JPH10151336A - Granulation control method for granular particle in fluidized bed treating device - Google Patents

Granulation control method for granular particle in fluidized bed treating device

Info

Publication number
JPH10151336A
JPH10151336A JP32607896A JP32607896A JPH10151336A JP H10151336 A JPH10151336 A JP H10151336A JP 32607896 A JP32607896 A JP 32607896A JP 32607896 A JP32607896 A JP 32607896A JP H10151336 A JPH10151336 A JP H10151336A
Authority
JP
Japan
Prior art keywords
average particle
moisture value
fluidized bed
granulation
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP32607896A
Other languages
Japanese (ja)
Other versions
JP3909382B2 (en
Inventor
Takahide Ohata
▲たか▼英 尾畑
Hideji Watanabe
秀治 渡辺
Makoto Ono
小野  誠
Takuya Inoue
琢也 井上
Kazunori Wakiya
和紀 脇屋
Kazumasa Yamazaki
一正 山崎
Koji Tabata
浩治 田畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Morinaga and Co Ltd
Okawara Mfg Co Ltd
Original Assignee
Morinaga and Co Ltd
Okawara Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Morinaga and Co Ltd, Okawara Mfg Co Ltd filed Critical Morinaga and Co Ltd
Priority to JP32607896A priority Critical patent/JP3909382B2/en
Publication of JPH10151336A publication Critical patent/JPH10151336A/en
Application granted granted Critical
Publication of JP3909382B2 publication Critical patent/JP3909382B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Drying Of Solid Materials (AREA)
  • Glanulating (AREA)

Abstract

PROBLEM TO BE SOLVED: To determine operation conditions of a fluidized bed treating device corresponding to properties of raw material by metrically formularizing properties such as average particle size, uniformity and apparent density of granular particles and determining constants contained in this numerical formula from the minimum granulation experiment. SOLUTION: In a method of granulating granular particles G using a fluidized bed granulator, based on the following formula, control parameters are controlled to obtain a granulated product of desired average particle size. Average particle size = a1 × spray droplet diameter × effective control moisture value + b1 (wherein, a1 , b1 are constants determined by raw material). Therefore, by predicting average particle size of granular particles as a function of operating factors of the fluidizing bed treating device and a physical property recipe of powdery raw material, operation of the fluidized bed treating device is performed corresponding to desired physical properties of the granulated product.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は流動層処理装置を用
いた粉粒体の造粒制御方法に関するものであり、特に平
均粒子径、均一度、見掛密度等の特性を数式化すること
で最適の造粒条件を設定し、所望の特性の粉粒体を得る
ことのできる造粒制御方法に係るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for controlling granulation of a granular material using a fluidized bed treatment apparatus, and more particularly to a method of formulating characteristics such as average particle diameter, uniformity, and apparent density. The present invention relates to a granulation control method capable of setting optimal granulation conditions and obtaining a powder having desired characteristics.

【0002】[0002]

【発明の背景】流動層造粒法は、粉体を微細な顆粒状の
粒子(以下粉粒体という)に造粒する方法として広く用
いられている。この流動層造粒法を実行するための流動
層処理装置は操作因子が多く、得られる造粒製品を希望
の平均粒子径、均一度、見掛密度とするための最適条件
は試行錯誤して求める必要があり、このためオペレータ
の経験と技術に負うところが大きい。具体的には、あら
かじめ操作因子の制御値を設定しておいて装置の運転を
行い、造粒途中での操作因子の調整は目視観察により制
御値を変更して行っている。
BACKGROUND OF THE INVENTION Fluid bed granulation is widely used as a method for granulating powder into fine granular particles (hereinafter referred to as "granules"). Fluidized bed processing equipment for performing this fluidized bed granulation method has many operating factors, and the optimal conditions for obtaining the desired average particle size, uniformity, and apparent density of the obtained granulated product are determined by trial and error. Needs to be sought, and for this reason it depends heavily on the experience and skills of the operator. Specifically, the control value of the operation factor is set in advance, and the apparatus is operated, and the adjustment of the operation factor during granulation is performed by changing the control value by visual observation.

【0003】また原料に天然物等を使用するため、原料
物性の変動により同一操作条件での運転は、製品品質の
安定性を欠く恐れがある。この点からも操作因子の設定
変更は専らオペレータの経験に委ねられ、その結果、操
作ミスが引き起こされることもあった。
[0003] In addition, since natural materials and the like are used as raw materials, operation under the same operating conditions due to fluctuations in physical properties of raw materials may cause a lack of stability in product quality. Also from this point, the setting change of the operation factor is left solely to the experience of the operator, and as a result, an operation error may be caused.

【0004】このようなオペレータの経験と技術に負っ
た運転操作を自動化すべく、オンライン計測技術の開発
や自動制御システムの開発が行われているが、粉粒体の
成長メカニズムが解明されていないため、最適な制御シ
ステムの構築には至っていないのが実状である。
[0004] In order to automate the driving operation based on the experience and technology of the operator, the development of an online measurement technology and the development of an automatic control system have been carried out, but the growth mechanism of the granular material has not been elucidated. Therefore, the actual situation is that an optimal control system has not yet been constructed.

【0005】[0005]

【解決を試みた技術課題】本発明はこのような背景の認
識に基づいてなされたものであって、粉粒体の平均粒子
径、均一度、見掛密度等の特性を数式化し、最小限の造
粒実験からこの数式に含まれる定数を決定することで、
原料の特性に応じた流動層処理装置の運転条件を決定で
きる、新規な流動層処理装置における粉粒体の造粒制御
方法の開発を試みたものである。
SUMMARY OF THE INVENTION The present invention has been made based on the recognition of the background described above, and the characteristics such as the average particle diameter, uniformity, and apparent density of a granular material are expressed by a mathematical formula to minimize the characteristics. By determining the constants included in this equation from the granulation experiment of
An attempt was made to develop a method for controlling granulation of a granular material in a novel fluidized bed processing apparatus, which can determine operating conditions of the fluidized bed processing apparatus according to the characteristics of raw materials.

【0006】[0006]

【課題を解決するための手段】すなわち請求項1記載の
流動層処理装置における粉粒体の造粒制御方法は、流動
層造粒装置を用いて粉粒体を造粒する方法において、下
式に基づいて制御パラメータを制御して希望の平均粒子
径の造粒品を得ることを特徴とする。
According to a first aspect of the present invention, there is provided a method for controlling granulation of a granular material in a fluidized bed processing apparatus, wherein the method for granulating a granular material using a fluidized bed granulating apparatus comprises: And controlling the control parameters based on the above to obtain a granulated product having a desired average particle diameter.

【0007】[0007]

【数4】 平均粒子径=a1 ×噴霧液適径×実効制御水分値+b1 (ただし、a1 、b1 は原料によって定まる定数)[Equation 4] Average particle diameter = a 1 × appropriate diameter of spray liquid × effective control moisture value + b 1 (where a 1 and b 1 are constants determined by raw materials)

【0008】この発明によれば、粉粒体の平均粒子径を
流動層処理装置の操作因子及び原料粉体の物性処方の関
数として予測することで、所望の造粒製品物性に応じた
流動層処理装置の運転を行うことができる。
According to the present invention, a fluidized bed suitable for the desired physical properties of a granulated product is obtained by predicting the average particle size of the granular material as a function of the operating factor of the fluidized bed treatment apparatus and the physical property formulation of the raw material powder. The operation of the processing device can be performed.

【0009】また請求項2記載の流動層処理装置におけ
る粉粒体の造粒制御方法は、流動層造粒装置を用いて粉
粒体を造粒する方法において、下式に基づいて制御パラ
メータを制御して希望の均一度の造粒品を得ることを特
徴とする。
According to a second aspect of the present invention, there is provided a method of controlling granulation of a granular material in a fluidized bed processing apparatus, wherein the control parameter is set based on the following equation in the method of granulating the granular material using a fluidized bed granulating apparatus. It is characterized in that a granulated product having a desired uniformity is obtained by controlling.

