matrix electro-optical device
Since the FT repeats charging and discharging of electric charge, the source region and the drain region are replaced each time charging / discharging is performed. In this case, the first invention cannot be implemented with the configurations shown in the first and second embodiments.

【0044】そこで、その様な場合には図3に示す様
に、ソース領域(またはドレイン領域)301、ドレイ
ン領域(またはソース領域)302に近い側のゲイト電
極303、305の幅をゲイト電極304よりも狭くす
る様な構成が必要となる。
Therefore, in such a case, as shown in FIG. 3, the widths of the gate electrodes 303 and 305 on the side closer to the source region (or drain region) 301 and the drain region (or source region) 302 are changed. It is necessary to have a configuration that is narrower than that.

【0045】本実施例ではチャネル形成領域307のチ
ャネル長をbとした時、チャネル形成領域306、30
8のチャネル長をチャネル長bよりも短いチャネル長a
とする。この様にゲイト電極をソース側とドレイン側と
で左右対称な構造としておくと、TFT動作の対称性を
保持する上で望ましい。
In this embodiment, when the channel length of the channel formation region 307 is b, the channel formation regions 306 and 30
Channel length a shorter than channel length b
And It is desirable that the gate electrode has a symmetrical structure on the source side and the drain side in order to maintain the symmetry of the TFT operation.

【0046】〔実施例4〕本実施例では第2の発明を利
用した薄膜トランジスタの活性層およびゲイト電極の構
成について説明する。説明には図5を用いる。
[Embodiment 4] In this embodiment, the structure of an active layer and a gate electrode of a thin film transistor utilizing the second invention will be described. FIG. 5 is used for the description.

【0047】図5において、501はソース領域、50
2はドレイン領域、503はゲイト電極である。ゲイト
電極503は局部的に電極幅が広くなった構造となって
いる。そのため、ゲイト電極503の形状に合わせて形
成されるチャネル形成領域504は活性層のチャネル幅
方向における端部から活性層の内部に近づく(図中の矢
印が示す方向に向かう)ほどに広くなる。
In FIG. 5, reference numeral 501 denotes a source region;
2 is a drain region and 503 is a gate electrode. The gate electrode 503 has a structure in which the electrode width is locally increased. Therefore, the channel forming region 504 formed according to the shape of the gate electrode 503 becomes wider from the end in the channel width direction of the active layer toward the inside of the active layer (toward the direction indicated by the arrow in the figure).

【0048】ここで本発明者が第2の発明に至るまでの
過程について説明する。チャネル幅の広い活性層を用い
た薄膜トランジスタでは活性層の中央付近から劣化しや
すいという現象について、本発明者らは活性層の中央付
近が放熱しにくいことに起因する熱の蓄積の影響が大き
いと考えた。
Here, a process until the present inventor reaches the second invention will be described. With regard to the phenomenon that a thin film transistor using an active layer having a wide channel width tends to deteriorate from the vicinity of the center of the active layer, the present inventors consider that the effect of heat accumulation due to the difficulty in radiating heat near the center of the active layer is large. Thought.

【0049】そのため、活性層の中央付近を流れる電流
量を低減し、熱の発生を抑制することが必要となる。そ
こで、活性層の中央付近のチャネル長を長くし、抵抗成
分の大きい領域を形成して電流量を抑制することが重要
であると考えた。
Therefore, it is necessary to reduce the amount of current flowing near the center of the active layer and to suppress the generation of heat. Therefore, it was considered important to increase the channel length near the center of the active layer and form a region having a large resistance component to suppress the amount of current.

【0050】本実施例は、上述の様な本発明者の考えに
基づいて発明された技術を示すものであり、ゲイト電極
503の形状を活性層上方で局部的に変化させる(広く
する)ことにより、活性層の中央付近に大電流が流れる
のを防止する例である。
This embodiment shows a technique invented on the basis of the inventor's idea as described above, in which the shape of the gate electrode 503 is locally changed (widened) above the active layer. Thus, a large current is prevented from flowing near the center of the active layer.

【0051】なお、前述の様に本実施例で示した第2の
発明の主旨は活性層の中央付近のチャネル長を長くし、
大電流による熱の発生を抑制することにある。従って、
その主旨を踏まえてあればゲイト電極の構造や形状は実
施者の必要に応じて自由に設計することができる。
As described above, the gist of the second invention shown in this embodiment is to increase the channel length near the center of the active layer,
It is to suppress the generation of heat due to a large current. Therefore,
With this in mind, the structure and shape of the gate electrode can be freely designed as required by the practitioner.

