JPH0369152B2 - - Google Patents

Info

Publication number
JPH0369152B2
JPH0369152B2 JP58231272A JP23127283A JPH0369152B2 JP H0369152 B2 JPH0369152 B2 JP H0369152B2 JP 58231272 A JP58231272 A JP 58231272A JP 23127283 A JP23127283 A JP 23127283A JP H0369152 B2 JPH0369152 B2 JP H0369152B2
Authority
JP
Japan
Prior art keywords
heater
resistance
metal
heaters
sic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58231272A
Other languages
Japanese (ja)
Other versions
JPS60124385A (en
Inventor
Tomio Takeuchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP23127283A priority Critical patent/JPS60124385A/en
Publication of JPS60124385A publication Critical patent/JPS60124385A/en
Publication of JPH0369152B2 publication Critical patent/JPH0369152B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、高比抵抗を有する金属結合型SiCヒ
ーターに関する。なお焼結体の赤外線放射強度も
非常に高い。今一つの特性として素材がセラミツ
クであるため、作成する形状の範囲が広く可成自
由な形状が選択できる。 従来は、通電加熱するヒーター材として一般に
金属ヒーターが使用されている。金属ヒーターは
ニツケルクロム合金系のニクロムヒーター,鉄ク
ロム合金系の鉄クロムヒーター,鉄クロムアルミ
ニウム合金系のカンタルヒーター等が通常用いら
れる。 金属ヒーターが工業的に使用される場合は、電
容量及びヒーター材の電気抵抗に合せるべく所定
の変圧器(トランス)を使用し調整出来るため、
比較的仕意に障害なくヒーター材の材質、寸法、
形状、電気容量を選択使用することができる。そ
れら故特殊な場合を除いて現在特に問題は起つて
いない。 しかし、この金属ヒーターを家庭用の通電加熱
により使用する場合、例えば電気湯沸器、電気炊
飯器、オーブントースター、ガス器具の着火器、
灯油機器の加熱器又は着火器として使用される場
合では、電気容量で100W以下のヒーターを製作
する場合金属ヒーターの持つ比抵抗が小さいとい
うことが大きな欠点となる。 日本国内において一般家庭に供給される電気の
電圧は一般的に100Vである。(以下商用電圧
100Vという)この商用電圧100Vにおいて例えば
50Wのヒーターを得るためには 電流=電力/電圧=50W/100V=0.5AmP 抵抗=電圧/電流=100V/0.5AmP=200Ω 上式のように200Ωの高い抵抗を持つたヒータ
ーが必要になる。 この20Ωの抵抗値の金属ヒーターを得る為には R=ρ・l/S R:抵抗 ρ:比抵抗 l:ヒーター長さ S:ヒーター断面積 上式の関係から明らかなようにρ(比抵抗)が
小さい金属ヒーターでは、R(抵抗)を大きくす
る為にはl(ヒーター長)を長くするか、S(ヒー
ター断面積)を小さくする必要がある。 ヒーター長さを長くすることは、形状的に小型
化したいヒーターを製作する場合は相反すること
となり無理な設計を強いられる。断面積を小さく
することは、ヒーターの強度劣化ひいては、使用
寿命が短かくなるという不経済性を招来する。 前記の例で商用電圧100V50Wのヒーターを製
作するために、ニクロム線1種0.08m/mφ細線
を使用すると、 R=200Ω S=5.02×10-5cm2 ρ=10-4Ωcm ニクロム線の長さlは l=200×5.02×10-5/10-4≒100cm 上式の関係で100cmの長さが必要となる。試み
にこの長さのニクロム線を磁器絶縁管に巻付け
8φ×80m/mの長さのヒーターを製作したとこ
ろ、100V印加して表面温度は約800℃に上昇し
た。2Hr通電後、ヒーター中間部にて断線してし
まつた。 本発明は、前記のような金属ヒーターの欠点を
解消せんが為、比抵抗の高い金属焼結型のSiCヒ
ーターを提供するものである。 本発明の構成を一つの実施例で説明する。成分
組成が最大粒径5μのSiC70重量%、最大粒径150μ
のフエロシリコン粉末25重量%、200メツシユパ
スの硼硅酸ガラス粉末5重量%に、有機バインダ
ーとしてポリビニルブチラール・エチルセルロー
ズを加え、溶剤として酢酸エチルケトンを加え、
ウレタンポツトミルにて不純物の混じないように
粉砕し、有機溶剤の一部を気化蒸発せしめ、湿式
押出成形機にて円筒状8φ×4φ×75m/mの成形
体を製作した。成形体は乾燥後水素及び窒素を含
む雰囲気(アンモニア分解ガス)中で1450℃−
1Hr焼結したところ、室温の抵抗値210Ωであつ
た。商用電圧100V印加し通電したところ1AmP
の電流が流れヒーターの表面温度800℃で安定し
た。従つて800℃の抵抗は100Ωであつた。本実施
例の場合の800℃における比抵抗は、 ρ=100Ω・0.377cm2/7.5≒5Ωcm となつた。 このヒータを表面温度800℃に保持し、空気中
での通電耐久試験を実施したところ、1000Hr経
過後の抵抗変化率10%と安定して使用できること
を示した。 第一表に本発明の実施例を示し、第二表に前記
実施例の比抵抗と1000Hr通電後の抵抗変化率を
示し、第一図に前記実施例の温度による抵抗変化
率を示した。
The present invention relates to a metal bonded SiC heater with high specific resistance. Furthermore, the infrared radiation intensity of the sintered body is also very high. Another characteristic is that the material is ceramic, which allows for a wide range of shapes to be created, allowing for a wide range of shapes to be selected. Conventionally, metal heaters have generally been used as heater materials for heating with electricity. As metal heaters, nichrome heaters based on nickel-chromium alloys, iron-chromium heaters based on iron-chromium alloys, Kanthal heaters based on iron-chromium aluminum alloys, etc. are usually used. When metal heaters are used industrially, they can be adjusted using a specified transformer to match the capacitance and electrical resistance of the heater material.
The material, dimensions, and
Shape and capacitance can be selected and used. Therefore, there are currently no particular problems, except in special cases. However, when using this metal heater for household electrical heating, for example, electric water heaters, electric rice cookers, toaster ovens, gas appliance igniters, etc.
