JPH10154603A - V type electric resistance temperature characteristic material - Google Patents

V type electric resistance temperature characteristic material

Info

Publication number
JPH10154603A
JPH10154603A JP31388496A JP31388496A JPH10154603A JP H10154603 A JPH10154603 A JP H10154603A JP 31388496 A JP31388496 A JP 31388496A JP 31388496 A JP31388496 A JP 31388496A JP H10154603 A JPH10154603 A JP H10154603A
Authority
JP
Japan
Prior art keywords
particles
particle
child
temperature characteristic
electric resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP31388496A
Other languages
Japanese (ja)
Other versions
JP2863835B2 (en
Inventor
Takehiro Dan
武弘 檀
Mitsuru Egashira
満 江頭
Yoshio Kyono
純郎 京野
Hiroshi Fudoji
浩 不動寺
Norio Shintani
紀雄 新谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Research Institute for Metals
Original Assignee
National Research Institute for Metals
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Research Institute for Metals filed Critical National Research Institute for Metals
Priority to JP31388496A priority Critical patent/JP2863835B2/en
Publication of JPH10154603A publication Critical patent/JPH10154603A/en
Application granted granted Critical
Publication of JP2863835B2 publication Critical patent/JP2863835B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To make feasible of the decision of arbitrarily specific V type shaped temperature characteristics by selectively combining the positive temperature characteristics with the negative temperature characteristics by a method wherein the primary compound particles comprising the grandchild particles discontinuously dispersed and deposited onto the children particle surface are composed of the compound particles furthermore discontinuously dispersed and deposited onto the parent particle surface. SOLUTION: Firstly, the ceramics particles 4 having the negative temperature characteristics as the child particles and the In particles 2 as the grandchild particles are respectively inserted into forcibly charging device having cylindrical oscillating electrode to be respectively applied with positive and negative high voltage so as to fabricate In-NTC compound particles 11 in the mode wherein the In particles 2 are discontinuously dispersed and deposited onto this NTC particle surface. Next, the obtained In-NTC compound particles 11 and the ceramic particles 13 as the parent particles having the positive temperature PTC are inserted into the forcible charging device again to be respectively applied with negative and positive high voltage so that the compound particles 14 whereon the primary In-NTC compound particles 11 are discontinuously dispersed and deposited may be fabricated.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、V型電気抵抗温
度特性材料とその製造方法に関するものである。
[0001] 1. Field of the Invention [0002] The present invention relates to a V-type electric resistance temperature characteristic material and a method for producing the same.

【0002】[0002]

【従来の技術とその課題】通常、セラミックス材料は、
その電気抵抗が金属と異なり温度の上昇とともに低下
し、負温度特性抵抗体(NTC材料)と呼ばれ、特に温
度係数の大きいものはサーミスタ温度計等に広く利用さ
れている。Mn,Ni等遷移金属の複合酸化物がその代
表的なものとして知られている。一方、稀ではあるが正
の温度係数を持つセラミックス材料が存在し、正温度特
性抵抗体(PTC材料)と呼ばれて、消磁用素子、モー
タ起動用素子、温度補償用素子、さらには、ヘアドライ
ヤー、蚊とり器等の自己制御型ヒーター材料等に広く使
用されいる。その代表的なものとしてはBaTiO3
知られている。
2. Description of the Related Art Generally, ceramic materials are
Unlike a metal, its electric resistance decreases with an increase in temperature and is called a negative temperature characteristic resistor (NTC material). A resistor having a particularly large temperature coefficient is widely used for a thermistor thermometer or the like. Composite oxides of transition metals such as Mn and Ni are known as typical examples. On the other hand, there are rare ceramic materials having a positive temperature coefficient, which are called positive temperature characteristic resistors (PTC materials), and are used for degaussing elements, motor starting elements, temperature compensating elements, and hair. Widely used for self-control heater materials such as dryers and mosquito traps. BaTiO 3 is known as a typical example.

【0003】このようにこれらの温度特性抵抗体材料
は、単独でもそれぞれの温度特性を生かして利用されて
いるが、これら両者の特性を組み合わせた材料も注目さ
れており、その実用的発展が望まれてもいる。しかしな
がら、両者の特性を組み合わせた温度に対する抵抗の変
化がV型を示す材料については、従来、高温炉等の高価
な装置における焼結または熱処理により製造されたもの
しかなく、そのため形状も限られ、また必要とされるV
型特性を任意に制御できていないため、その使用方法や
適用分野は大きく制限されていた。
[0003] As described above, these temperature characteristic resistor materials are used singly by making use of their respective temperature characteristics. However, materials combining these characteristics are also attracting attention, and their practical development is expected. There are also rare. However, as for the material showing a V-type change in resistance to temperature, which is a combination of both characteristics, conventionally, only materials manufactured by sintering or heat treatment in expensive equipment such as a high-temperature furnace are available, and therefore, the shape is limited, Also required V
The lack of arbitrarily control over the mold properties has severely limited its use and application.