【0052】〔実施例5〕本実施例では、実施例4で示
した第2の発明に対して活性層の形状による放熱効果を
組み合わせた例を示す。説明には図6を用いる。
[Embodiment 5] In this embodiment, an example is shown in which the heat radiation effect by the shape of the active layer is combined with the second invention shown in Embodiment 4. FIG. 6 is used for the description.

【0053】図6に示す活性層の特徴としては局部的に
スリットが設けられている点が挙げられる。即ち、活性
層の一部分がくり抜かれて、実質的にチャネル幅の狭い
3本の活性層が並列に接続された構成となっている。な
お、スリットの本数は適宜変えることが可能である。
The feature of the active layer shown in FIG. 6 is that a slit is provided locally. That is, a part of the active layer is hollowed out, and three active layers having a substantially narrow channel width are connected in parallel. Note that the number of slits can be changed as appropriate.

【0054】図6において、601はソース領域、60
2はドレイン領域、603がゲイト電極、604〜60
6はゲイト電極603の直下に形成されるチャネル形成
領域である。チャネル形成領域604、606は同じ幅
のチャネル長を有し、チャネル形成領域605は他の領
域よりもチャネル長が長くなっている。
In FIG. 6, reference numeral 601 denotes a source region;
2 is a drain region, 603 is a gate electrode, 604 to 60
Reference numeral 6 denotes a channel forming region formed immediately below the gate electrode 603. The channel forming regions 604 and 606 have the same channel length, and the channel forming region 605 has a longer channel length than other regions.

【0055】そして、本実施例の特徴は活性層にはスリ
ットが設けられているため、発生した熱を容易に放熱す
ることができることにある。従って、第2の発明によっ
て流れる電流量を低減することで高熱の発生を抑制し、
かつ、スリットを設けたことによって放熱効果をさらに
効率良く行うことができる。
The feature of this embodiment is that since the active layer is provided with slits, the generated heat can be easily radiated. Therefore, the generation of high heat is suppressed by reducing the amount of current flowing according to the second invention,
Further, by providing the slit, the heat radiation effect can be more efficiently performed.

【0056】〔実施例6〕実施例1〜3で説明した第1
の発明と、実施例4、5で説明した第2の発明とを組み
合わせることで、さらに信頼性の高いマルチゲイト構造
の薄膜トランジスタを作製することができる。
[Embodiment 6] The first embodiment described in Embodiments 1-3
By combining the present invention with the second invention described in Embodiments 4 and 5, a thin film transistor having a more reliable multi-gate structure can be manufactured.

【0057】即ち、第1の発明によってドレイン領域に
近い薄膜トランジスタの劣化を防止し、第2の発明によ
って発熱による活性層の中央付近からの劣化を防止する
ことが可能となる。
That is, according to the first invention, it is possible to prevent the thin film transistor near the drain region from deteriorating, and according to the second invention, it is possible to prevent deterioration of the active layer near the center due to heat generation.

【0058】本実施例は、例えば大電流を扱いつつ高速
動作させる駆動回路用の薄膜トランジスタ等に特に有効
な技術である。 〔実施例7〕実施例1〜6で説明した薄膜トランジスタ
はアクティブマトリクス型電気光学装置(液晶表示装
置、EL表示装置、EC表示装置等)を構成することが
できる。例えば、画素マトリクス回路と駆動回路とを同
一基板上に一体形成した液晶表示装置においては、高電
圧が印加される画素マトリクス回路には第1の発明が有
効であり、大電流を取り扱う駆動回路には第2の発明が
有効である。
This embodiment is a technique particularly effective for, for example, a thin film transistor for a drive circuit which operates at a high speed while handling a large current. [Embodiment 7] The thin film transistors described in Embodiments 1 to 6 can constitute an active matrix type electro-optical device (liquid crystal display device, EL display device, EC display device, etc.). For example, in a liquid crystal display device in which a pixel matrix circuit and a drive circuit are integrally formed on the same substrate, the first invention is effective for a pixel matrix circuit to which a high voltage is applied. Is effective in the second invention.

【0059】また、本発明を利用した薄膜トランジスタ
は上記電気光学装置を表示媒体とした電子機器等に応用
することも可能である。以下にその電子機器について図
例を挙げて説明する。
The thin film transistor using the present invention can be applied to electronic equipment using the above electro-optical device as a display medium. The electronic device will be described below with reference to the drawings.

【0060】本発明を利用した半導体装置としてはTV
カメラ、ヘッドマウントディスプレイ、カーナビゲーシ
ョン、プロジェクション、ビデオカメラ、パーソナルコ
ンピュータ等が挙げられる。簡単な説明を図7を用いて
行う。
As a semiconductor device utilizing the present invention, a TV
Examples include a camera, a head-mounted display, a car navigation, a projection, a video camera, and a personal computer. A brief description is given with reference to FIG.