When used as a heater or igniter for kerosene equipment, the low resistivity of metal heaters is a major drawback when manufacturing heaters with an electric capacity of 100 W or less. The voltage of electricity supplied to general households in Japan is generally 100V. (hereinafter referred to as commercial voltage
For example, at this commercial voltage of 100V (referred to as 100V),
To obtain a 50W heater, current = power / voltage = 50W / 100V = 0.5AmP resistance = voltage / current = 100V / 0.5AmP = 200Ω As shown in the above equation, a heater with a high resistance of 200Ω is required. In order to obtain a metal heater with a resistance value of 20Ω, R = ρ・l/S R: resistance ρ: specific resistance l: heater length S: heater cross-sectional area As is clear from the relationship in the above equation, ρ (specific resistance ) is small, in order to increase R (resistance), it is necessary to increase l (heater length) or decrease S (heater cross-sectional area). Increasing the length of the heater conflicts with the desire to manufacture a heater that is smaller in size, forcing an unreasonable design. Reducing the cross-sectional area causes deterioration in the strength of the heater and shortens its service life, which is uneconomical. In the above example, in order to manufacture a heater with a commercial voltage of 100V50W, if you use nichrome wire type 1 0.08m/mφ thin wire, R=200Ω S=5.02×10 -5 cm 2 ρ=10 -4 Ωcm Length of nichrome wire The length L is 1=200×5.02×10 -5 /10 -4 ≒100cm According to the above equation, a length of 100cm is required. I tried winding this length of nichrome wire around a porcelain insulating tube.
When we fabricated a heater with a length of 8φ x 80m/m, the surface temperature rose to approximately 800℃ when 100V was applied. After 2 hours of electricity, the wire broke in the middle of the heater. The present invention provides a metal sintered SiC heater with high resistivity in order to overcome the above-mentioned drawbacks of metal heaters. The configuration of the present invention will be explained using one example. Composition is 70% by weight of SiC with a maximum particle size of 5μ, maximum particle size of 150μ
To 25% by weight of ferrosilicon powder and 5% by weight of borosilicate glass powder of 200 mesh pass, polyvinyl butyral ethylcellulose was added as an organic binder and ethyl acetate ketone was added as a solvent.
The mixture was ground in a urethane pot mill to avoid contamination with impurities, a part of the organic solvent was evaporated, and a cylindrical molded body of 8φ x 4φ x 75 m/m was produced using a wet extrusion molding machine. After drying, the molded body was heated at 1450℃ in an atmosphere containing hydrogen and nitrogen (ammonia decomposition gas).
When sintered for 1 hour, the resistance at room temperature was 210Ω. When the commercial voltage of 100V was applied and the power was turned on, the result was 1AmP.
Current flowed and the surface temperature of the heater stabilized at 800℃. Therefore, the resistance at 800°C was 100Ω. In the case of this example, the specific resistance at 800°C was ρ=100Ω·0.377cm 2 /7.5≈5Ωcm. When this heater was maintained at a surface temperature of 800°C and subjected to an electrical current durability test in air, it was shown that the heater could be used stably with a resistance change rate of 10% after 1000 hours. Table 1 shows examples of the present invention, Table 2 shows the specific resistance of the examples and the rate of change in resistance after 1000 hours of energization, and Figure 1 shows the rate of change in resistance due to temperature in the examples.