【0004】実際に、このようなV型電気抵抗温度特性
を示す材料としては、これまでにBaTiO3 系PTC
材料にWO3 +Yb2 3 (特許公報 昭54−275
55)を添加したもの、および同様にBaTiO3 系P
TC材料でBaをSrおよびPbで置換した(Srx
1-x-0.002 0.003 )TiO3 系材料(エレクトロ・
セラミクス誌No.93(1988))が報告されてい
る。前者では、WO3の添加によりV型温度特性が得ら
れ、さらにYb2 3 の添加により比抵抗の低下が図ら
れている。また、後者ではSr/Pb比、Sr/Ti比
を変化させることにより、比抵抗および最低抵抗値の温
度を変化させることができている。
[0004] Actually, as a material exhibiting such a V-type electric resistance temperature characteristic, a BaTiO 3 -based PTC has hitherto been used.
WO 3 + Yb 2 O 3 (Patent Publication No. 54-275)
55), and also BaTiO 3 -based P
Ba was replaced with Sr and Pb in the TC material (Sr x P
b 1-x-0.002 Y 0.003 ) TiO 3 based material (electro-
Ceramics Magazine No. 93 (1988)). In the former, a V-type temperature characteristic is obtained by adding WO 3 , and the specific resistance is reduced by adding Yb 2 O 3 . In the latter, the specific resistance and the temperature of the lowest resistance value can be changed by changing the Sr / Pb ratio and the Sr / Ti ratio.

【0005】しかしながら、これらの方法は、微量元素
の添加により組成と特性値を変化させるものであるた
め、求める温度特性を得るためには、多くの経験とノウ
ハウを基にして、原材料の段階からの厳密なコントロー
ルが必要とされている。それゆえ、希望するV型特性値
の材料を簡便に手に入れることはきわめて難しいという
問題がある。また、両者とも、全てバルクの焼結材であ
るので、必要形状に成型後、千数百℃の高温での焼結の
工程が必要不可欠であり、この工程での形状変化は大き
く、複雑な形状のものを得ることは困難であり、任意の
形状での使用には大きな制限がある。
However, in these methods, the composition and characteristic value are changed by adding a trace element, and in order to obtain the required temperature characteristic, based on much experience and know-how, from the stage of the raw material. Strict control is needed. Therefore, there is a problem that it is extremely difficult to easily obtain a material having a desired V-type characteristic value. In addition, since both are bulk sintered materials, a sintering process at a high temperature of 1,000 and several hundred degrees Celsius after molding into a required shape is indispensable, and the shape change in this process is large and complicated. It is difficult to obtain a shape, and there is a great limitation on use in an arbitrary shape.

【0006】また一方、ディスク形状(直径6mm,厚
さ1mm)のPTC材、NTC材を電極ペースト材で高
温焼き付けにより接合一体化してV型電気抵抗温度特性
を付与させた材料も知られている(特許公報 昭61−
159705)。この場合、希望するV型特性値の材料
を得ることは容易であるが、任意の複雑な形状での使用
や、サイズの極小化は不可能であり、600℃程度の高
温処理も不可欠となっている。
On the other hand, there is also known a material in which a PTC material and a NTC material having a disk shape (diameter 6 mm, thickness 1 mm) are joined and integrated by high-temperature baking with an electrode paste material to give a V-type electric resistance temperature characteristic. (Patent publication Sho 61-
159705). In this case, it is easy to obtain a material having a desired V-type characteristic value, but it is impossible to use the material in an arbitrary complicated shape or to minimize the size, and a high-temperature treatment at about 600 ° C. is indispensable. ing.

【0007】そこでこの発明は、以上の通りの事情に鑑
みてなされたものであって、焼結材はもとより、張り合
わせ材の欠点を解消し、塗布や、圧粉体・充填体の樹脂
固定などの高温焼結なしの簡便な手順で、任意の複雑形
状での使用が可能な、新しいV型電気抵抗温度特性材料
と、その製造方法を提供することを目的としている。
Accordingly, the present invention has been made in view of the above circumstances, and eliminates defects of not only a sintered material but also a laminating material, such as coating, fixing resin of a green compact or a filled body, and the like. It is an object of the present invention to provide a new V-type electric resistance temperature characteristic material which can be used in an arbitrary complicated shape by a simple procedure without high-temperature sintering, and a method for producing the same.