【0061】図7(A)はモバイルコンピュータであ
り、本体2001、カメラ部2002、受像部200
3、操作スイッチ2004、表示装置2005で構成さ
れる。本発明は表示装置2005や装置内部に組み込ま
れる集積化回路2006に対して適用される。
FIG. 7A shows a mobile computer, which includes a main body 2001, a camera section 2002, and an image receiving section 200.
3, an operation switch 2004, and a display device 2005. The present invention is applied to the display device 2005 and the integrated circuit 2006 incorporated in the device.

【0062】図7(B)はヘッドマウントディスプレイ
であり、本体2101、表示装置2102、バンド部2
103で構成される。表示装置2102は比較的小型の
サイズのものが2枚使用される。
FIG. 7B shows a head-mounted display, which includes a main body 2101, a display device 2102, and a band 2
103. Two display devices 2102 having a relatively small size are used.

【0063】図7(C)はカーナビゲーションであり、
本体2101、表示装置2102、操作スイッチ210
3、アンテナ2104で構成される。本発明は表示装置
2102や装置内部の集積化回路2105に適用でき
る。
FIG. 7C shows a car navigation system.
Main body 2101, display device 2102, operation switch 210
3. It is composed of an antenna 2104. The present invention can be applied to the display device 2102 and the integrated circuit 2105 in the device.

【0064】図7(D)は携帯電話であり、本体230
1、音声出力部2302、音声入力部2303、表示装
置2304、操作スイッチ2305、アンテナ2306
で構成される。本発明は表示装置2304や装置内部の
集積化回路2105に適用できる。
FIG. 7D shows a mobile phone, which is a main body 230.
1, audio output unit 2302, audio input unit 2303, display device 2304, operation switch 2305, antenna 2306
It consists of. The present invention can be applied to the display device 2304 and the integrated circuit 2105 in the device.

【0065】図7(E)はビデオカメラであり、本体2
401、表示装置2402、音声入力部2403、操作
スイッチ2404、バッテリー2405、受像部240
6で構成される。本発明は表示装置2402や装置内部
の集積化回路2407に適用できる。
FIG. 7E shows a video camera,
401, display device 2402, audio input unit 2403, operation switch 2404, battery 2405, image receiving unit 240
6. The present invention can be applied to the display device 2402 and the integrated circuit 2407 in the device.

【0066】図7(F)はフロントプロジェクションで
あり、本体2501、光源2502、反射型表示装置2
503、光学系2504、スクリーン2505で構成さ
れる。スクリーン2505はプレゼンテーションに利用
される大画面スクリーンであるので、表示装置2503
は高い解像度が要求される。
FIG. 7F shows a front projection, which includes a main body 2501, a light source 2502, and a reflective display device 2.
503, an optical system 2504, and a screen 2505. Since the screen 2505 is a large screen used for presentation, the display device 2503
Requires high resolution.

【0067】なお、本明細書における半導体装置とは
「半導体を用いて駆動させる装置」を指す言葉であり、
上述の電気光学装置や電子機器等も半導体装置の範疇に
含まれるものと考える。
It should be noted that the semiconductor device in this specification is a word indicating a “device driven by using a semiconductor”.
The above-described electro-optical device, electronic device, and the like are considered to be included in the category of the semiconductor device.

【0068】以上に示した様に、本発明を実施すること
で様々な半導体装置の信頼性を向上させることが可能と
なる。従って、本発明は工業または産業上、非常に有益
な技術であると言える。
As described above, by implementing the present invention, the reliability of various semiconductor devices can be improved. Therefore, the present invention can be said to be a very useful technology in industry or industry.

【0069】[0069]

【発明の効果】本発明を実施することでマルチゲイト構
造で構成される薄膜トランジスタにおいて局部的に電界
が集中する現象を緩和することができる。即ち、ドレイ
ン領域に近づくにつれて発生する確率の高かった劣化を
防止することが可能となる。
According to the present invention, a phenomenon in which an electric field is locally concentrated in a thin film transistor having a multi-gate structure can be reduced. In other words, it is possible to prevent the deterioration which has a high probability of occurring as approaching the drain region.

【0070】また、活性層の中央付近を流れる電流量を
抑制することで熱による破壊または劣化を低減すること
が可能となる。
Further, by suppressing the amount of current flowing near the center of the active layer, it becomes possible to reduce destruction or deterioration due to heat.