【表】 上記第一表成分として、硼硅酸ガラスの組成成
分はSiO260重量%、Al2O3,K2O,CaO,MgO,
PbO合せて40重量%であつた。SiC材として、昭
和電工製αSiC(炭素材と珪石を電気抵抗炉で加熱
反応による緑色結晶SiC99.45%A−2S)を使用し
た。なお第一表における焼成条件のうち、H2
N2焼成雰囲気において炉内雰囲気の湿度を調整
するためにバブリング水の温度を60℃〜65℃と
し、1450℃における温度誤差を20℃として表示し
た。
[Table] As shown in the first table above, the composition of borosilicate glass is 60% by weight of SiO 2 , Al 2 O 3 , K 2 O, CaO, MgO,
The total amount of PbO was 40% by weight. As the SiC material, αSiC manufactured by Showa Denko (green crystal SiC 99.45% A-2S produced by heating reaction of carbon material and silica stone in an electric resistance furnace) was used. Of the firing conditions in Table 1, H 2 +
In order to adjust the humidity of the furnace atmosphere in the N2 firing atmosphere, the temperature of bubbling water was set at 60°C to 65°C, and the temperature error at 1450°C was expressed as 20°C.

【表】 初期抵抗
実施例第一表No.7の配合組成のものを焼結する
ことにより、各々のヒーターの温度による抵抗の
変化率は800〜900℃において安定し、一定電圧を
印加した場合に電流値が暴走することなく何れの
例もヒーターに使用できることが判つた。更に
各々の実施例について室温で印加電圧を一定と
し、通電試験した結果、抵抗増加が極めて少なく
抵抗増加による電圧を上げることもなく、一定電
圧において安定して使用できるヒーターであるこ
とが判つた。 本発明の応用分野は、前記実施例の通り、家庭
用商用電圧に使用できるミニ電気ヒーター及び着
火器或は積層厚膜型に成形し、耐熱性の高く抵抗
値が大きいことを利用した小型大容量の抵抗器に
活用できる。或はセラミツクと併用パネル板型状
に成形し、乾燥用或は暖房用ヒーターとして利用
できる。しかも形状が小型化、単純化されること
と相まつてコストの低減も計られ、経済的にも有
位性をもつと思われる。 本発明の原料がSi,Fe,Al等地球上に多く産
出する原材料であるため、今後金属ヒーターの材
料資源として問題となるNi等の金属材料を殆ん
ど使用しないので将来的には資源的にも金属ヒー
ターの分野に応用できるものと確信している。 本発明に係るヒーターを使用したミニヒーター
を第2図(断面図)に例示した。同図においてミ
ニヒーターAはセラミツク外壁ケース1およびそ
の中に挿入されている筒状の本発明に係る金属結
合型SiCヒーター6等から成つている。ケース1
とヒーター6との間にはマグネシア絶縁体2が充
填され、ヒーター6の中には絶縁碍子管3が挿入
されている。通電用の導体4の一方はヒーター6
の一端に接合されている環状の導体5に連結さ
れ、他方の導体4は絶縁碍子管3内に挿通され更
にヒーター6の他端に接合されている環状の導体
7に連結されている。図示の8は封着体である。 このミニヒーターAの導体4に各種の電圧を印
加した結果は次の特性値表に示すようなものとな
つた。
[Table] Initial resistance
By sintering the composition of Example No. 7 in Table 1, the rate of change in resistance due to temperature of each heater is stable at 800 to 900°C, and the current value does not run out of control when a constant voltage is applied. It has been found that any of the examples can be used as a heater without having to do so. Further, as a result of carrying out a current test for each of the examples with a constant applied voltage at room temperature, it was found that the heater had an extremely small increase in resistance, did not increase the voltage due to an increase in resistance, and could be used stably at a constant voltage. As described in the above embodiments, the field of application of the present invention is a mini electric heater and igniter that can be used on household commercial voltage, or a small and large electric heater that is molded into a laminated thick film type and takes advantage of its high heat resistance and high resistance value. Can be used for capacitive resistors. Alternatively, it can be used in combination with ceramics and formed into a panel plate shape and used as a heater for drying or heating. In addition, the size is smaller