【0008】[0008]

【課題を解決するための手段】この発明は、上記の課題
を解決するものとして、正または負の電気抵抗温度特性
を持つ親粒子と、この親粒子径以下の大きさの負または
正の電気抵抗温度特性を持つ子粒子と、親粒子と子粒子
にオーミック接合する金属粒子で、子粒子径以下の大き
さの孫粒子とからなり、孫粒子が子粒子表面に非連続で
分散付着した第一次複合粒子が、さらに親粒子の表面に
非連続で分散付着した複合粒子によって構成されている
ことを特徴とするV型電気抵抗温度特性材料を提供す
る。
The present invention solves the above-mentioned problems by providing a parent particle having a positive or negative electric resistance temperature characteristic, and a negative or positive electric particle having a size smaller than the parent particle diameter. A child particle having a resistance temperature characteristic, and a metal particle that forms an ohmic junction with the parent particle and the child particle, and is composed of a grandchild particle having a size equal to or smaller than the child particle diameter. Provided is a V-type electric resistance temperature characteristic material, wherein the primary composite particles are further constituted by composite particles which are discontinuously dispersed and attached to the surface of the parent particles.

【0009】また、この発明は、親粒子径以下の大きさ
の負または正の電気抵抗温度特性を持つ子粒子と、この
子粒子とオーミック接合する金属粒子で子粒子径以下の
大きさの孫粒子とを、それぞれ逆極性に強制帯電させ、
子粒子−孫粒子間静電気力付着と孫粒子同士の同極性反
発により、子粒子表面に孫粒子を非連続に分散付着させ
て第一次複合粒子を形成し、次いで、正または負の電気
抵抗温度特性を持つ親粒子と第一次複合粒子とを逆極性
に強制帯電させて、親粒子表面に、第一次複合粒子を非
連続に分散付着させて複合粒子を形成し、この複合粒子
を複数充填して電気抵抗温度特性材料を構成することを
特徴とするV型電気抵抗温度特性材料の製造方法をも提
供する。
Further, the present invention relates to a child particle having a negative or positive electric resistance temperature characteristic having a size equal to or less than a parent particle diameter, and a metal particle having an ohmic junction with the child particle having a size equal to or less than the child particle diameter. The particles are forcibly charged to opposite polarities, respectively.
Due to the electrostatic force adhesion between the progeny particles and the progeny particles and the repulsion of the same polarity between the progeny particles, the progeny particles are discontinuously dispersed and adhered to the surface of the progeny particles to form primary composite particles. The parent particles having temperature characteristics and the primary composite particles are forcibly charged to opposite polarities, and the primary composite particles are discontinuously dispersed and adhered to the surface of the parent particles to form composite particles. A method for producing a V-type electric resistance temperature characteristic material, characterized by comprising a plurality of fillings to form an electric resistance temperature characteristic material, is also provided.

【0010】[0010]

【発明の実施の形態】この発明は、上記のような強制帯
電処理による二段階での複合粒子の構成により、次のよ
うな新しい特徴を有するV型電気抵抗温度特性材料を実
現するものである。まず、必要とするV型に応じて、適
当な負の温度特性を持つ粒子および正の温度特性を持つ
粒子をそれぞれ別個に選択することができることに特徴
がある。すなわちV型の谷底の温度やその温度幅等を粒
子の選択・組み合わせにより任意に制御できる。さらに
構成単位が焼結体バルクではなく微小粒子であるので、
材料としての使用形状には大きな制約が存在せず、この
複合粒子を溶媒に分散させて塗布したまま、あるいは圧
粉体、充填体のまま高温焼結することなく、きわめて複
雑な形状で使用でき、かつ極小化が可能となる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention realizes a V-type electric resistance temperature characteristic material having the following new features by the structure of composite particles in two stages by the above-described forced charging treatment. . First, it is characterized in that particles having appropriate negative temperature characteristics and particles having positive temperature characteristics can be separately selected according to the required V-shape. That is, the temperature of the V-shaped valley bottom and the temperature range thereof can be arbitrarily controlled by selecting and combining particles. Furthermore, since the structural unit is not a sintered body bulk but microparticles,
There are no major restrictions on the shape used as a material, and the composite particles can be used in extremely complex shapes without dispersing them in a solvent, applying them as they are, or sintering them at high temperatures as a green compact or packing. And miniaturization is possible.