【0071】以上の様に、本発明を利用することで薄膜
トランジスタに代表される半導体装置(半導体素子)の
破壊または劣化を防止し、その様な半導体素子を利用し
て高い信頼性を有する半導体装置を構成することが可能
である。
As described above, by using the present invention, the destruction or deterioration of a semiconductor device (semiconductor element) typified by a thin film transistor is prevented, and a semiconductor device having high reliability using such a semiconductor element is used. Can be configured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 活性層およびゲイト電極の構成を説明する
ための図。
FIG. 1 is a diagram illustrating a configuration of an active layer and a gate electrode.

【図2】 活性層およびゲイト電極の構成を説明する
ための図。
FIG. 2 is a diagram illustrating a configuration of an active layer and a gate electrode.

【図3】 活性層およびゲイト電極の構成を説明する
ための図。
FIG. 3 is a diagram illustrating a configuration of an active layer and a gate electrode.

【図4】 活性層およびゲイト電極の構成を説明する
ための図。
FIG. 4 is a diagram illustrating the configuration of an active layer and a gate electrode.

【図5】 活性層およびゲイト電極の構成を説明する
ための図。
FIG. 5 is a diagram for explaining a configuration of an active layer and a gate electrode.

【図6】 活性層およびゲイト電極の構成を説明する
ための図。
FIG. 6 is a diagram illustrating a configuration of an active layer and a gate electrode.

【図7】 電子機器の例を説明するための図。FIG. 7 illustrates an example of an electronic device.

【符号の説明】[Explanation of symbols]

101 ソース領域 102 ドレイン領域 103 ゲイト電極 104 ゲイト電極 105 ゲイト電極 106 チャネル形成領域 107 チャネル形成領域 108 チャネル形成領域 DESCRIPTION OF SYMBOLS 101 Source region 102 Drain region 103 Gate electrode 104 Gate electrode 105 Gate electrode 106 Channel formation region 107 Channel formation region 108 Channel formation region

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】活性層と、 ゲイト絶縁膜と、 前記ゲイト絶縁膜を介して前記活性層と重畳するゲイト
電極と、 を少なくとも有する半導体装置であって、 前記ゲイト電極は共通に接続された実質的に複数のゲイ
ト電極と見なせる構造を有し、 前記複数のゲイト電極の内、ドレイン領域に最も近いゲ
イト電極の幅が最も狭いことを特徴とする半導体装置。
1. A semiconductor device comprising at least an active layer, a gate insulating film, and a gate electrode overlapping with the active layer via the gate insulating film, wherein the gate electrode is substantially connected in common. A semiconductor device having a structure that can be regarded as a plurality of gate electrodes, and a width of a gate electrode closest to a drain region among the plurality of gate electrodes is the narrowest.
【請求項2】活性層と、 ゲイト絶縁膜と、 前記ゲイト絶縁膜を介して前記活性層と重畳するゲイト
電極と、 を少なくとも有する半導体装置であって、 前記ゲイト電極は共通に接続された実質的に複数のゲイ
ト電極と見なせる構造を有し、 前記複数のゲイト電極の幅はドレイン領域に近づくほど
に順次狭くなっていることを特徴とする半導体装置。
2. A semiconductor device having at least an active layer, a gate insulating film, and a gate electrode overlapping the active layer via the gate insulating film, wherein the gate electrode is substantially connected in common. A semiconductor device having a structure that can be regarded as a plurality of gate electrodes, and wherein the widths of the plurality of gate electrodes are gradually reduced as approaching the drain region.
【請求項3】活性層と、 ゲイト絶縁膜と、 前記ゲイト絶縁膜を介して前記活性層と重畳するゲイト
電極と、 を少なくとも有する半導体装置であって、 前記ゲイト電極は共通に接続された実質的に複数のゲイ
ト電極と見なせる構造を有し、 前記活性層に形成されるチャネル形成領域の幅はドレイ
ン領域に最も近いものほど狭いことを特徴とする半導体
装置。
3. A semiconductor device having at least an active layer, a gate insulating film, and a gate electrode overlapping the active layer via the gate insulating film, wherein the gate electrode is substantially connected to a common electrode. A semiconductor device having a structure that can be regarded as a plurality of gate electrodes, and the width of a channel formation region formed in the active layer is narrower as the channel formation region is closer to the drain region.
【請求項4】活性層と、 ゲイト絶縁膜と、 前記ゲイト絶縁膜を介して前記活性層と重畳するゲイト
電極と、 を少なくとも有する半導体装置であって、 前記ゲイト電極は共通に接続された実質的に複数のゲイ
ト電極と見なせる構造を有し、 前記活性層に形成されるチャネル形成領域の幅はドレイ
ン領域に近づくほどに順次狭くなっていることを特徴と
する半導体装置。
4. A semiconductor device having at least an active layer, a gate insulating film, and a gate electrode overlapping the active layer via the gate insulating film, wherein the gate electrode is substantially connected to a common electrode. A semiconductor device having a structure that can be regarded as a plurality of gate electrodes, and wherein the width of a channel formation region formed in the active layer gradually decreases as approaching the drain region.
【請求項5】活性層と、 ゲイト絶縁膜と、 前記ゲイト絶縁膜を介して前記活性層と重畳するゲイト
電極と、 を少なくとも有する半導体装置であって、 前記活性層のチャネル幅方向において前記ゲイト電極の
幅が変化することを特徴とする半導体装置。
5. A semiconductor device having at least an active layer, a gate insulating film, and a gate electrode overlapping with the active layer via the gate insulating film, wherein the gate is formed in a channel width direction of the active layer. A semiconductor device, wherein the width of an electrode changes.
【請求項6】活性層と、 ゲイト絶縁膜と、 前記ゲイト絶縁膜を介して前記活性層と重畳するゲイト
電極と、 を少なくとも有する半導体装置であって、 前記活性層のチャネル幅方向における端部から該活性層
の内部に近づくほどに前記ゲイト電極の幅が広くなるこ
とを特徴とする半導体装置。
6. A semiconductor device having at least an active layer, a gate insulating film, and a gate electrode overlapping with the active layer via the gate insulating film, wherein an end of the active layer in a channel width direction is provided. A width of the gate electrode increases as approaching the inside of the active layer.
【請求項7】請求項1乃至請求項6において、前記活性
層は結晶性珪素膜で構成されていることを特徴とする半
導体装置。
7. The semiconductor device according to claim 1, wherein said active layer is formed of a crystalline silicon film.
JP8326069A 1996-11-21 1996-11-21 Semiconductor device Withdrawn JPH10154816A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP8326069A JPH10154816A (en) 1996-11-21 1996-11-21 Semiconductor device
US08/970,542 US6184559B1 (en) 1996-11-21 1997-11-14 Active matrix display device having multiple gate electrode portions
US09/736,139 US6426517B2 (en) 1996-11-21 2000-12-13 Active matrix display device having multiple gate electrode portions