【0010】[0010]

【数5】均一度=(平均粒子径+0.68×標準偏差)
/(平均粒子径−0.68×標準偏差) (ただし、標準偏差=a2 ×噴霧液滴径×実効制御水分
値+b22 ,b2 は原料系により決まる定数、0.68は片側
確率25.175%に対する測度)
## EQU5 ## Uniformity = (average particle diameter + 0.68 × standard deviation)
/ (Average particle diameter−0.68 × standard deviation) (however, standard deviation = a 2 × spray droplet diameter × effective control moisture value + b 2 a 2 , b 2 are constants determined by the raw material system, and 0.68 is one side Measure for probability 25.175%)

【0011】この発明によれば、粉粒体の均一度を流動
層処理装置の操作因子及び原料粉体の物性処方の関数と
して予測することで、所望の造粒製品物性に応じた流動
層処理装置の運転を行うことができる。
According to the present invention, the uniformity of the granular material is predicted as a function of the operation factor of the fluidized bed processing apparatus and the physical property formulation of the raw material powder, so that the fluidized bed processing according to the desired physical properties of the granulated product is performed. The operation of the device can be performed.

【0012】また請求項3記載の流動層処理装置におけ
る粉粒体の造粒制御方法は、流動層造粒装置を用いて粉
粒体を造粒する方法において、下式に基づいて制御パラ
メータを制御して希望の見掛密度の造粒品を得ることを
特徴とする。
According to a third aspect of the present invention, there is provided a method for controlling granulation of a granular material in a fluidized bed processing apparatus, wherein the control parameter is set based on the following equation in the method of granulating the granular material using a fluidized bed granulating apparatus. It is characterized in that a granulated product having a desired apparent density is obtained by controlling.

【0013】[0013]

【数6】 見掛密度=a3 ×(平均粒子径/均一度)-1+b3 (ただし、a3 ,b3 は原料によって定まる定数)[Equation 6] Apparent density = a 3 × (average particle diameter / uniformity) −1 + b 3 (where a 3 and b 3 are constants determined by raw materials)

【0014】この発明によれば、粉粒体の見掛密度を流
動層処理装置の操作因子及び原料粉体の物性処方の関数
として予測することで、所望の造粒製品物性に応じた流
動層処理装置の運転を行うことができる。
According to the present invention, the apparent density of the granular material is predicted as a function of the operating factor of the fluidized bed processing apparatus and the physical property formulation of the raw material powder, so that the fluidized bed corresponding to the desired physical properties of the granulated product is obtained. The operation of the processing device can be performed.

【0015】また請求項4記載の流動層処理装置におけ
る粉粒体の造粒制御方法は、前記要件に加え、前記制御
パラメータは噴霧液滴径であることを特徴とする。この
発明によれば、流動層処理装置の操作因子の一つである
噴霧液滴径に応じた造粒製品の物性を予測することがで
きる。
According to a fourth aspect of the present invention, there is provided a method for controlling granulation of a granular material in a fluidized bed processing apparatus, wherein the control parameter is a spray droplet diameter in addition to the above requirements. ADVANTAGE OF THE INVENTION According to this invention, the physical property of the granulated product according to the spray droplet diameter which is one of the operation factors of a fluidized-bed processing apparatus can be predicted.

【0016】更にまた請求項5記載の流動層処理装置に
おける粉粒体の造粒制御方法は、前記請求項1、2また
は3記載の要件に加え、前記制御パラメータは実効制御
水分値であることを特徴とする。この発明によれば、流
動層処理装置の操作因子の一つである実効制御水分値に
応じた造粒製品の物性を予測することができる。
According to a fifth aspect of the present invention, there is provided a method for controlling granulation of a granular material in a fluidized bed processing apparatus, wherein the control parameter is an effective control moisture value in addition to the requirement according to the first, second or third aspect. It is characterized by. ADVANTAGE OF THE INVENTION According to this invention, the physical property of the granulated product according to the effective control moisture value which is one of the operation factors of a fluidized-bed processing apparatus can be predicted.

【0017】更にまた請求項6記載の流動層処理装置に
おける粉粒体の造粒制御方法は、前記請求項5記載の要
件に加え、前記実効制御水分値は制御水分値により設定
することを特徴とする。この発明によれば、実効制御水
分値を流動層処理装置の操作因子である制御水分値によ
り変更し、実効制御水分値に応じた造粒製品の物性を予
測することができる。
According to a sixth aspect of the present invention, in the method for controlling granulation of a granular material in a fluidized bed treatment apparatus, in addition to the requirement of the fifth aspect, the effective control moisture value is set by a control moisture value. And According to the present invention, it is possible to change the effective control moisture value by the control moisture value which is an operation factor of the fluidized bed treatment apparatus, and to predict the physical properties of the granulated product according to the effective control moisture value.

【0018】更にまた請求項7記載の流動層処理装置に
おける粉粒体の造粒制御方法は、前記請求項5記載の要
件に加え、前記実効制御水分値は加水量により設定する
ことを特徴とする。この発明によれば、実効制御水分値
を流動層処理装置の操作因子である加水量により変更
し、実効制御水分値に応じた造粒製品の物性を予測する
ことができる。
According to a seventh aspect of the present invention, there is provided a method for controlling granulation of a granular material in a fluidized bed processing apparatus, wherein the effective control moisture value is set by a water content in addition to the requirement of the fifth aspect. I do. According to the present invention, the effective control moisture value can be changed by the amount of water that is an operating factor of the fluidized bed treatment apparatus, and the physical properties of the granulated product according to the effective control moisture value can be predicted.

【0019】更にまた請求項8記載の流動層処理装置に
おける粉粒体の造粒制御方法は、前記請求項5記載の要
件に加え、前記実効制御水分値は制御水分上昇率により
設定することを特徴とする。この発明によれば、実効制
御水分値を流動層処理装置の操作因子である制御水分上
昇率により変更し、実効制御水分値に応じた造粒製品の
物性を予測することができる。
According to a further aspect of the present invention, there is provided a method for controlling granulation of a granular material in a fluidized bed treatment apparatus, wherein the effective controlled moisture value is set by a controlled moisture increase rate. Features. According to the present invention, the physical property of the granulated product according to the effective control moisture value can be predicted by changing the effective control moisture value by the control moisture increase rate which is an operation factor of the fluidized bed treatment apparatus.

【0020】更にまた請求項9記載の流動層処理装置に
おける粉粒体の造粒制御方法は、前記請求項1、2また
は3記載の要件に加え、流動中の粉粒体の水分値を近赤
外線式水分計を用いて測定し、検量線作成時の運転デー
タを用いて原料物性によって異なる予測式中の定数を求
めることを特徴とする。この発明によれば、流動層処理
装置及び原料粉体に応じた予測式を立てることができ
る。そしてこれら各請求項記載の発明の構成を手段とし
て前記課題の解決を図っているのである。
According to a ninth aspect of the present invention, there is provided a method for controlling granulation of a granular material in a fluidized bed processing apparatus, wherein the moisture value of the granular material during fluidization is set to a near value. It is characterized by measuring using an infrared moisture meter, and using operating data at the time of preparing a calibration curve to obtain constants in a prediction equation that varies depending on the physical properties of raw materials. According to the present invention, it is possible to formulate a prediction equation according to the fluidized bed processing apparatus and the raw material powder. The object of the present invention is achieved by means of the configuration of the invention described in each of the claims.

【0021】[0021]

【発明の実施の形態】以下本発明の適用対象である流動
層処理装置1の構成について説明した後、その作動状態
と併せて本発明の造粒制御方法について説明する。符号
1は流動層処理装置であって、粉粒体Gの乾燥、造粒、
コーティング等を行う公知の構成の装置であり、図1に
示すように流動風吹込室2、流動室3、噴霧室4、フィ
ルタ室5を連接して構成される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The configuration of a fluidized bed processing apparatus 1 to which the present invention is applied will be described below, and then the granulation control method of the present invention will be described together with its operating state. Reference numeral 1 denotes a fluidized bed treatment apparatus for drying, granulating,
This is an apparatus having a known configuration for performing coating or the like, and is configured by connecting a flowing air blowing chamber 2, a flowing chamber 3, a spray chamber 4, and a filter chamber 5 as shown in FIG.