【0011】このような特徴を持つこの発明の材料の製
造においては、前記方法に従って、使用原料としては、
焼結体ではあるが、たとえば、直径が百μm〜数百μm
の正または負、および数十μm〜十数μmの負または正
の温度特性を持つセラミックス粒子、および直径十数μ
mの低仕事関数の金属粒子を用いることができる。より
具体的には、たとえばまず、子粒子としての負の温度特
性を持つセラミックス粒子(NTC粒子)と孫粒子とし
ての金属粒子を逆極性に強制帯電させて第一次の複合粒
子を作製する。次にこの複合粒子と正の温度特性を持つ
親粒子としてのセラミックス粒子(PTC粒子)をさら
に逆極性に強制帯電させ、第二次の複合粒子とする。な
お、この場合、親、子、孫粒子間の直径を適当に選べ
ば、温度特性の正負、強制帯電処理の正負、帯電処理の
順序に特段の規制はない。この粒子の大きさについて
は、一般的には、子粒子の大きさは、親粒子径に対して
1/5〜1/30程度のものとすることが、粒子の取扱
い等の観点において好ましい範囲として目安となる。ま
た、第一次の複合粒子として、強制帯電処理ではなく真
空蒸着で金属を島状に付着させて複合粒子とすることも
可能である。
[0011] In the production of the material of the present invention having such characteristics, according to the above-described method,
Although it is a sintered body, for example, the diameter is 100 μm to several hundred μm.
Positive or negative, and ceramic particles having a negative or positive temperature characteristic of several tens μm to several tens μm, and a diameter of several tens μ
m low work function metal particles can be used. More specifically, for example, first, ceramic particles (NTC particles) having negative temperature characteristics as child particles and metal particles as grandchild particles are forcibly charged to opposite polarities to produce primary composite particles. Next, the composite particles and the ceramic particles (PTC particles) as a parent particle having a positive temperature characteristic are forcibly charged to the opposite polarity to form secondary composite particles. In this case, if the diameter between the parent, child and grandchild particles is appropriately selected, there is no particular restriction on the order of the temperature characteristic, the polarity of the forced charging process, and the order of the charging process. Regarding the size of the particles, generally, the size of the child particles is preferably about 1/5 to 1/30 with respect to the parent particle diameter, from the viewpoint of handling of the particles and the like. As a guide. Further, as the primary composite particles, it is also possible to form a composite particle by attaching a metal in an island shape by vacuum deposition instead of the forced charging treatment.

【0012】このようにして作製した複合粒子を構成単
位とする材料は、金属粒子を介してNTC,PTC粒子
が接続している構造をとるため、金属粒子の仕事関数が
低くてPTC粒子やNTC粒子とオーミックな接合が可
能であれば、PTC粒子とNTC粒子間の接触抵抗はほ
とんど無視できて、電気抵抗の温度特性はNTC特性と
PTC特性が単純に加算されたV型特性を示すことにな
る。
The material having the composite particles formed as described above as a constituent unit has a structure in which NTC and PTC particles are connected via metal particles. If ohmic bonding with the particles is possible, the contact resistance between the PTC particles and the NTC particles can be almost neglected, and the temperature characteristics of the electric resistance show a V-shaped characteristic in which the NTC characteristics and the PTC characteristics are simply added. Become.

【0013】なお、強制帯電による複合粒子の作製法に
ついては、この発明の発明者らが既に新しい技術として
提案している(特許第2005311号および特願平7
−258858号)であるが、NTC、金属、PTCに
よる、親、子、および孫粒子の構成からなる複合粒子の
創製と、これによるV型電気抵抗温度特性の発現は、こ
の発明により全く新たに提案されるものである。もちろ
ん、帯電処理のための手段については、振動円筒電極を
用いる方法や対向電極を用いる方法、さらには公知の帯
電処理装置、たとえばボクサーチャージャー等の使用も
可能であり、正負の帯電、帯電量の制御が可能であれば
特に制限はない。
The method of producing composite particles by forced charging has already been proposed by the inventors of the present invention as a new technique (Japanese Patent Application No. 2005005311 and Japanese Patent Application No. Hei 7-203,197).
However, creation of composite particles composed of parent, child, and grandchild particles by NTC, metal, and PTC, and expression of V-type electric resistance temperature characteristics by the use of NTC, metal, and PTC, are completely new according to the present invention. It is proposed. Of course, as for the means for the charging process, a method using a vibrating cylindrical electrode or a method using a counter electrode, or a known charging processing device, for example, a boxer charger or the like can be used. There is no particular limitation as long as control is possible.

【0014】以下、実施例を示し、さらに詳しくこの発
明の実施の形態について説明する。
Hereinafter, examples will be shown, and embodiments of the present invention will be described in more detail.