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8326069A JPH10154816A (en) 1996-11-21 1996-11-21 Semiconductor device

Publications (1)

Publication Number Publication Date
JPH10154816A true JPH10154816A (en) 1998-06-09

Family

ID=18183767

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8326069A Withdrawn JPH10154816A (en) 1996-11-21 1996-11-21 Semiconductor device

Country Status (2)

Country Link
US (2) US6184559B1 (en)
JP (1) JPH10154816A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10270699A (en) * 1997-03-26 1998-10-09 Seiko Epson Corp Thin-film transistor and liquid crystal display and cmos circuit using thin-film transistor thereof
JP2003519915A (en) * 2000-01-07 2003-06-24 セイコーエプソン株式会社 Thin film transistor and method of manufacturing the same
JP2003519917A (en) * 2000-01-07 2003-06-24 セイコーエプソン株式会社 Semiconductor transistor
KR100477102B1 (en) * 2001-12-19 2005-03-17 삼성에스디아이 주식회사 CMOS TFT with Multiple Gates and Fabrication Method thereof using MILC
KR100477103B1 (en) * 2001-12-19 2005-03-18 삼성에스디아이 주식회사 TFT with Multiple Gates and Fabrication Method thereof using MILC
JP2005182061A (en) * 2003-12-22 2005-07-07 Lg Phillips Lcd Co Ltd Organic electroluminescent device and manufacturing method therefor
JP2008112962A (en) * 2006-09-26 2008-05-15 Seiko Epson Corp Thin film transistor, electrooptical device, and electronic equipment
JP2008135604A (en) * 2006-11-29 2008-06-12 Seiko Epson Corp Semiconductor device, manufacturing method of semiconductor device, and electrooptical device
JP2008135605A (en) * 2006-11-29 2008-06-12 Seiko Epson Corp Semiconductor device, and electrooptical device
US8017944B2 (en) * 2000-02-28 2011-09-13 Semiconductor Energy Laboratory Co., Ltd. Electronic device with light emission for a display
JP2012256940A (en) * 2005-07-22 2012-12-27 Semiconductor Energy Lab Co Ltd Semiconductor device
JP2013012748A (en) * 2005-06-10 2013-01-17 Semiconductor Energy Lab Co Ltd Semiconductor device and light-emitting device
US9786382B1 (en) 2016-09-16 2017-10-10 Kabushiki Kaisha Toshiba Semiconductor device and memory element