【0022】流動風吹込室2は流動層処理装置1の最下
部に位置し、上面を開口した円筒状の中空部材から成
り、その側周部等に適宜熱風供給装置等が接続される。
また流動室3は前記流動風吹込室2の上部に位置する一
例として逆円錐台形の中空室であり、底部つまり流動室
3と流動風吹込室2との境界部には、多孔板あるいは金
網等を適用した目皿板3Aが設けられる。また近赤外線
式水分計3aが、そのセンシング部を流動室3内に臨ま
せて具えられる。
The fluidized-air blowing chamber 2 is located at the lowermost part of the fluidized-bed processing device 1 and is formed of a cylindrical hollow member having an open upper surface, and a hot-air supply device or the like is appropriately connected to a side peripheral portion thereof.
The flow chamber 3 is, for example, an inverted truncated cone-shaped hollow chamber located at the upper part of the flowing air blowing chamber 2, and a bottom plate, that is, a boundary between the flowing chamber 3 and the flowing air blowing chamber 2, is provided with a perforated plate or a wire mesh. Is provided. A near-infrared moisture meter 3a is provided with its sensing part facing the inside of the flow chamber 3.

【0023】噴霧室4は前記流動室3の上部に位置する
円筒状の部材から成り、内部には水あるいは結合剤とな
るバインダ液Bを噴霧するための噴霧ノズル6が設置さ
れている。噴霧ノズル6には外部に適宜ポンプ6a、バ
ルブ6b等を具え、噴霧ノズル6から噴出されるバイン
ダ液B等の噴霧液速度あるいは噴霧空気圧の調節を可能
にしたものである。またバインダ液B用のタンク6cに
は液面センサ等を設けたり、タンク6cとポンプ6aと
をつなぐ管等に流量計を設けることで、これらの液量計
6dにより、流動室3に供給されたバインダ液Bの量を
計測可能にする。
The spray chamber 4 is composed of a cylindrical member located above the flow chamber 3, and has a spray nozzle 6 for spraying water or a binder liquid B serving as a binder. The spray nozzle 6 is provided with a pump 6a, a valve 6b and the like as appropriate on the outside so that the speed of the spray liquid such as the binder liquid B ejected from the spray nozzle 6 or the spray air pressure can be adjusted. A tank 6c for the binder liquid B is provided with a liquid level sensor or the like, or a pipe or the like connecting the tank 6c and the pump 6a is provided with a flow meter. Measurement of the amount of the binder liquid B is performed.

【0024】フィルタ室5は前記噴霧室4の上部に位置
し、内部には粉粒体Gと気体とを分離するためのバグフ
ィルタ7が組み込んであり、装置外へ粉粒体Gが流出し
ないようにしてある。
The filter chamber 5 is located above the spray chamber 4 and incorporates a bag filter 7 for separating the powder G from the gas, so that the powder G does not flow out of the apparatus. It is like that.

【0025】符号10は粒度測定装置であって、このも
のは流動層処理装置1の流動室3の外部における適宜の
位置に付設され、サンプリング装置11と、導管15
と、レーザ光式粒径センサ20と、空輸配管16とを具
えて成る。
Reference numeral 10 denotes a particle size measuring device, which is provided at an appropriate position outside the fluidized chamber 3 of the fluidized bed processing apparatus 1, and includes a sampling device 11 and a conduit 15
And a laser beam type particle size sensor 20 and an air piping 16.

【0026】サンプリング装置11は、一例として流動
層処理装置1における流動室3に標準仕様として設けら
れることのあるサンプリング孔を利用して流動室3の外
部に付設されるものであり、このようにした場合には既
設の装置についても改造することなく設置が可能であ
る。このサンプリング装置11は実質的にスクリューコ
ンベヤを構成するものであって、流動室3に対して一端
の粒子取入口14がその内部に臨むようにして設置され
る。流動室3内で流動状態にある粉粒対Gは、粒子取入
口14より取り込まれ、サンプリング装置11内部へと
移送される。
As an example, the sampling device 11 is provided outside the fluidizing chamber 3 by using a sampling hole which may be provided as a standard specification in the fluidizing chamber 3 of the fluidized bed processing apparatus 1. In that case, the existing device can be installed without modification. This sampling device 11 substantially constitutes a screw conveyor, and is installed with the particle inlet 14 at one end facing the inside of the flow chamber 3. The powder particles G in a fluidized state in the fluidized chamber 3 are taken in from the particle inlet 14 and transferred to the inside of the sampling device 11.

【0027】次に導管15について説明する。このもの
はサンプリング装置11と後述する空輸配管16との間
に装着される。導管15の両側部には反射防止コーティ
ングガラス17を具える。このものは表面をコーティン
グ処理した光学ガラスであり、入射するレーザ光をその
境界面において反射、散乱することなく透過させる。反
射防止コーティングガラス17の内側には適宜エアパー
ジ機構を具えてもよい。
Next, the conduit 15 will be described. This is mounted between the sampling device 11 and an air transportation pipe 16 described later. An anti-reflective coating glass 17 is provided on both sides of the conduit 15. This is an optical glass whose surface is coated, and transmits an incident laser beam without being reflected and scattered at a boundary surface thereof. An air purge mechanism may be appropriately provided inside the anti-reflection coating glass 17.

【0028】次にレーザ光式粒径センサ20について説
明する。このものは既存のセンサであり、図2に示すよ
うに、He−Neレーザ21から発射され、コリメータ
22を経たレーザ光が粉粒体Gにより散乱し、このレー
ザ光をセンサ23により受光し、その強さ等から散乱物
質である粉粒体Gの粒径を測定するものである。特にラ
マン効果を利用したタイプは散乱光の波長が発射光と異
なるのでSN比が高く、高精度の測定が可能である。ま
たサンプリング周期は0.6〜500msの範囲で可変
である。なお本実施の形態ではレーザ光散乱式の粒径セ
ンサを用いたが、レーザ光回折法等の粒径センサを用い
てもよい。またレーザ光式粒径センサ20のセンシング
部が直接流動室3内に臨み、サンプリング装置11を必
要としないタイプのものも用いることができる。
Next, the laser beam type particle size sensor 20 will be described. This is an existing sensor, and as shown in FIG. 2, the laser light emitted from the He-Ne laser 21 and passing through the collimator 22 is scattered by the powder G, and the laser light is received by the sensor 23. The particle size of the powder G, which is a scattering substance, is measured from the strength or the like. In particular, the type using the Raman effect has a high SN ratio because the wavelength of the scattered light is different from that of the emitted light, so that highly accurate measurement is possible. The sampling period is variable in the range of 0.6 to 500 ms. Although a laser light scattering type particle size sensor is used in this embodiment, a particle size sensor such as a laser light diffraction method may be used. Further, a type in which the sensing part of the laser beam type particle size sensor 20 directly faces the flow chamber 3 and does not require the sampling device 11 can be used.

【0029】上述したように構成される粒度測定装置1
0に対し粉粒体Gは、導管15内を重力で落下し、落下
中に反射防止コーティングガラス17間のほぼ中心を通
過し、その際に照射されているレーザ光により粒子径の
測定が行われる。
The particle size measuring apparatus 1 configured as described above
On the other hand, the powder G falls in the conduit 15 by gravity, passes through almost the center between the anti-reflection coating glasses 17 during the fall, and the particle diameter is measured by the laser beam irradiated at that time. Will be

【0030】上述したようにして行われるレーザ光式粒
径センサ20による所要測定時間は約2秒であり、この
間に200回の測定を行い、その平均を演算して出力す
ることが可能である。またレーザ光式粒度センサ20は
1〜2000μmまでの非常に広い範囲の粒径を、一台
のセンサで測定することが可能であり、通常の造粒操作
における粒度範囲をすべてカバーしている。
The required measurement time by the laser beam type particle size sensor 20 performed as described above is about 2 seconds. During this time, 200 measurements can be performed, and the average can be calculated and output. . Further, the laser beam type particle size sensor 20 can measure a very wide range of particle size from 1 to 2000 μm with one sensor, and covers the entire range of particle size in a normal granulation operation.