and simpler, and together with the cost reduction, it is considered to be economically advantageous. Since the raw materials of the present invention are Si, Fe, Al, and other raw materials that are abundantly produced on earth, metal materials such as Ni, which will be a problem as material resources for metal heaters in the future, are hardly used, so it will save resources in the future. We are confident that this method can also be applied to the field of metal heaters. A mini-heater using the heater according to the present invention is illustrated in FIG. 2 (cross-sectional view). In the figure, mini-heater A consists of a ceramic outer wall case 1 and a cylindrical metal-bonded SiC heater 6 according to the present invention inserted therein. Case 1
A magnesia insulator 2 is filled between the heater 6 and the heater 6, and an insulator tube 3 is inserted into the heater 6. One side of the conductor 4 for electricity is a heater 6
The other conductor 4 is inserted into the insulator tube 3 and connected to an annular conductor 7 which is connected to the other end of the heater 6. 8 in the figure is a sealed body. The results of applying various voltages to the conductor 4 of this mini-heater A were as shown in the following characteristic value table.

【表】 (金属結合型SiCヒーター形状8φ×4φ×70(35
m3))表示のように例えば100Vの場合には通電立
ち上がりから2分後には740℃に昇温し、ミニヒ
ーターとして良好な結果を示している。 また、現在SiC材料にて構成されているヒータ
ーとして、再結晶SiCヒーター、例えば東海高熱
(株)エレマヒーター、東芝セラミツク(株)テコランダ
ムヒーター等がある。これらの場合と本発明ヒー
ターとは比抵抗の大きい点が基本的に異なる。な
お焼成条件に関しては、旧来ヒーターは2200℃焼
成であるが、本発明は1450℃還元雰囲気焼成で、
はるかに省エネ型である。
[Table] (Metal bonded SiC heater shape 8φ x 4φ x 70 (35
m 3 )) As shown in the display, for example, in the case of 100V, the temperature rose to 740°C 2 minutes after the start of electricity, showing good results as a mini heater. In addition, as heaters currently composed of SiC materials, recrystallized SiC heaters, such as Tokai Kokonetsu
Examples include Elema Heater Co., Ltd. and Toshiba Ceramics Co., Ltd. Teco Random Heater. The basic difference between these cases and the heater of the present invention is that the specific resistance is large. Regarding the firing conditions, conventional heaters are fired at 2200°C, but the present invention is fired at 1450°C in a reducing atmosphere.
It is much more energy efficient.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は抵抗の温度変化率を示し、第2図は、
本発明の実施例構成断面図を示すものである。 符号の説明、A……ミニヒーター、1……セラ
ミツク外壁ケース、2……マグネシア絶縁体、3
……絶縁碍子管、4……通電用導体、5,7……
環状の導体、6……金属結合型SiCヒーター、8
……封着体。
Figure 1 shows the temperature change rate of resistance, and Figure 2 shows the temperature change rate of resistance.
1 is a sectional view showing a configuration of an embodiment of the present invention. Explanation of symbols, A...Mini heater, 1...Ceramic outer wall case, 2...Magnesia insulator, 3
... Insulator tube, 4 ... Current-carrying conductor, 5, 7 ...
Annular conductor, 6...Metal bonded SiC heater, 8
...Sealed body.