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4056571B2 (en) 1995-08-02 2008-03-05 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
JPH10154816A (en) * 1996-11-21 1998-06-09 Semiconductor Energy Lab Co Ltd Semiconductor device
JPH11177102A (en) 1997-12-08 1999-07-02 Semiconductor Energy Lab Co Ltd Semiconductor device and its manufacture
KR100262457B1 (en) * 1998-05-04 2000-08-01 윤종용 Open drain input/output structure of semiconductor device and method for fabricating thereof
JP2000039628A (en) * 1998-05-16 2000-02-08 Semiconductor Energy Lab Co Ltd Semiconductor display device
US6593592B1 (en) * 1999-01-29 2003-07-15 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having thin film transistors
US7122835B1 (en) * 1999-04-07 2006-10-17 Semiconductor Energy Laboratory Co., Ltd. Electrooptical device and a method of manufacturing the same
US8853696B1 (en) * 1999-06-04 2014-10-07 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device and electronic device
US6274896B1 (en) * 2000-01-14 2001-08-14 Lexmark International, Inc. Drive transistor with fold gate
JP4014831B2 (en) * 2000-09-04 2007-11-28 株式会社半導体エネルギー研究所 EL display device and driving method thereof
US7045444B2 (en) 2000-12-19 2006-05-16 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing semiconductor device that includes selectively adding a noble gas element
US6858480B2 (en) 2001-01-18 2005-02-22 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing semiconductor device
TW586141B (en) * 2001-01-19 2004-05-01 Semiconductor Energy Lab Semiconductor device and method of manufacturing the same
US7115453B2 (en) * 2001-01-29 2006-10-03 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method of the same
JP2002231627A (en) 2001-01-30 2002-08-16 Semiconductor Energy Lab Co Ltd Method of manufacturing photoelectric conversion unit
US7141822B2 (en) * 2001-02-09 2006-11-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
JP4993810B2 (en) 2001-02-16 2012-08-08 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
JP5088993B2 (en) * 2001-02-16 2012-12-05 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
US6812081B2 (en) * 2001-03-26 2004-11-02 Semiconductor Energy Laboratory Co.,.Ltd. Method of manufacturing semiconductor device
KR100466963B1 (en) * 2001-12-27 2005-01-24 엘지.필립스 엘시디 주식회사 Thin Film Transistor for Active Matrix type Organic Light Emitting Diode Device
JP4101511B2 (en) * 2001-12-27 2008-06-18 株式会社半導体エネルギー研究所 Light emitting device and manufacturing method thereof
JP4011344B2 (en) * 2001-12-28 2007-11-21 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
US6933527B2 (en) 2001-12-28 2005-08-23 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and semiconductor device production system
EP1326273B1 (en) * 2001-12-28 2012-01-18 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US6841797B2 (en) * 2002-01-17 2005-01-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device formed over a surface with a drepession portion and a projection portion
US6847050B2 (en) * 2002-03-15 2005-01-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor element and semiconductor device comprising the same
US20030202307A1 (en) * 2002-04-26 2003-10-30 Kei-Kang Hung Semiconductor device with ESD protection
US6861338B2 (en) * 2002-08-22 2005-03-01 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor and method of manufacturing the same
AU2003264515A1 (en) 2002-09-20 2004-04-08 Semiconductor Energy Laboratory Co., Ltd. Display device and manufacturing method thereof
US7374976B2 (en) * 2002-11-22 2008-05-20 Semiconductor Energy Laboratory Co., Ltd. Method for fabricating thin film transistor
TW595005B (en) * 2003-08-04 2004-06-21 Au Optronics Corp Thin film transistor and pixel structure with the same
US7138315B2 (en) * 2004-10-14 2006-11-21 Semiconductor Components Industries, L.L.C. Low thermal resistance semiconductor device and method therefor
US7022564B1 (en) * 2004-10-14 2006-04-04 Semiconductor Components Industries, L.L.C. Method of forming a low thermal resistance device and structure
US7994509B2 (en) 2005-11-01 2011-08-09 Hewlett-Packard Development Company, L.P. Structure and method for thin film device with stranded conductor
KR101404582B1 (en) * 2006-01-20 2014-06-09 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Driving method of display device
US20090072313A1 (en) * 2007-09-19 2009-03-19 International Business Machines Corporation Hardened transistors in soi devices
US8890256B2 (en) * 2009-03-20 2014-11-18 International Business Machines Corporation Structure for heavy ion tolerant device, method of manufacturing the same and structure thereof
KR20120131775A (en) * 2011-05-26 2012-12-05 삼성디스플레이 주식회사 A thin film transistor, a method for manufacturing the same, and an organic light emitting display apparatus
JP2013069864A (en) * 2011-09-22 2013-04-18 Canon Inc Detector and detection system
CN103915510B (en) * 2014-03-27 2017-08-04 京东方科技集团股份有限公司 A kind of many gate thin-film transistors, array base palte and display device
CN107195673A (en) * 2017-05-19 2017-09-22 北京华进创威电子有限公司 A kind of long GaNHEMT grid structures of non-homogeneous grid and device
CN109037240B (en) * 2018-07-27 2020-11-10 京东方科技集团股份有限公司 Array substrate, manufacturing method thereof, display panel and display device
CN117642865A (en) * 2022-06-30 2024-03-01 京东方科技集团股份有限公司 Thin film transistor, shift register unit, gate driving circuit and display panel