【0015】[0015]

【実施例】【Example】

(実施例1)たとえば図1に示した帯電装置を用い、ま
ず、子粒子としての粒径26〜32μmの負の温度特性
(NTC)を持つセラミックス粒子(4)と、孫粒子と
しての粒径20μm以下のIn粒子(2)の各々を、円
筒振動電極(1)(3)を持つ強制帯電装置に装入し、
それぞれに正、負の高電圧(4kV)を高圧電源装置
(5)(6)により5分間印加することにより、逆極性
に強制帯電させ、各電極開口部(9)(10)より同時
に同一の領域に排出させ、図1において拡大して示し
た、正に帯電したセラミックスNTC粒子(4)と負に
帯電したIn粒子(2)間に働く静電引力によりセラミ
ックスNTC粒子(4)を芯とし、このNTC粒子
(4)表面にIn粒子(2)が非連続に分散付着した形
態のIn−NTC複合粒子(11)を作製する。なお、
図1中においては、圧電素子(7)(8)とともに接地
された対極(12)が示されてもいる。
(Example 1) For example, using the charging device shown in FIG. 1, first, ceramic particles (4) having a negative temperature characteristic (NTC) having a particle diameter of 26 to 32 μm as child particles and particle diameters as grandchild particles Each of the In particles (2) having a size of 20 μm or less is charged into a forced charging device having cylindrical vibrating electrodes (1) and (3),
A positive and negative high voltage (4 kV) is applied to each of them for 5 minutes by the high voltage power supply devices (5) and (6), thereby forcibly charging them in opposite polarities, and the same voltage is simultaneously applied to each of the electrode openings (9) and (10). The ceramic NTC particles (4) are used as a core by electrostatic attraction acting between the positively charged ceramics NTC particles (4) and the negatively charged In particles (2) shown in an enlarged manner in FIG. Then, In-NTC composite particles (11) in a form in which the In particles (2) are discontinuously dispersed and adhered to the surface of the NTC particles (4) are produced. In addition,
FIG. 1 also shows a counter electrode (12) that is grounded together with the piezoelectric elements (7) and (8).

【0016】次いで、図2のように、得られたIn−N
TC複合粒子(11)と、粒径150〜212μmの正
の温度特性(PTC)を持つ親粒子としてのセラミック
ス粒子(13)を再び強制帯電装置に装入し、各々に
負、正の高電圧(4kV)を5分間印加することにより
逆極性に強制帯電させ、前記と同様にして、図3のよう
に、PTCセラミックス粒子(13)が芯となり、In
粒子(2)が表面に非連続に分散付着したNTCセラミ
ックス粒子(4)からなる第一次In−NTC複合粒子
(11)が同様にその表面に非連続に分散付着した複合
粒子(14)を作製する。ここで、親子粒子間、すなわ
ち親粒子としてのPTCセラミックス粒子(13)と子
粒子としてのNTCセラミックス粒子(4)との間の接
触抵抗は金属Inの比抵抗に相当する抵抗値まで低減し
ている。
Next, as shown in FIG. 2, the obtained In-N
The TC composite particles (11) and the ceramic particles (13) as a parent particle having a positive temperature characteristic (PTC) having a particle diameter of 150 to 212 μm are charged again into a forced charging device, and negative and positive high voltages are applied to each of them. (4 kV) for 5 minutes to forcibly charge the battery to the opposite polarity. In the same manner as described above, as shown in FIG.
Primary In-NTC composite particles (11) composed of NTC ceramic particles (4) having particles (2) discontinuously dispersed and adhered to the surface thereof are similarly mixed particles (14) discontinuously dispersed and adhered to the surface thereof. Make it. Here, the contact resistance between the parent-child particles, that is, the contact resistance between the PTC ceramic particles (13) as the parent particles and the NTC ceramic particles (4) as the child particles is reduced to a resistance value corresponding to the specific resistance of the metal In. I have.