【0031】次に前記粒度測定装置10による測定値の
解析等を行うコンピュータ25について説明する。この
ものは一例として既存のパソコンであり、粒子加工に必
要な平均粒子径、均一度、粒度分布等を演算し、その結
果を出力する。またこの出力値はJIS規格のふるいに
準拠させることが好ましい。なお、本実施の形態ではコ
ンピュータ25にパソコンを用いたが、シングルボード
コンピュータやEWS等を用いてもよい。
Next, the computer 25 for analyzing the measured values by the particle size measuring apparatus 10 will be described. This is, for example, an existing personal computer, which calculates the average particle diameter, uniformity, particle size distribution, and the like necessary for particle processing, and outputs the result. It is preferable that the output value conforms to a JIS sieve. Although a personal computer is used as the computer 25 in the present embodiment, a single-board computer, EWS, or the like may be used.

【0032】本発明の適用対象である流動層処理装置1
は上述したとおりであり、以下このものを用いた本発明
の造粒制御方法について説明する。本発明の造粒制御方
法の概要は検量線作成時の運転データ(原料水分値、噴
霧液滴径、平均粒子径、最大制御水分値、実効制御水分
値)を用い、このデータから造粒に関与する原料物性値
を推定し、この推定値を基に流動層処理装置1の操作条
件を予測し、その操作条件での造粒実験を繰り返すこと
で、粉粒体Gの平均粒子径、均一度、見掛密度等を漸
次、目標に近付けていくというものである。前記検量線
実験とは、赤外線水分計の吸光度値と層内水分値を対応
させるための予備実験であり、実際に流動層処理装置1
を用いて粉粒体Gの造粒を行う実験である。
The fluidized bed processing apparatus 1 to which the present invention is applied
Is as described above, and a granulation control method of the present invention using the same will be described below. The outline of the granulation control method of the present invention is based on the operation data (raw material moisture value, spray droplet diameter, average particle diameter, maximum control moisture value, effective control moisture value) at the time of preparing the calibration curve, and the data is used for granulation. The physical properties of the raw materials involved are estimated, the operating conditions of the fluidized bed treatment apparatus 1 are predicted based on the estimated values, and the granulation experiment is repeated under the operating conditions, whereby the average particle diameter and average Once, the apparent density and the like are gradually approached to the target. The calibration curve experiment is a preliminary experiment for associating the absorbance value of the infrared moisture meter with the water content in the bed.
This is an experiment in which the granules G are granulated using the above method.

【0033】平均粒子径予測 図3に示すように、各種原料を用いた流動層造粒実験を
行った結果、流動層処理装置1を用いて得られる粉粒体
Gの平均粒子径は次式で近似される。
Average Particle Diameter Prediction As shown in FIG. 3, as a result of a fluidized bed granulation experiment using various raw materials, the average particle diameter of the granular material G obtained by using the fluidized bed treatment apparatus 1 is as follows. Is approximated by

【0034】[0034]

【数7】 平均粒子径=a1 ×噴霧液滴径×実効制御水分値+b1 ───(1) a1 ,b1 ;原料系により決まる定数 実効制御水分値;f(制御水分値、加水量、制御水分上
昇率)
Average particle diameter = a 1 × spray droplet diameter × effective control moisture value + b 1 ─── (1) a 1 , b 1 ; constant determined by raw material system effective control moisture value; f (control moisture value, Water content, controlled water rise rate)

【0035】ここで噴霧液滴径とは、噴霧ノズル6から
噴霧されるバインダ液Bの滴径である。また制御水分値
とは、流動室3内の水分値であり目標値として設定され
た値である。更にまた加水量とは、流動室3内に噴霧さ
れたバインダ液Bの量である。更にまた制御水分上昇率
は、後述するように検量線作成時に決定される値であ
る。そして実効制御水分値とは、制御水分値、加水量及
び制御水分上昇率の関数であり、一例として次式によっ
て定義される。
Here, the term “spray droplet diameter” refers to the droplet diameter of the binder liquid B sprayed from the spray nozzle 6. The control moisture value is a moisture value in the fluidized chamber 3 and is a value set as a target value. Furthermore, the amount of water is the amount of the binder liquid B sprayed into the fluid chamber 3. Furthermore, the control water increase rate is a value determined at the time of creating a calibration curve as described later. The effective control moisture value is a function of the control moisture value, the amount of water added, and the control moisture increase rate, and is defined by the following equation as an example.

【0036】[0036]

【数8】 実効制御水分値=((Cw−Rm)/Aw)×(Aw−(Cw−Rm)/2L )───(2) Cw;制御水分値 Aw;加水量 L;制御水分上昇率 Rm;原料水分値[Equation 8] Effective control moisture value = ((Cw−Rm) / Aw) × (Aw− (Cw−Rm) / 2L) ─── (2) Cw; Control moisture value Aw; Water content L; Control moisture rise Rate Rm; raw material moisture value

【0037】前記(1)式を種々の原料粉体から得たデ
ータに適用したところ、相関係数は原料系によって0.
75〜0.97の範囲であった。従って、前記定数
1 ,b1 を決定すれば各原料系での平均粒子径が推定
できることとなる。
When the above equation (1) was applied to data obtained from various raw material powders, the correlation coefficient was found to be 0.1 depending on the raw material system.
The range was from 75 to 0.97. Therefore, if the constants a 1 and b 1 are determined, the average particle size in each raw material system can be estimated.

【0038】前記定数a1 については図4に示すよう
に、水に溶けやすい原材料等若干の例外を除いて次式に
より求めることができる。
As shown in FIG. 4, the constant a 1 can be obtained by the following equation with some exceptions such as raw materials that are easily soluble in water.

【0039】[0039]

【数9】 a1 =(3.98/(最大制御水分−原料水分値))−0.03───(3)A 1 = (3.98 / (maximum controlled moisture−raw material moisture value)) − 0.03─── (3)

【0040】ここで最大制御水分値とは、造粒操作が可
能な流動室内の水分の最大値を意味する。上記(3)式
を種々の原料粉体から得たデータに適用したところ、相
関係数は原料系によって0.8前後であった。この最大
制御水分値の見極めには熟練を要することや、原料水分
値にも変動があることから、検量線実験でのデータは暫
定値とし、(3)式より得られたa1の値を(1)式に
代入してb1 の暫定値を算出する。
Here, the maximum control moisture value means the maximum value of the moisture in the fluidized chamber in which the granulation operation is possible. When the above equation (3) was applied to data obtained from various raw material powders, the correlation coefficient was around 0.8 depending on the raw material system. Since the determination of the maximum control moisture value requires skill and the raw material moisture value also fluctuates, the data in the calibration curve experiment are provisional values, and the value of a 1 obtained from the equation (3) is used as the value. (1) are substituted into equation to calculate the provisional value of b 1.

【0041】前記制御水分上昇率は噴霧液速度や熱風の
温度、風量、原料の物性等に依存し、次式により求める
ことができる。
The above-mentioned controlled water increase rate depends on the speed of the spray liquid, the temperature and the amount of hot air, the physical properties of the raw material, and the like, and can be obtained by the following equation.

【0042】[0042]

【数10】 制御水分上昇率=d(制御水分値,%)/d(加水量,%)───(4)## EQU10 ## Controlled water increase rate = d (controlled water value,%) / d (water content,%) / (4)

【0043】上記(4)式中の制御水分値及び加水量は
簡単に実測できるため検量線作成時に決定することがで
きる。
Since the control moisture value and the water content in the above equation (4) can be easily measured, they can be determined when a calibration curve is prepared.