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58171860A (en) 1982-04-01 1983-10-08 Seiko Epson Corp Thin film transistor
US5331192A (en) * 1989-06-15 1994-07-19 Matsushita Electric Industrial Co., Ltd. Semiconductor device
US5272369A (en) * 1990-03-28 1993-12-21 Interuniversitair Micro-Elektronica Centrum Vzw Circuit element with elimination of kink effect
EP0488801B1 (en) * 1990-11-30 1998-02-04 Sharp Kabushiki Kaisha Thin-film semiconductor device
TW278219B (en) 1993-03-12 1996-06-11 Handotai Energy Kenkyusho Kk
JP2936998B2 (en) * 1994-03-15 1999-08-23 日本電気株式会社 Frequency converter
JP3126630B2 (en) * 1994-06-20 2001-01-22 キヤノン株式会社 display
US5777360A (en) * 1994-11-02 1998-07-07 Lsi Logic Corporation Hexagonal field programmable gate array architecture
US5929464A (en) * 1995-01-20 1999-07-27 Semiconductor Energy Laboratory Co., Ltd. Active matrix electro-optical device
JPH1051007A (en) 1996-08-02 1998-02-20 Semiconductor Energy Lab Co Ltd Semiconductor device
JPH10154816A (en) * 1996-11-21 1998-06-09 Semiconductor Energy Lab Co Ltd Semiconductor device
US5821564A (en) * 1997-05-23 1998-10-13 Mosel Vitelic Inc. TFT with self-align offset gate