【0017】このようにして得られた複合粒子(14)
を、図4のように、内径2mmの石英製チューブ(2
0)に、厚さ1〜1.5mmになるように充填し、両端
をIn箔(21)を介してステンレススチール製のロッ
ド(22)で抑えたセルを組み立てる。このセルを恒温
槽にセットし、恒温槽の温度を昇降させながら、このロ
ッド(22)を電極としてエレクトロメータにより定電
流印加法によりセルの電気抵抗を測定した。このように
して得られた温度−電気抵抗特性結果を図5に示した。
この図より90℃で6MΩとなるようなV型の温度特性
を示すことがわかる。 (実施例2)適切な真空蒸着装置内に子粒子としての粒
径26〜32μmの負の温度特性(NTC)を持つセラ
ミックス粒子(NTC粒子)を装入し、抵抗加熱電極に
セットしたタングステン・バスケットにInの小塊を入
れた後、真空ポンプにより槽内を1×10-5Torrま
で排気する。その後、バスケットに電圧を印加して約7
00℃に加熱、In塊の溶融蒸発を約1分間保持し、前
記のNTCセラミックス粒子表面に、これとオーミック
接合するInを島状に真空蒸着する。つぎに、この島状
In付着NTC粒子と、親粒子としての粒径150〜2
12μmの正の温度特性(PTC)を持つセラミックス
粒子とを、図2と同様にして、振動円筒電極型強制帯電
装置に装入し、それぞれ負および正の高電圧(4kV)
を約5分間印加し逆特性に強制帯電させた後、同時に同
一の領域に排出させて両粒子間に働く静電引力によりP
TCセラミックス粒子を芯にその表面に島状In付着N
TC粒子が非連続に分散付着した複合粒子を作製する。
このようにして得られた複合粒子を、図4のように、内
径2mmの石英管(20)に厚さ1〜1.5mm充填し
セルを組み立て、温度−電気抵抗特性を測定した。その
結果を図6に示した。温度70℃で電気抵抗1MΩなる
V型温度特性が得られる。
The composite particles (14) thus obtained
4 as shown in FIG.
0), a cell is filled so as to have a thickness of 1 to 1.5 mm, and a cell whose both ends are suppressed by a stainless steel rod (22) via an In foil (21) is assembled. The cell was set in a thermostat, and while the temperature of the thermostat was raised and lowered, the electric resistance of the cell was measured by a constant current application method using an electrometer with the rod (22) as an electrode. FIG. 5 shows the temperature-electric resistance characteristic results obtained in this manner.
From this figure, it can be seen that the V-type temperature characteristic shows 6 MΩ at 90 ° C. Example 2 Ceramic particles (NTC particles) having a negative temperature characteristic (NTC) having a particle size of 26 to 32 μm as child particles were charged into an appropriate vacuum evaporation apparatus, and tungsten particles set in a resistance heating electrode were used. After putting the small mass of In into the basket, the inside of the tank is evacuated to 1 × 10 −5 Torr by a vacuum pump. Then, apply a voltage to the basket for about 7
Heating to 00 ° C. and holding the melting and evaporating of the In mass for about 1 minute, vacuum vapor deposition of In that forms ohmic contact with the surface of the NTC ceramic particles in an island shape. Next, the island-like In-adhered NTC particles and a particle size of 150 to 2
Ceramic particles having a positive temperature characteristic (PTC) of 12 μm were charged into a vibrating cylindrical electrode type forced charging device in the same manner as in FIG. 2, and a negative and positive high voltage (4 kV), respectively.
Is applied for about 5 minutes to forcibly charge the battery to the opposite characteristic, and then simultaneously discharged to the same region, and P is applied by electrostatic attraction between both particles.
Island-like In attached N on TC ceramic particles
A composite particle in which TC particles are dispersed and adhered discontinuously is produced.
The composite particles thus obtained were filled in a quartz tube (20) having an inner diameter of 2 mm and having a thickness of 1 to 1.5 mm as shown in FIG. 4 to assemble a cell, and the temperature-electric resistance characteristics were measured. FIG. 6 shows the result. A V-shaped temperature characteristic having an electric resistance of 1 MΩ at a temperature of 70 ° C. is obtained.

【0018】なお、V型温度特性の抵抗値が、実施例1
より実施例2で低いのは、PTCセラミックス粒子とN
TCセラミックス粒子の間にIn粒子がより確実に存在
していることを示すものと考えられる。
The resistance value of the V-type temperature characteristic is equal to that of the first embodiment.
In Example 2, the lower values were attributable to PTC ceramic particles and N
This is considered to indicate that the In particles exist more reliably between the TC ceramic particles.

【0019】[0019]

【発明の効果】以上詳しく説明したように、この発明に
より、正の温度特性、負の温度特性を大きな自由度を持
って別個に選択でき、これを組み合わせて、任意の希望
するV型形状の温度特性を決定することができる。この
効果は、材料そのものがバルクな焼結体ではなく、構成
単位が小粒子であることによるもので、使用形状に大き
な制約がなく、大きさの極小化も可能となる。低温保
持、過電流防止機能、スイッチ、サージ吸収、一定電流
保持、過冷・過熱防止機能を持つヒータ等への応用が可
能となる。
As described in detail above, according to the present invention, the positive temperature characteristic and the negative temperature characteristic can be individually selected with a large degree of freedom, and by combining these, any desired V-shaped shape can be obtained. Temperature characteristics can be determined. This effect is due to the fact that the material itself is not a bulk sintered body but the constituent units are small particles, and there is no great restriction on the used shape and the size can be minimized. It can be applied to a heater having a low-temperature holding function, an overcurrent prevention function, a switch, a surge absorption, a constant current holding function, and an overcooling / overheating prevention function.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の振動円筒電極型帯電装置を用いた強
制帯電処理の様子を例示した模式図である。
FIG. 1 is a schematic diagram illustrating a state of a forced charging process using a vibrating cylindrical electrode type charging device of the present invention.