【0044】これらの式を用いた流動層処理装置1の操
作因子の決定には、前記(1)式に係数a1 ,b1 の暫
定値を代入し、目標とする平均粒子径を代入することで
「噴霧液滴径×実効制御水分値」を算出し、その条件で
1度目の実験を行う。この一度目の実験結果及び検量線
実験のデータを再び(1)式に代入して再度係数a1
1 の推定値を計算し、次回の実験での条件を算出す
る。以上のステップの繰り返しにより平均粒子径の予測
を行うのである。
In determining the operating factors of the fluidized bed treatment apparatus 1 using these equations, the provisional values of the coefficients a 1 and b 1 are substituted into the above equation (1), and the target average particle diameter is substituted. Thus, “spray droplet diameter × effective control moisture value” is calculated, and the first experiment is performed under the conditions. The results of the first experiment and the data of the calibration curve experiment are substituted into equation (1) again, and the coefficients a 1 ,
to compute an estimate of b 1, and calculates the condition of the next experiment. The average particle size is predicted by repeating the above steps.

【0045】均一度予測 粉粒体Gの粒度分布に関する他のパラメータとして粒径
の均一度があり次式により定義する。この均一度は造粒
製品の見栄え、歩留りや後述する見掛密度に大きく影響
を与えるパラメータである。
Uniformity Prediction Another parameter related to the particle size distribution of the granular material G is the particle size uniformity, which is defined by the following equation. The uniformity is a parameter that greatly affects the appearance, yield, and apparent density of the granulated product.

【0046】[0046]

【数11】均一度=75%粒子径/25%粒子径## EQU11 ## Uniformity = 75% particle diameter / 25% particle diameter

【0047】このように定義した均一度は、粒子径分布
が正規分布すると仮定しその標準偏差を推定すること
で、次式により近似することができる。
The uniformity thus defined can be approximated by the following equation by assuming that the particle size distribution is a normal distribution and estimating the standard deviation.

【0048】[0048]

【数12】 均一度≒(平均粒子径+0.68×標準偏差)/(平均粒子径−0.68×標 準偏差)───(5) 0.68;片側確率25.175%に対する測度(12) Uniformity {(mean particle size + 0.68 × standard deviation) / (mean particle size−0.68 × standard deviation)} (5) 0.68; Measure for one-sided probability 25.175%

【0049】ここで粒度分布の標準偏差を推定する理由
は、粒度分布の標準偏差の値は平均粒子径の値と高い正
の相関を有しており、粒度分布の標準偏差は前記平均粒
子径の予測と同様のステップで次式により推定できるか
らである。
The reason for estimating the standard deviation of the particle size distribution is that the value of the standard deviation of the particle size distribution has a high positive correlation with the value of the average particle size, and the standard deviation of the particle size distribution is This is because it can be estimated by the following equation in the same steps as the prediction of.

【0050】[0050]

【数13】 標準偏差=a2 ×噴霧液滴径×実効制御水分値+b2 ───(6) a2 ,b2 ;原料系により決まる定数 実効制御水分値;f(制御水分値、加水量、制御水分上
昇率)
## EQU13 ## Standard deviation = a 2 × spray droplet diameter × effective control moisture value + b 2 ) (6) a 2 , b 2 ; constant determined by raw material system effective control moisture value; f (control moisture value, addition Water volume, controlled moisture rise rate)

【0051】このような形の式を種々の原料粉体から得
たデータに適用したところ、相関係数は原料系によって
0.70〜0.98の範囲であった。またa2 ついては
次式の関係にある。
When this type of equation was applied to data obtained from various raw material powders, the correlation coefficient was in the range of 0.70 to 0.98 depending on the raw material system. Also, a 2 has the following relationship.

【0052】[0052]

【数14】 a2 =0.707×a1 −0.101───(7)A 2 = 0.707 × a 1 −0.101─── (7)

【0053】従って前記平均粒子径を予測したのと同様
の手順で、(6)式により粒度分布の標準偏差を算出
し、(5)式より均一度予測を行うのである。また
(5)式は、均一度が平均粒子径の関数であることを示
すものであり、従って平均粒子径を制御することで均一
度をコントロールすることが可能となる。
Therefore, the standard deviation of the particle size distribution is calculated by the equation (6) and the uniformity is estimated by the equation (5) in the same procedure as that for predicting the average particle diameter. Equation (5) shows that the uniformity is a function of the average particle diameter. Therefore, the uniformity can be controlled by controlling the average particle diameter.

【0054】見掛密度予測 見掛密度は製品の内容量と包装容器の大きさを決定する
ために重要な因子である。個々の原料系に対しては、そ
の見掛密度は原料見掛密度及び平均粒子径や均一度すな
わち粒度分布に依存する(寄与率75%前後)。よって
見掛密度の予測は、平均粒子径と分布の標準偏差を予測
することに等しく、逆にいえば製品設計の際に、平均粒
子径と見掛密度を単独自在に設定することはできない。
この見掛密度と粒度分布の関係は次式のようになる。
Apparent Density Prediction Apparent density is an important factor in determining the content of a product and the size of a packaging container. The apparent density of an individual raw material system depends on the apparent density of the raw material and the average particle size and uniformity, that is, the particle size distribution (contribution ratio is around 75%). Therefore, the prediction of the apparent density is equivalent to the prediction of the average particle diameter and the standard deviation of the distribution. Conversely, the average particle diameter and the apparent density cannot be set independently at the time of product design.
The relationship between the apparent density and the particle size distribution is as follows.

【0055】[0055]

【数15】 見掛密度=a3 ×(平均粒子径/均一度)-1+b3 ───(8)[Expression 15] Apparent density = a 3 × (average particle diameter / uniformity) −1 + b 3 8 (8)

【0056】上記(8)式を種々の原料粉体から得たデ
ータに適用したところ、相関関係は原料系によって0.
78〜0.99の範囲であった。またb3 については次
式により近似される。
When the above equation (8) was applied to data obtained from various raw material powders, the correlation was found to be 0,1 depending on the raw material system.
The range was from 78 to 0.99. B 3 is approximated by the following equation.

【0057】[0057]

【数16】 b3 =原料の見掛密度−432.8×log(原料平均粒子径/原料見掛密度 )───(9)B 3 = apparent density of raw material−432.8 × log (average particle diameter of raw material / apparent density of raw material) ─── (9)

【0058】そこで見掛密度についても平均粒子径を予
測したのと同様の手順で、(8)式により予測するので
ある。また(8)式は、見掛密度が平均粒子径の関数で
あることを示すものであり、従って平均粒子径を制御す
ることで見掛密度をコントロールすることが可能とな
る。
Therefore, the apparent density is also predicted by the equation (8) in the same procedure as the prediction of the average particle diameter. Equation (8) shows that the apparent density is a function of the average particle diameter. Therefore, the apparent density can be controlled by controlling the average particle diameter.

【0059】予測システムの実証実験結果 上述した本発明による予測システムの実証実験を、市販
製品と全く同一の原料系三種を用いて行った。実証実験
は、設定した目標品質の粉粒体を造粒するための条件を
設定するのに、何回の実験が必要であったか(到達実験
数)を表したものである。この結果を下記表1及び図
5、6に示す。
Verification Test Results of the Prediction System The verification test of the prediction system according to the present invention described above was carried out using three kinds of raw material systems which were exactly the same as the commercially available products. The demonstration experiment shows how many experiments were required (the number of experiments reached) in order to set conditions for granulating the set target quality granules. The results are shown in Table 1 below and FIGS.

【0060】[0060]

【表1】 [Table 1]

【0061】各原料系は副原料を合わせると10種類近
い原料の混合物であり、原料の物性も生産用のものを用
いたにもかかわらず、4回程度の実験で(検量線実験も
含む)目標値の90%の値を達成した。なお、10%程
度の誤差はサンプリング、測定等の誤差、装置の運転状
況の誤差等で逃れ得ないものとし、事実、同一の条件で
造粒操作を繰り返してもこの程度の誤差は認められるの
で、これを許容範囲とした。
Each raw material system is a mixture of nearly 10 types of raw materials including the auxiliary raw materials, and the physical properties of the raw materials used in the production were about four times (including the calibration curve experiment) despite the fact that the raw materials were used for production. A value of 90% of the target value was achieved. In addition, it is assumed that an error of about 10% cannot be escaped due to an error in sampling, measurement, etc., an error in the operation state of the apparatus, and the like. In fact, even if the granulation operation is repeated under the same conditions, such an error is recognized. This was regarded as an allowable range.

