JPH10148703A - Optical thin film with small absorption loss - Google Patents

Optical thin film with small absorption loss

Info

Publication number
JPH10148703A
JPH10148703A JP9253737A JP25373797A JPH10148703A JP H10148703 A JPH10148703 A JP H10148703A JP 9253737 A JP9253737 A JP 9253737A JP 25373797 A JP25373797 A JP 25373797A JP H10148703 A JPH10148703 A JP H10148703A
Authority
JP
Japan
Prior art keywords
layer
refractive index
absorption loss
thin film
optical thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9253737A
Other languages
Japanese (ja)
Inventor
Shiyunsuke Niizaka
俊輔 新坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP9253737A priority Critical patent/JPH10148703A/en
Publication of JPH10148703A publication Critical patent/JPH10148703A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Surface Treatment Of Optical Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain an optical thin film having small absorption loss without changing the film forming conditions to such hazardous conditions to decrease the absorption loss, by depositing an aluminum oxide (Al2 O3 ) as the first layer on a substrate and then alternately depositing high refractive index layers and middle or low refractive index layers as the second and succeeding layers. SOLUTION: This optical thin film is produced by depositing Al2 O3 layer 12 as the first layer from the substrate side on a substrate 11 and then alternately depositing high refractive index layers 13 and middle or low refractive index layers 14 as the second and succeeding layers on a substrate 11, and the obtd. optical thin film has small absorption loss. The high refractive index layer 13 preferably consists of titanium oxide (TiO2 ), TiO2 -contg. material or a material containing TiO2 and zirconium oxide (ZrO2 ). For example, an Al2 O3 layer 12 having 0.1λ optical film thickness is formed on a quartz glass 11 and then successively a mixture layer 13 of TiO2 and ZrO2 having 0.05λ optical film thickness and an Al2 O3 layer 14 having 0.36λ optical film thickness are formed thereon. As for the substrate 11, quartz glass having extremely small absorption loss is the most preferable.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、可視光に対して極
めて吸収損失が少ない光学薄膜に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical thin film having very little absorption loss for visible light.

【0002】[0002]

【従来技術】現在の光学部品のほとんど全てがその表面
に誘電体からなる反射防止膜が施されている。最近で
は、膜設計技術の高度化に伴って、要求精度の高いスペ
ックの膜設計が可能となり、これらは数十層の積層膜か
らなる。
2. Description of the Related Art Almost all of current optical components are provided with an antireflection film made of a dielectric on the surface thereof. Recently, with the advancement of the film design technology, it is possible to design films with high required specifications, and these are composed of several tens of laminated films.

【0003】強い光の強度が要求される場合が多くなっ
ており、膜の効率が重要視されるようになってきた。膜
効率を左右する要因として、吸収損失が挙げられ、一般
的には、それを減少するために使用波長において吸収の
少ない膜物質を用いる。しかし、例え吸収損失の少ない
物質を使ったとしても、多層膜の場合膜の界面付近で何
らかの吸収損失現象が起きてしまう場合がある。
[0003] In many cases, strong light intensity is required, and the efficiency of the film has become important. A factor that influences the film efficiency is an absorption loss. In general, a film material having low absorption at a used wavelength is used to reduce the absorption loss. However, even when a substance having a small absorption loss is used, in the case of a multilayer film, some absorption loss phenomenon may occur near the interface of the film.

【0004】これは、膜物質固有の光学定数を使用して
薄膜設計する場合において、この現象が生じるかどうか
設計段階では調査不可能であり、設計値と実際値で吸収
損失量が相違することとなり、品質、性能の上で問題と
なる。このような現象が生じた場合は、成膜条件を変更
し、吸収損失を減少させるのが通例である。
[0004] In designing a thin film using an optical constant inherent to a film material, it is impossible to investigate whether this phenomenon occurs at the design stage, and the absorption loss differs between the design value and the actual value. This causes problems in quality and performance. When such a phenomenon occurs, it is customary to change the film forming conditions to reduce the absorption loss.

【0005】その場合、先ず成膜温度、成膜速度等の成
膜条件を変更し、各層での最適条件を見つけだし、それ
でも解決されない場合は、例えば、酸化物の交互層であ
れば化学量論比を満たすために酸素を通常より多めに導
入し、物質同士の酸素の奪い合い反応をおこりにくくす
る。
In such a case, first, film forming conditions such as a film forming temperature and a film forming rate are changed to find an optimum condition for each layer. In order to satisfy the ratio, oxygen is introduced in a larger amount than usual, thereby making it difficult for substances to scramble for oxygen.

【0006】[0006]

【発明が解決しようとする課題】しかし、酸素を通常よ
り多量に導入した場合には、真空ポンプのオイルに着火
する危険性が増大する。さらに、真空度の悪化は膜の機
械的強度や耐環境性をも低下させる。そこで、本発明は
このような問題点に鑑みてなされたものであり、吸収損
失を低減するために危険を伴うような成膜条件に変更す
ることなく吸収損失の少ない光学薄膜を提供することを
目的とする。
However, when oxygen is introduced in a larger amount than usual, the risk of ignition of the oil of the vacuum pump increases. Further, the deterioration of the degree of vacuum lowers the mechanical strength and environmental resistance of the film. Therefore, the present invention has been made in view of such a problem, and it is an object of the present invention to provide an optical thin film having a small absorption loss without changing a film forming condition that involves a risk in order to reduce the absorption loss. Aim.