【図2】図1と同様の模式図である。FIG. 2 is a schematic diagram similar to FIG.

【図3】親、子、孫粒子からなる複合粒子の様子を示し
た模式図である。
FIG. 3 is a schematic view illustrating a composite particle including a parent, a child, and a grandchild particle.

【図4】電気抵抗−温度特性を測定するためのセルを例
示した模式図である。
FIG. 4 is a schematic diagram illustrating a cell for measuring electric resistance-temperature characteristics.

【図5】複合粒子を石英製セルに充填し、電気抵抗−温
度特性の測定結果を示した関係図である。
FIG. 5 is a relational diagram showing a measurement result of electric resistance-temperature characteristics when a composite cell is filled in a quartz cell.

【図6】島状In付着NTC粒子とPTC親粒子で形成
した複合粒子による電気抵抗−温度特性の測定結果を示
した関係図である。
FIG. 6 is a relationship diagram showing measurement results of electric resistance-temperature characteristics of composite particles formed of island-like In-attached NTC particles and PTC parent particles.

【符号の説明】[Explanation of symbols]

1、3 円筒電極 2 In孫粒子 4 NTCセラミックス粒子 5、6 高圧電源装置 7、8 圧電素子 9 円筒電極1の開口部 10 円筒電極3の開口部 11 In−NTC複合粒子 12 接地された対極 13 PTCセラミックス粒子 14 複合粒子 20 内径2mmの透明石英管 21 In箔 22 ステンレス鋼ロッド電極 1, 3 cylindrical electrode 2 In grandchild particles 4 NTC ceramic particles 5, 6 high-voltage power supply 7, 8 piezoelectric element 9 opening of cylindrical electrode 1 10 opening of cylindrical electrode 3 11 In-NTC composite particles 12 grounded counter electrode 13 PTC ceramic particles 14 Composite particles 20 Transparent quartz tube with 2 mm inner diameter 21 In foil 22 Stainless steel rod electrode

───────────────────────────────────────────────────── フロントページの続き (72)発明者 不動寺 浩 茨城県つくば市千現1丁目2番1号 科学 技術庁金属材料技術研究所内 (72)発明者 新谷 紀雄 茨城県つくば市千現1丁目2番1号 科学 技術庁金属材料技術研究所内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Hiroshi Fudoji 1-2-1 Sengen, Tsukuba-city, Ibaraki Pref., National Institute of Science and Technology (72) Inventor Norio Shintani 1-2-1 Sengen, Tsukuba-shi, Ibaraki No. Science and Technology Agency, Metal Materials Research Laboratory

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 正または負の電気抵抗温度特性を持つ親
粒子と、親粒子径以下の大きさの負または正の電気抵抗
温度特性を持つ子粒子と、親粒子と子粒子にオーミック
接合する金属粒子で、子粒子径以下の大きさの孫粒子と
からなり、孫粒子が子粒子表面に非連続で分散付着した
第一次複合粒子が、さらに親粒子の表面に非連続で分散
付着した複合粒子によって構成されていることを特徴と
するV型電気抵抗温度特性材料。
An ohmic junction between a parent particle having a positive or negative electric resistance temperature characteristic, a child particle having a negative or positive electric resistance temperature characteristic having a size equal to or less than the parent particle diameter, and a parent particle and a child particle. In the metal particles, the primary composite particles composed of the grandchild particles having a size equal to or smaller than the child particle diameter, and the grandchild particles were discontinuously dispersed and adhered to the surface of the child particles, were further discontinuously dispersed and adhered to the surface of the parent particle. A V-type electric resistance temperature characteristic material, comprising a composite particle.
【請求項2】 請求項1の複数の複合粒子が充填または
塗布されて構成されているV型電子抵抗温度特性材料。
2. A V-type electronic resistance temperature characteristic material formed by filling or coating the plurality of composite particles according to claim 1.
【請求項3】 親粒子径以下の大きさの負または正の電
気抵抗温度特性を持つ子粒子と、この子粒子とオーミッ
ク接合する金属粒子で子粒子径以下の大きさの孫粒子と
を、それぞれ逆極性に強制帯電させ、子粒子−孫粒子間
静電気力付着と孫粒子同士の同極性反発により、子粒子
表面に孫粒子を非連続に分散付着させて第一次複合粒子
を形成し、次いで、正または負の電気抵抗温度特性を持
つ親粒子と第一次複合粒子とを逆極性に強制帯電させ
て、親粒子表面に、第一次複合粒子を非連続に分散付着
させて複合粒子を形成し、この複合粒子を複数充填して
電気抵抗温度特性材料を構成することを特徴とするV型
電気抵抗温度特性材料の製造方法。
3. A child particle having a negative or positive electric resistance temperature characteristic having a size equal to or less than the parent particle diameter, and a grandchild particle having a size equal to or less than the child particle diameter formed of a metal particle which is in ohmic contact with the child particle. Each is forcibly charged to the opposite polarity, and due to the electrostatic force adhesion between the child particles and the grandchild particles and the repulsion of the same polarity between the grandchild particles, the grandchild particles are discontinuously dispersed and adhered to the surface of the child particles to form primary composite particles, Next, the parent particles having positive or negative electric resistance temperature characteristics and the primary composite particles are forcibly charged to opposite polarities, and the primary composite particles are discontinuously dispersed and adhered to the surface of the parent particles, thereby forming composite particles. And forming a plurality of the composite particles to form an electric resistance temperature characteristic material.
【請求項4】 子粒子表面に、オーミック接合する金属
を島状に真空蒸着して孫粒子を分散付着させる請求項2
のV型電気抵抗温度特性材料の製造方法。
4. A method according to claim 2, wherein the metal to be ohmic-bonded is vacuum-deposited in the form of islands on the surface of the child particles to disperse and attach the grandchild particles.
A method for producing a V-type electric resistance temperature characteristic material.
JP31388496A 1996-11-25 1996-11-25 V-type electric resistance temperature characteristic material Expired - Lifetime JP2863835B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31388496A JP2863835B2 (en) 1996-11-25 1996-11-25 V-type electric resistance temperature characteristic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31388496A JP2863835B2 (en) 1996-11-25 1996-11-25 V-type electric resistance temperature characteristic material