【0062】スケールアップ ところで、流動層処理装置1による品質操作にかかる難
解な作業として、実験機から生産機へのスケールアップ
がある。これまで適切なスケールアップファクターが解
らなかったため、実験機で得られた造粒条件も生産機で
は大きく変更しなければならず、この条件設定もエキス
パートの勘と経験に頼らざるを得なかった。特に数10
0kgもの原料を用いる生産機においては、トライアル
・アンド・エラーによる条件決定も容易には行えない。
Scale-up By the way, there is a scale-up from an experimental machine to a production machine as an esoteric operation related to the quality operation by the fluidized bed processing apparatus 1. Until now, the appropriate scale-up factor could not be determined, so that the granulation conditions obtained on the experimental machine had to be changed greatly on the production machine, and the setting of these conditions had to rely on expert intuition and experience. Especially the number 10
In a production machine using as much as 0 kg of raw material, it is not easy to determine conditions by trial and error.

【0063】そこでスケールアップの因子には「制御水
分上昇率」のみが影響するとの仮定の下、生産機FLO
−300型(株式会社大川原製作所製、容量300k
g)での「制御水分上昇率」を測定し、これを実験機F
LO−5M(株式会社大川原製作所製、容量5kg)に
より得られた予測式に代入して生産機での予測を行っ
た。この結果は下記表2に示すように、「制御水分上昇
率」が良いスケールアップファクターとなることがわか
った。
Under the assumption that only the “control moisture rise rate” affects the scale-up factor, the production machine FLO
-300 type (300k capacity, manufactured by Okawara Corporation)
g) was measured, and this was measured using the experimental machine F.
The prediction was performed by a production machine by substituting into a prediction formula obtained by LO-5M (manufactured by Okawara Seisakusho Co., Ltd., capacity: 5 kg). As shown in Table 2 below, the results show that the “controlled moisture increase rate” is a good scale-up factor.

【0064】[0064]

【表2】 [Table 2]

【0065】従って前記実験機と生産機とでは設置条件
や流動状態の違いにより最大制御水分値と制御水分上昇
率が異なるが、これを生産機での検量線実験のときに併
せて測定すれば、そのデータを用いてスケールアップが
円滑に行われる。また「制御水分上昇率」をオンライン
で検出し、制御水分値を微調整することで既設変動や造
粒原料の品質のバラツキを吸収して安定した品質の造粒
操作が可能となる。
Therefore, the maximum control moisture value and the control moisture increase rate differ between the experimental machine and the production machine due to the difference in the installation conditions and the flow state. However, if this is measured together with the calibration curve experiment in the production machine, The scale-up is performed smoothly using the data. Further, by detecting the "control moisture increase rate" online and finely adjusting the control moisture value, it is possible to absorb the existing fluctuations and the variation in the quality of the granulation raw material, thereby enabling a stable quality granulation operation.

【0066】自動制御システム 上述のように、粉粒体G品質の評価パラメータとして、
粒度分布(平均粒子径)、見掛密度、均一度の目標値を
設定して、操作因子との関係を調査した結果、以下の関
係があることがわかった。(1)式に基づき、ココア造
粒において目標とする平均粒子径を300μmとした場
合を計算すると各操作因子間には図7に示す関係があ
る。ただしここでは熱風温度60℃、熱風風量1m/s
ecとして計算を行った。流動層処理装置1の操作因子
のうち、噴霧液滴径が操作条件として最も扱いやすいこ
とから、主制御対象として噴霧液滴径を採用した。加水
量、水分、熱風温度、流動風速については固定とし、噴
霧液滴径が制御範囲を超える場合のみ、補助的に用いる
こととした。このときの平均粒子径制御のファジー制御
ルールを下記表3、4に示す。
Automatic control system As described above, the evaluation parameters of the quality of the powder G are as follows.
The target values of the particle size distribution (average particle size), apparent density, and uniformity were set, and the relationship with the operation factor was investigated. As a result, the following relationships were found. When calculating the case where the target average particle diameter in cocoa granulation is set to 300 μm based on the equation (1), there is a relationship shown in FIG. 7 between the operation factors. However, here, the hot air temperature is 60 ° C and the hot air flow rate is 1m / s.
The calculation was performed as ec. Among the operating factors of the fluidized bed processing apparatus 1, the spray droplet diameter was adopted as the main control target because the spray droplet diameter was the easiest to handle as the operating condition. The amount of water added, water content, hot air temperature, and flowing air velocity were fixed, and were used supplementarily only when the diameter of the sprayed droplet exceeded the control range. The fuzzy control rules for controlling the average particle size at this time are shown in Tables 3 and 4 below.

【0067】[0067]

【表3】 [Table 3]

【0068】[0068]

【表4】 [Table 4]

【0069】上記表3、表4中のSPは平均粒子径の設
定値(セットポイント)である。
SP in Tables 3 and 4 is a set value (set point) of the average particle diameter.

【0070】[0070]

【発明の効果】本発明は以上述べたような構成を有する
ものであり、以下のような効果を奏する。まず請求項1
記載の発明によれば、粉粒体Gの平均粒子径を流動層処
理装置1の操作因子及び原料粉体の物性処方の関数とし
て予測することで、所望の造粒製品物性の応じた流動層
処理装置1の運転を行うことができる。
The present invention has the above-described configuration and has the following effects. First, claim 1
According to the described invention, the fluidized bed in accordance with the desired physical properties of the granulated product is predicted by predicting the average particle size of the granular material G as a function of the operating factor of the fluidized bed treatment apparatus 1 and the physical property formulation of the raw material powder. The operation of the processing apparatus 1 can be performed.

【0071】また請求項2記載の発明によれば、粉粒体
Gの均一度を流動層処理装置1の操作因子及び原料粉体
の物性処方の関数として予測することで、所望の造粒製
品物性の応じた流動層処理装置1の運転を行うことがで
きる。
According to the second aspect of the present invention, the desired granulated product is obtained by predicting the uniformity of the granular material G as a function of the operating factor of the fluidized bed treatment apparatus 1 and the physical property formulation of the raw material powder. The operation of the fluidized bed processing apparatus 1 according to the physical properties can be performed.

【0072】更にまた請求項3記載の発明によれば、粉
粒体Gの見掛密度を流動層処理装置1の操作因子及び原
料粉体の物性処方の関数として予測することで、所望の
造粒製品物性の応じた流動層処理装置1の運転を行うこ
とができる。
Furthermore, according to the third aspect of the present invention, the apparent density of the granular material G is predicted as a function of the operating factor of the fluidized bed processing apparatus 1 and the physical property prescription of the raw material powder, so that the desired production is achieved. The operation of the fluidized bed processing apparatus 1 according to the physical properties of the granular product can be performed.

【0073】また請求項4記載の発明によれば、流動層
処理装置1の操作因子の一つである噴霧液滴径に応じた
造粒製品の物性を予測することができる。
According to the fourth aspect of the present invention, it is possible to predict the physical properties of the granulated product according to the spray droplet diameter, which is one of the operating factors of the fluidized bed processing apparatus 1.

【0074】更にまた請求項5記載の発明によれば、流
動層処理装置1の操作因子の一つである実効制御水分値
に応じた造粒製品の物性を予測することができる。
Further, according to the fifth aspect of the present invention, it is possible to predict the physical properties of the granulated product according to the effective control moisture value which is one of the operating factors of the fluidized bed processing apparatus 1.

【0075】更にまた請求項6記載の発明によれば、実
効制御水分値を流動層処理装置1の操作因子である制御
水分値により変更し、実効制御水分値に応じた造粒製品
の物性を予測することができる。
Further, according to the present invention, the effective control moisture value is changed by the control moisture value which is an operation factor of the fluidized bed treatment apparatus 1, and the physical properties of the granulated product according to the effective control moisture value are changed. Can be predicted.