【0007】[0007]

【課題を解決する為の手段】本発明は第一に「基板上に
基板側から数えて第1層目に酸化アルミニウム、第2層
目以降に高屈折率層、中間屈折率層又は低屈折率層の交
互層を積層してなる吸収損失の少ない光学薄膜(請求項
1)」を提供する。また、本発明は第二に「前記基板側
から数えて第3層目が酸化アルミニウムであることを特
徴とする請求項1記載の吸収損失の少ない光学薄膜(請
求項2)」を提供する。
According to the present invention, there is firstly provided a "aluminum oxide as a first layer counted from a substrate side on a substrate, and a high refractive index layer, an intermediate refractive index layer or a low refractive index as a second layer and thereafter. An optical thin film (Claim 1) having a small absorption loss, which is obtained by laminating alternate layers of a rate layer. Further, the present invention secondly provides an "optical thin film having low absorption loss according to claim 1 wherein the third layer counted from the substrate side is aluminum oxide (claim 2)".

【0008】また、本発明は第三に「前記高屈折率層が
酸化チタン、酸化チタン含有物質、酸化チタンと酸化ジ
ルコニウム含有物質からなることを特徴とする請求項1
又は2記載の吸収損失の少ない光学薄膜(請求項3)」
を提供する。
[0008] The present invention is also characterized in that the high refractive index layer is made of titanium oxide, a material containing titanium oxide, or a material containing titanium oxide and zirconium oxide.
Or the optical thin film with low absorption loss according to claim 2 (claim 3) "
I will provide a.

【0009】[0009]

【発明の実施の形態】以下、本発明の実施形態を図面を
参照しながら説明する。図1には、本発明の実施形態1
の吸収損失の少ない光学薄膜の断面概略図が示されてい
る。本発明にかかる吸収損失の少ない光学薄膜は、基板
11上にAl23層12、高屈折率層13、低屈折率層
又は中間屈折率層14を順次積層した構成である。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows Embodiment 1 of the present invention.
2 is a schematic cross-sectional view of an optical thin film having a small absorption loss. The optical thin film having a small absorption loss according to the present invention has a structure in which an Al 2 O 3 layer 12, a high refractive index layer 13, a low refractive index layer or an intermediate refractive index layer 14 is sequentially laminated on a substrate 11.

【0010】具体的には石英ガラス上に光学的膜厚が
0.1λのAl23層、光学的膜厚が0.05λのTi
2とZrO2との混合物層、光学的膜厚が0.36λの
Al23層を順次積層させた構成である。基板は各種光
学ガラスが使用可能であるが、吸収損失の非常に少ない
石英ガラスが薄膜の吸収損失の測定において最適であ
る。
More specifically, an Al 2 O 3 layer having an optical thickness of 0.1λ and a Ti having an optical thickness of 0.05λ are formed on quartz glass.
In this configuration, a mixture layer of O 2 and ZrO 2 and an Al 2 O 3 layer having an optical thickness of 0.36λ are sequentially laminated. Although various optical glasses can be used for the substrate, quartz glass having very small absorption loss is most suitable for measuring the absorption loss of the thin film.

【0011】高屈折率層材料として、酸化ジルコニウム
(ZrO2)、酸化チタン(TiO2)、酸化タンタル
(Ta25)、酸化ニオブ(Nb25)、酸化ハフニウ
ム(HfO2)、酸化セリウム(CeO2)等 又はこれ
らの混合物が挙げられる。低屈折率層材料として、酸化
シリコン(SiO2)、フッ化マグネシウム(Mg
2)、フッ化アルミニウム(AlF3)等が挙げられ
る。
As materials for the high refractive index layer, zirconium oxide (ZrO 2 ), titanium oxide (TiO 2 ), tantalum oxide (Ta 2 O 5 ), niobium oxide (Nb 2 O 5 ), hafnium oxide (HfO 2 ), oxide Cerium (CeO 2 ) and the like or a mixture thereof are mentioned. Silicon oxide (SiO 2 ), magnesium fluoride (Mg)
F 2 ), aluminum fluoride (AlF 3 ) and the like.

【0012】中間屈折率層材料として、酸化アルミニウ
ム(Al23)、酸化ゲルマニウム(GeO2)等が挙
げられる。成膜方法は成膜温度300℃、10-4〜10
-6Torrの真空域で、成膜レート5Å/secの条件で真
空蒸着法により成膜した。図2には比較例1の光学薄膜
の概略断面図が示されている。
Examples of the material of the intermediate refractive index layer include aluminum oxide (Al 2 O 3 ) and germanium oxide (GeO 2 ). The film forming method is performed at a film forming temperature of 300 ° C., 10 -4 to 10
A film was formed by a vacuum evaporation method under a condition of a film formation rate of 5 ° / sec in a vacuum region of -6 Torr. FIG. 2 shows a schematic sectional view of the optical thin film of Comparative Example 1.