Claims (1)

【特許請求の範囲】[Claims] 1 SiC 40〜80重量%、FeSi,Si,Fe,MoSi,
Ni,Mn,Alの1種又は2種以上の合計を15〜55
重量%、Si,Al,B,Mg,Ca,Pb,Na,Kの
酸化物の2種以上の合計を10重量%以下含み、原
料を粉砕混合して整形し、乾燥後、水素および/
または窒素を含む雰囲気中において1300〜1500℃
で焼成して製造され、比抵抗が12〜1Ωcmの範囲
にあることを特徴とする金属結合型SiCヒータ
ー。
1 SiC 40-80% by weight, FeSi, Si, Fe, MoSi,
The total of one or more of Ni, Mn, and Al is 15 to 55
The total content of two or more oxides of Si, Al, B, Mg, Ca, Pb, Na, and K is 10% by weight or less, the raw materials are pulverized and mixed, shaped, dried, and hydrogen and/or
or 1300 to 1500℃ in an atmosphere containing nitrogen
A metal-bonded SiC heater manufactured by firing with a metal bonding type SiC heater characterized by having a specific resistance in the range of 12 to 1 Ωcm.
JP23127283A 1983-12-09 1983-12-09 Metal coupling type sic heater Granted JPS60124385A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23127283A JPS60124385A (en) 1983-12-09 1983-12-09 Metal coupling type sic heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23127283A JPS60124385A (en) 1983-12-09 1983-12-09 Metal coupling type sic heater

Publications (2)

Publication Number Publication Date
JPS60124385A JPS60124385A (en) 1985-07-03
JPH0369152B2 true JPH0369152B2 (en) 1991-10-31

Family

ID=16920999

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23127283A Granted JPS60124385A (en) 1983-12-09 1983-12-09 Metal coupling type sic heater

Country Status (1)

Country Link
JP (1) JPS60124385A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2520597B2 (en) * 1986-04-14 1996-07-31 東芝セラミックス株式会社 Sic-bonded silicon carbide heating element
JPH0810621B2 (en) * 1990-05-31 1996-01-31 日本ピラー工業株式会社 Ceramic heater

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5487950A (en) * 1977-12-24 1979-07-12 Tokai Konetsu Kogyo Kk Linear or banddshaped carbonized silicon heater
JPS55116669A (en) * 1979-02-27 1980-09-08 Toshiba Ceramics Co Manufacture of silicon carbide exothermic body

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5487950A (en) * 1977-12-24 1979-07-12 Tokai Konetsu Kogyo Kk Linear or banddshaped carbonized silicon heater
JPS55116669A (en) * 1979-02-27 1980-09-08 Toshiba Ceramics Co Manufacture of silicon carbide exothermic body

Also Published As

Publication number Publication date
JPS60124385A (en) 1985-07-03

Similar Documents

Publication Publication Date Title
US4634837A (en) Sintered ceramic heater element
US5077461A (en) Far-infra-red heater
WO2006010317A1 (en) Controllable electrothermal element of ptc thick film circuit
US3584196A (en) Automatic electric cooking appliance
US5086210A (en) Mo5 Si3 C ceramic material and glow plug heating element made of the same
US4644133A (en) Ceramic heater
JPH0369152B2 (en)
KR100401748B1 (en) A PTC ceramic pre-heater and the preparing method thereof
CN2240820Y (en) Electric heating-membrane heater
US4292505A (en) Furnace for generating heat by electrical resistance
JP2712527B2 (en) Heating device for infrared radiation
JP3353043B2 (en) Manufacturing method of low order titanium oxide ceramics
JPH04349387A (en) Conductive heating element
JPH0410717B2 (en)
CN206365066U (en) A kind of PTC insulation heating element
JPS6116755B2 (en)
CN2158066Y (en) Electric heating furnace using carbon and inorganic metal oxidate as electrical heating body
CN1055602C (en) Silicate-base direct-heating type infrared radiation electric-heating body and mfg. method thereof
JPH11214129A (en) Far infrared ceramic heater
JPH0374471B2 (en)
CN1093514A (en) Electric heating element
JPH0229638B2 (en)
JPH0521146A (en) Zirconia heater with built-in pre-heating heater
CN110366279A (en) PTC ceramics semi-conductor electricity heating device
JP2001313156A (en) Electrode structure of thin plate for infrared ray heater