Publications (2)

Publication Number Publication Date
JPH10154603A true JPH10154603A (en) 1998-06-09
JP2863835B2 JP2863835B2 (en) 1999-03-03

Family

ID=18046679

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31388496A Expired - Lifetime JP2863835B2 (en) 1996-11-25 1996-11-25 V-type electric resistance temperature characteristic material

Country Status (1)

Country Link
JP (1) JP2863835B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7495821B2 (en) * 2002-10-29 2009-02-24 Matsushita Electric Industrial Co., Ltd. Display device and method of preparing particles for use in image display of a display device
EP3373310A1 (en) * 2017-03-06 2018-09-12 Nederlandse Organisatie voor toegepast- natuurwetenschappelijk onderzoek TNO Printed temperature sensor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7495821B2 (en) * 2002-10-29 2009-02-24 Matsushita Electric Industrial Co., Ltd. Display device and method of preparing particles for use in image display of a display device
EP3373310A1 (en) * 2017-03-06 2018-09-12 Nederlandse Organisatie voor toegepast- natuurwetenschappelijk onderzoek TNO Printed temperature sensor
WO2018164570A1 (en) * 2017-03-06 2018-09-13 Nederlandse Organisatie Voor Toegepast- Natuurwetenschappelijk Onderzoek Tno Printed temperature sensor
US10741312B2 (en) 2017-03-06 2020-08-11 Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno Printed temperature sensor

Also Published As

Publication number Publication date
JP2863835B2 (en) 1999-03-03

Similar Documents

Publication Publication Date Title
CA1116310A (en) Electric heating device comprising a resistance body of p.t.c. material
US5196264A (en) Porous sintered body and method of manufacturing same
US3295087A (en) Temperature sensor
JP2863835B2 (en) V-type electric resistance temperature characteristic material
US3266001A (en) Temperature sensors and their manufacture
GB1251453A (en)
US3048914A (en) Process for making resistors
JP2694895B2 (en) Method for producing temperature characteristic functional composite particles by electrostatic treatment
JPS6060990A (en) Far infrared ray radiation heater
JPH0449601A (en) Planar heater
CN109087988A (en) A kind of thermoelectric conversion method
JPS63285908A (en) Manufacture of voltage-dependent nonlinear resistor
JPH11121202A (en) Manufacture of ptc ceramics element
JP6852306B2 (en) Ion generator and ion detector
JPH11297504A (en) Electronic device
JPH01216503A (en) Nonlinear resistor
JPS60258904A (en) Current limiting element
JPH0389501A (en) Voltage non-linear resistor and manufacture thereof
JPH04345785A (en) Manufacture of resistor with positive resistance temperature coefficient and heating element employing it
JPH11144912A (en) Method for forming semiconductor barium titanate film, application to heater mirror made of ptc thin film layer, and manufacture of the same
JPH01283902A (en) Zinc oxide element and manufacture thereof
JPH079331Y2 (en) Voltage display discharge tube
JPH0369152B2 (en)
JPH07147182A (en) Ceramic heater
JPH01130501A (en) High-voltage resistor

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term