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10270699A (en) * 1997-03-26 1998-10-09 Seiko Epson Corp Thin-film transistor and liquid crystal display and cmos circuit using thin-film transistor thereof
JP2003519915A (en) * 2000-01-07 2003-06-24 セイコーエプソン株式会社 Thin film transistor and method of manufacturing the same
JP2003519917A (en) * 2000-01-07 2003-06-24 セイコーエプソン株式会社 Semiconductor transistor
US8017944B2 (en) * 2000-02-28 2011-09-13 Semiconductor Energy Laboratory Co., Ltd. Electronic device with light emission for a display
US8829668B2 (en) 2000-02-28 2014-09-09 Semiconductor Energy Laboratory Co., Ltd. Electronic device
US7112475B2 (en) 2001-12-19 2006-09-26 Samsung Sdi Co., Ltd. Method of fabricating a thin film transistor with multiple gates using metal induced lateral crystallization
US7235435B2 (en) 2001-12-19 2007-06-26 Samsung Sdi Co., Ltd. Method for fabricating thin film transistor with multiple gates using metal induced lateral crystallization
US7001802B2 (en) 2001-12-19 2006-02-21 Samsung Sdi Co., Ltd. Thin film transistor with multiple gates using metal induced lateral crystalization and method of fabricating the same
KR100477102B1 (en) * 2001-12-19 2005-03-17 삼성에스디아이 주식회사 CMOS TFT with Multiple Gates and Fabrication Method thereof using MILC
US7208352B2 (en) 2001-12-19 2007-04-24 Samsung Sdi Co., Ltd. Method of fabricating a thin film transistor with multiple gates using metal induced lateral crystallization
US7211475B2 (en) 2001-12-19 2007-05-01 Samsung Sdi Co., Ltd. CMOS thin film transistor
US7235434B2 (en) 2001-12-19 2007-06-26 Samsung Sdi Co., Ltd. Thin film transistor with multiple gates using metal induced lateral crystallization and method of fabricating the same
US6933526B2 (en) 2001-12-19 2005-08-23 Samsung Sdi Co., Ltd. CMOS thin film transistor
US7294537B2 (en) 2001-12-19 2007-11-13 Samsung Sdi Co., Ltd. Method of fabricating thin film transistor with multiple gates using super grain silicon crystallization
KR100477103B1 (en) * 2001-12-19 2005-03-18 삼성에스디아이 주식회사 TFT with Multiple Gates and Fabrication Method thereof using MILC
US7381990B2 (en) 2001-12-19 2008-06-03 Samsung Sdi Co., Ltd. Thin film transistor with multiple gates fabricated using super grain silicon crystallization
JP2005182061A (en) * 2003-12-22 2005-07-07 Lg Phillips Lcd Co Ltd Organic electroluminescent device and manufacturing method therefor
US8097882B2 (en) 2003-12-22 2012-01-17 Lg Display Co., Ltd. Organic EL display and method of fabricating comprising plural TFTs and with connection electrode wrapped on organic pattern
JP2013012748A (en) * 2005-06-10 2013-01-17 Semiconductor Energy Lab Co Ltd Semiconductor device and light-emitting device
JP2017085123A (en) * 2005-07-22 2017-05-18 株式会社半導体エネルギー研究所 Light-emitting device
US10103270B2 (en) 2005-07-22 2018-10-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP2012256940A (en) * 2005-07-22 2012-12-27 Semiconductor Energy Lab Co Ltd Semiconductor device
JP2022177075A (en) * 2005-07-22 2022-11-30 株式会社半導体エネルギー研究所 Semiconductor device
JP2021040143A (en) * 2005-07-22 2021-03-11 株式会社半導体エネルギー研究所 Light-emitting device
JP2020053704A (en) * 2005-07-22 2020-04-02 株式会社半導体エネルギー研究所 Light-emitting device
US9099395B2 (en) 2005-07-22 2015-08-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP2017005258A (en) * 2005-07-22 2017-01-05 株式会社半導体エネルギー研究所 Light-emitting device
JP2019091697A (en) * 2005-07-22 2019-06-13 株式会社半導体エネルギー研究所 Light-emitting device
US9917201B2 (en) 2005-07-22 2018-03-13 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP2018067723A (en) * 2005-07-22 2018-04-26 株式会社半導体エネルギー研究所 Light-emitting device
JP2008112962A (en) * 2006-09-26 2008-05-15 Seiko Epson Corp Thin film transistor, electrooptical device, and electronic equipment
KR101465256B1 (en) * 2006-11-29 2014-11-26 세이코 엡슨 가부시키가이샤 Semiconductor device, method for manufacturing semiconductor device, and electro-optical apparatus
US7943935B2 (en) 2006-11-29 2011-05-17 Seiko Epson Corporation Semiconductor device, method for manufacturing semiconductor device, and electro-optical apparatus
JP2008135604A (en) * 2006-11-29 2008-06-12 Seiko Epson Corp Semiconductor device, manufacturing method of semiconductor device, and electrooptical device
JP2008135605A (en) * 2006-11-29 2008-06-12 Seiko Epson Corp Semiconductor device, and electrooptical device
US9786382B1 (en) 2016-09-16 2017-10-10 Kabushiki Kaisha Toshiba Semiconductor device and memory element

Also Published As

Publication number Publication date
US6426517B2 (en) 2002-07-30
US6184559B1 (en) 2001-02-06
US20010000627A1 (en) 2001-05-03

Similar Documents

Publication Publication Date Title
JPH10154816A (en) Semiconductor device
US5986306A (en) Thin film transistor having a heat sink that exhibits a high degree of heat dissipation effect
US10403705B2 (en) Organic light emitting display device and method for manufacturing the same
JP4076648B2 (en) Semiconductor device
US7728917B2 (en) Pixel structure
CN110010078B (en) Shift register unit, gate drive circuit and display device
JPH10197897A (en) Active matrix display
US7755709B2 (en) Liquid crystal display device having dummy contact holes and fabrication method thereof
KR102054254B1 (en) Display panel for reducing locked capacitance and manufacturing method
EP1517373B1 (en) Flat panel display
US8593210B2 (en) Signal distribution device and display device
US9515191B2 (en) Thin-film field effect transistor, driving method thereof, array substrate, display device, and electronic product
CN111948859B (en) Display substrate and display device
JP3520713B2 (en) Thin film transistor, liquid crystal display device and thin film transistor circuit using the same
KR20190020231A (en) Display panel for reducing locked capacitance and manufacturing method
KR101136296B1 (en) Thin Film Transistor Of Poly Silicon Type, Thin Film Transistor Substrate Having Thereof, And Method of Fabricating The Same
US8212251B2 (en) Active matrix substrate
JP3548063B2 (en) Active matrix display
KR20110003723A (en) Array substrate for display device
JP4298768B2 (en) Semiconductor device
JP2003218357A (en) Thin film transistor and liquid crystal display and organic el display
KR100640051B1 (en) Liquid crystal display device and method of fabricating the same
JP2003273364A (en) Thin-film transistor and liquid crystal display device
US20240054938A1 (en) Shift register, gate driving circuit and display panel
US8686528B2 (en) Semiconductor device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050809

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051007

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20051108

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20051205