【0076】更にまた請求項7記載の発明によれば、実
効制御水分値を流動層処理装置1の操作因子である加水
量により変更し、実効制御水分値に応じた造粒製品の物
性を予測することができる。
According to the seventh aspect of the present invention, the effective control moisture value is changed by the amount of water which is an operating factor of the fluidized bed treatment apparatus 1 to predict the physical properties of the granulated product according to the effective control moisture value. can do.

【0077】更にまた請求項8記載の発明によれば、実
効制御水分値を流動層処理装置1の操作因子である制御
水分上昇率により変更し、実効制御水分値に応じた造粒
製品の物性を予測することができる。
According to the eighth aspect of the present invention, the effective control moisture value is changed by the control moisture increase rate which is an operation factor of the fluidized bed treatment apparatus 1, and the physical properties of the granulated product according to the effective control moisture value are changed. Can be predicted.

【0078】更にまた請求項9記載の発明によれば、流
動層処理装置1及び原料粉体に応じた予測式を立てるこ
とができる。これらによって最低造粒実験回数で、全く
初めて取り扱う材料でも最適造粒条件の予測式を求める
ことが可能であり、得られた予測式を用いて造粒制御を
行うことにより流動層造粒法による流動層処理装置1の
自動運転が可能となる。
Further, according to the ninth aspect of the present invention, it is possible to formulate a prediction equation according to the fluidized bed processing apparatus 1 and the raw material powder. With these, it is possible to obtain a prediction formula for the optimum granulation conditions even for the material handled for the first time with the minimum number of granulation experiments, and by performing granulation control using the obtained prediction formula, the fluidized bed granulation method Automatic operation of the fluidized bed processing apparatus 1 becomes possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の造粒制御方法の適用対象である流動層
処理装置を示す骨格図である。
FIG. 1 is a skeleton diagram showing a fluidized bed processing apparatus to which a granulation control method of the present invention is applied.

【図2】レーザ光式粒径センサの測定原理を模式的に示
すブロック図である。
FIG. 2 is a block diagram schematically illustrating a measurement principle of a laser beam type particle size sensor.

【図3】各種原料の液滴径×実効制御水分値−平均粒子
径特性を示すグラフである。
FIG. 3 is a graph showing the relationship between the droplet diameter of various raw materials × effective control moisture value−average particle diameter characteristics.

【図4】(最大制御水分−原料水分値)−a1 特性を示
すグラフである。
[Figure 4] - is a graph illustrating the (maximum control moisture material water content value) -a 1 properties.

【図5】(液滴径×実効制御水分)−平均粒子径特性を
示すグラフである。
FIG. 5 is a graph showing (droplet size × effective control moisture) -average particle size characteristics.

【図6】(平均粒子径/均一度)−見掛密度特性を示す
グラフである。
FIG. 6 is a graph showing (average particle diameter / uniformity) -apparent density characteristics.

【図7】平均粒子径の操作因子である噴霧液滴定、加水
量、制御水分の関係を示すグラフである。
FIG. 7 is a graph showing the relationship between the spray droplet concentration, the amount of water added, and the controlled moisture, which are operating factors for the average particle diameter.

【符号の説明】[Explanation of symbols]

1 流動層処理装置 2 流動風吹込室 3 流動室 3A 目皿板 3a 近赤外線水分計 4 噴霧室 5 フィルタ室 6 噴霧ノズル 6a ポンプ 6b バルブ 6c タンク 6d 液量計 7 バグフィルタ 10 粒度測定装置 11 サンプリング装置 14 粒子取入口 15 導管 16 空輸配管 17 反射防止コーティングガラス 20 レーザ光式粒径センサ 21 He−Neレーザ 22 コリメータ 23 センサ 25 コンピュータ B バインダ液 G 粉粒体 REFERENCE SIGNS LIST 1 fluidized bed treatment device 2 fluidized air blowing chamber 3 fluidized chamber 3A perforated plate 3a near infrared moisture meter 4 spraying chamber 5 filter chamber 6 spraying nozzle 6a pump 6b valve 6c tank 6d fluid meter 7 bag filter 10 particle size measuring device 11 sampling Apparatus 14 Particle inlet 15 Conduit 16 Airborne pipe 17 Anti-reflection coating glass 20 Laser beam type particle size sensor 21 He-Ne laser 22 Collimator 23 Sensor 25 Computer B Binder liquid G Powder

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小野 誠 神奈川県川崎市麻生区白山4丁目5番1号 (72)発明者 井上 琢也 神奈川県横浜市戸塚区平戸町5434番地4 (72)発明者 脇屋 和紀 静岡県藤枝市旭が丘9−10 (72)発明者 山崎 一正 静岡県藤枝市上藪田283−13 (72)発明者 田畑 浩治 静岡県焼津市小川628−2 栄進II−102 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Makoto Ono 4-5-1, Shirayama, Aso-ku, Kawasaki City, Kanagawa Prefecture (72) Inventor Takuya Inoue 5434-4, Hirado-cho, Totsuka-ku, Yokohama-shi, Kanagawa Prefecture (72) Inventor Kazuki Wakiya 9-10 Asahigaoka, Fujieda City, Shizuoka Prefecture (72) Inventor Kazumasa Yamazaki 283-13, Kamiyabuta, Fujieda City, Shizuoka Prefecture (72) Koji Tabata 628-2 Ogawa, Yaizu City, Shizuoka Prefecture Eishin II-102

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 流動層造粒装置を用いて粉粒体を造粒す
る方法において、下式に基づいて制御パラメータを制御
して希望の平均粒子径の造粒品を得ることを特徴とす
る、粉粒体の造粒制御方法。 【数1】 平均粒子径=a1 ×噴霧液適径×実効制御水分値+b1 (ただし、a1 、b1 は原料によって定まる定数)
1. A method of granulating a granular material using a fluidized-bed granulator, wherein a control parameter is controlled based on the following equation to obtain a granulated product having a desired average particle diameter. , A method for controlling granulation of powder and granules. ## EQU1 ## Average particle diameter = a 1 × appropriate diameter of spray liquid × effective control moisture value + b 1 (where a 1 and b 1 are constants determined by raw materials)
【請求項2】 流動層造粒装置を用いて粉粒体を造粒す
る方法において、下式に基づいて制御パラメータを制御
して希望の均一度の造粒品を得ることを特徴とする、粉
粒体の造粒制御方法。 【数2】均一度=(平均粒子径+0.68×標準偏差)
/(平均粒子径−0.68×標準偏差) (ただし、標準偏差=a2 ×噴霧液滴径×実効制御水分
値+b22 ,b2 は原料系により決まる定数、0.68は片側
確率25.175%に対する測度)
2. A method for granulating a granular material using a fluidized-bed granulator, wherein a granulated product having a desired uniformity is obtained by controlling a control parameter based on the following equation. Granulation control method for granules. ## EQU2 ## Uniformity = (average particle diameter + 0.68 × standard deviation)
/ (Average particle diameter−0.68 × standard deviation) (however, standard deviation = a 2 × spray droplet diameter × effective control moisture value + b 2 a 2 , b 2 are constants determined by the raw material system, and 0.68 is one side Measure for probability 25.175%)
【請求項3】 流動層造粒装置を用いて粉粒体を造粒す
る方法において、下式に基づいて制御パラメータを制御
して希望の見掛密度の造粒品を得ることを特徴とする、
粉粒体の造粒制御方法。 【数3】 見掛密度=a3 ×(平均粒子径/均一度)-1+b3 (ただし、a3 ,b3 は原料によって定まる定数)
3. A method of granulating a granular material using a fluidized bed granulator, wherein a granulated product having a desired apparent density is obtained by controlling a control parameter based on the following equation. ,
Granulation control method for granules. [Equation 3] Apparent density = a 3 × (average particle diameter / uniformity) −1 + b 3 (where a 3 and b 3 are constants determined by raw materials)
【請求項4】 前記制御パラメータは噴霧液滴径である
ことを特徴とする請求項1、2または3記載の粉粒体の
造粒制御方法。
4. The method according to claim 1, wherein the control parameter is a spray droplet diameter.
【請求項5】 前記制御パラメータは実効制御水分値で
あることを特徴とする請求項1、2または3記載の粉粒
体の造粒方法。
5. The granulation method according to claim 1, wherein the control parameter is an effective control moisture value.
【請求項6】 前記実効制御水分値は制御水分値により
設定することを特徴とする請求項5記載の粉粒体の造粒
制御方法。
6. The method according to claim 5, wherein the effective control moisture value is set by a control moisture value.
【請求項7】 前記実効制御水分値は加水量により設定
することを特徴とする請求項5記載の粉粒体の造粒制御
方法。
7. The method according to claim 5, wherein the effective control moisture value is set based on the amount of water added.
【請求項8】 前記実効制御水分値は制御水分上昇率に
より設定することを特徴とする請求項5記載の粉粒体の
造粒制御方法。
8. The method according to claim 5, wherein the effective control moisture value is set based on a control moisture increase rate.
【請求項9】 流動中の粉粒体の水分値を近赤外線式水
分計を用いて測定し、検量線作成時の運転データを用い
て原料物性によって異なる予測式中の定数を求めること
を特徴とする請求項1、2または3記載の粉粒体の造粒
制御方法。
9. The method according to claim 1, wherein the moisture value of the flowing granular material is measured using a near-infrared ray moisture meter, and constants in a prediction equation differing depending on physical properties of the raw material are obtained using operation data at the time of preparing a calibration curve. The method for controlling granulation of a granular material according to claim 1, 2 or 3.
JP32607896A 1996-11-20 1996-11-20 Granulation control method of granular material in fluidized bed processing apparatus Expired - Lifetime JP3909382B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32607896A JP3909382B2 (en) 1996-11-20 1996-11-20 Granulation control method of granular material in fluidized bed processing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32607896A JP3909382B2 (en) 1996-11-20 1996-11-20 Granulation control method of granular material in fluidized bed processing apparatus

Publications (2)

Publication Number Publication Date
JPH10151336A true JPH10151336A (en) 1998-06-09
JP3909382B2 JP3909382B2 (en) 2007-04-25

Family

ID=18183873

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32607896A Expired - Lifetime JP3909382B2 (en) 1996-11-20 1996-11-20 Granulation control method of granular material in fluidized bed processing apparatus

Country Status (1)

Country Link
JP (1) JP3909382B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009006328A (en) * 2008-10-16 2009-01-15 Pauretsuku:Kk Method for treating fluidized layer of granular material
JP2011523896A (en) * 2008-06-10 2011-08-25 グラット マシーネン− ウント アパラーテバウ アクチエンゲゼルシャフト Drum type coating apparatus having NIR measurement unit
JP2013122464A (en) * 2008-02-01 2013-06-20 Glaxosmithkline Llc Method and apparatus for predicting properties of granulated material and dosage forms prepared therefrom
JP2015188788A (en) * 2014-03-27 2015-11-02 株式会社神戸製鋼所 Method for estimating particle size and standard deviation of granules, and method for controlling granulation process
CN113109217A (en) * 2021-04-19 2021-07-13 厦门厦钨新能源材料股份有限公司 Analysis method for apparent density of powder material
CN113398842A (en) * 2021-07-12 2021-09-17 云南中烟新材料科技有限公司 Method for improving yield of mixed particles prepared by boiling method and application
CN113608431A (en) * 2021-08-06 2021-11-05 山东大学 Dynamic control method for moisture in fluidized bed granulation process and application
CN116393037A (en) * 2023-02-09 2023-07-07 东北大学秦皇岛分校 Medicine quality control method, system, electronic equipment and medium
JP2023136573A (en) * 2022-03-17 2023-09-29 株式会社ダルトン Granule continuous determination device, continuous granulation system, and granule continuous determination method

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013122464A (en) * 2008-02-01 2013-06-20 Glaxosmithkline Llc Method and apparatus for predicting properties of granulated material and dosage forms prepared therefrom
JP2011523896A (en) * 2008-06-10 2011-08-25 グラット マシーネン− ウント アパラーテバウ アクチエンゲゼルシャフト Drum type coating apparatus having NIR measurement unit
JP2009006328A (en) * 2008-10-16 2009-01-15 Pauretsuku:Kk Method for treating fluidized layer of granular material
JP2015188788A (en) * 2014-03-27 2015-11-02 株式会社神戸製鋼所 Method for estimating particle size and standard deviation of granules, and method for controlling granulation process
CN113109217A (en) * 2021-04-19 2021-07-13 厦门厦钨新能源材料股份有限公司 Analysis method for apparent density of powder material
CN113109217B (en) * 2021-04-19 2024-03-01 厦门厦钨新能源材料股份有限公司 Analysis method for apparent density of powder material
CN113398842A (en) * 2021-07-12 2021-09-17 云南中烟新材料科技有限公司 Method for improving yield of mixed particles prepared by boiling method and application
CN113398842B (en) * 2021-07-12 2022-08-26 云南中烟新材料科技有限公司 Method for improving yield of mixed particles prepared by boiling method and application
CN113608431A (en) * 2021-08-06 2021-11-05 山东大学 Dynamic control method for moisture in fluidized bed granulation process and application
CN113608431B (en) * 2021-08-06 2024-02-02 山东大学 Dynamic control method and application of water in fluidized bed granulation process
JP2023136573A (en) * 2022-03-17 2023-09-29 株式会社ダルトン Granule continuous determination device, continuous granulation system, and granule continuous determination method
CN116393037A (en) * 2023-02-09 2023-07-07 东北大学秦皇岛分校 Medicine quality control method, system, electronic equipment and medium

Also Published As

Publication number Publication date
JP3909382B2 (en) 2007-04-25

Similar Documents

Publication Publication Date Title
Espinosa et al. Retrievals of aerosol optical and microphysical properties from Imaging Polar Nephelometer scattering measurements
JP3278671B2 (en) System and method for accurately depositing particles on a surface
JPH10151336A (en) Granulation control method for granular particle in fluidized bed treating device
JP2013511031A (en) Equipment for determining particle size
Tok et al. Monitoring granulation rate processes using three PAT tools in a pilot-scale fluidized bed
US20180056332A1 (en) Deviation handling apparatus and deviation handling method
Gavan et al. Fluidised bed granulation of two APIs: QbD approach and development of a NIR in-line monitoring method
US4644665A (en) Process for supervising and/or controlling of physical treatment processes and bioreactions in ventilation systems as well as device for executing the process
Parikh et al. Batch fluid bed granulation
EP0304192A1 (en) Continuous fluidized-bed granulating apparatus
MXPA02006879A (en) Method and apparatus for monitoring the coating on a particle during manufacturing of a pharmaceutical product.
EP1752236B1 (en) Online control of blowing agent content of polymer beads for making lost foam patterns
Rantanen et al. Determination of particle size in a fluidized bed granulator with a near infrared set‐up
Choi et al. Interrelationships between coating uniformity and efficiency in pan coating processes
JPS62279835A (en) Particle diameter control device for continuous granulating
JPH10160669A (en) Method and device for measuring ash content of food
US5932720A (en) Solid sucralose
CN113608431B (en) Dynamic control method and application of water in fluidized bed granulation process
US20170196239A1 (en) Method and apparatus for smoothing irregular particulate flow stream
JP3854384B2 (en) Granulation control device and granulation control method
KR20130096519A (en) Apparatus for measuring water content of coal
JP2023531035A (en) Method and fluidizer unit for processing multiple batches of wet objects
EP0608844A1 (en) Method of granulation and apparatus therefor
JP3595949B2 (en) Granulation control method for granular material in fluidized bed processing equipment
US5033953A (en) Pelletizing disc assembly and control system

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060620

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060926

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061219

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100202

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100202

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130202

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130202

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130202

Year of fee payment: 6

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130202

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130202

Year of fee payment: 6

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130202

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130202

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130202

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term