【0013】石英ガラス上21に光学的膜厚が0.05
λのTiO2とZrO2との混合物層22、光学的膜厚が
0.36λのAl23層23を順次積層させた構成であ
る。なお、図3には比較例1の光学薄膜の第1層目の膜
厚を変化させたときの吸収損失量が示されている。これ
から、光学的膜厚が小さくなるにつれて光学損失が増加
し、現実的な光学的膜厚の範囲では約1%程度の吸収損
失があることがわかる。
Optical film thickness of 0.05 on quartz glass 21
This is a configuration in which a mixture layer 22 of TiO 2 and ZrO 2 having λ and an Al 2 O 3 layer 23 having an optical thickness of 0.36 λ are sequentially laminated. FIG. 3 shows the amount of absorption loss when the thickness of the first layer of the optical thin film of Comparative Example 1 was changed. From this, it can be seen that the optical loss increases as the optical film thickness decreases, and that there is about 1% absorption loss in a practical optical film thickness range.

【0014】本発明の実施形態1の光学薄膜の吸収損失
は、約0.1%であり、比較例1の光学薄膜の吸収損失
は約0.6%であった。従って、本発明の実施形態1の
光学薄膜は比較例1に比べて大幅に吸収損失を減少する
ことができた。図4には本発明の実施形態2の反射防止
膜の断面概略図が示されている。
The absorption loss of the optical thin film of Embodiment 1 of the present invention was about 0.1%, and the absorption loss of the optical thin film of Comparative Example 1 was about 0.6%. Therefore, the optical thin film of the first embodiment of the present invention was able to significantly reduce the absorption loss as compared with Comparative Example 1. FIG. 4 is a schematic sectional view of the antireflection film according to the second embodiment of the present invention.

【0015】本発明の実施形態2の反射防止膜は、基板
31上に低屈折率層又は中間屈折率層32、34、3
6、38(第1、3、5、7層)、高屈折率層33、3
5、37(第2、4、6層)の7層の交互層を順次積層
した構成である。具体例として石英ガラス上に第1、
3、5層目にAl23層を、第2、4、6層目にTiO
2とZrO2との混合物層を、第7層目にMgF2層を積
層させた構成である。
The antireflection film according to the second embodiment of the present invention comprises a low refractive index layer or an intermediate refractive index layer 32, 34, 3
6, 38 (first, third, fifth and seventh layers), high refractive index layers 33 and 3
This is a configuration in which seven alternate layers of 5, 37 (second, fourth, and sixth layers) are sequentially stacked. As a specific example, first on quartz glass,
An Al 2 O 3 layer is formed on the third and fifth layers, and TiO is formed on the second, fourth and sixth layers.
This is a configuration in which a mixture layer of ZrO 2 and ZrO 2 is stacked as a seventh layer with an MgF 2 layer.

【0016】図5には比較例2の反射防止膜の概略断面
図が示されている。比較例2の反射防止膜は石英ガラス
上41に第1、3、5層目(42、44、46)にTi
2とZrO2との混合物層を、第2、4層目(43、4
5)にAl 23層を、第6層目(47)にMgF2層を
積層させた構成である。本発明の実施形態2の反射防止
膜と比較例2の反射防止膜はそれぞれ光学特性を満たす
ために光学膜厚が最適化されている。
FIG. 5 is a schematic cross section of the antireflection film of Comparative Example 2.
The figure is shown. The antireflection film of Comparative Example 2 is quartz glass
On top 41, first, third and fifth layers (42, 44, 46) Ti
OTwoAnd ZrOTwoLayers of the second and fourth layers (43, 4
5) Al TwoOThreeThe layer is made of MgF as the sixth layer (47).TwoLayers
This is a configuration in which the layers are stacked. Antireflection of Embodiment 2 of the present invention
The film and the antireflection film of Comparative Example 2 each satisfy optical characteristics.
Therefore, the optical film thickness is optimized.

【0017】本発明の実施形態2の反射防止膜及び比較
例2の反射防止膜の成膜方法は本発明の実施形態1の光
学薄膜と同様な方法により行った。図6には本発明の実
施形態2の反射防止膜(破線)と比較例2の反射防止
膜(実線)の分光反射特性が示されており、本発明の
実施形態2の反射防止膜と比較例2の反射防止膜の分光
特性の差はないことがわかる。
The method of forming the anti-reflection film of the second embodiment of the present invention and the method of forming the anti-reflection film of the comparative example 2 were performed in the same manner as the optical thin film of the first embodiment of the present invention. FIG. 6 shows the spectral reflection characteristics of the antireflection film of the second embodiment of the present invention (broken line) and the antireflection film of the second comparative example (solid line). It can be seen that there is no difference in the spectral characteristics of the antireflection film of Example 2.

【0018】また、本発明の実施形態2の反射防止膜の
吸収損失は約0.1%で、比較例2の反射防止膜の吸収
損失は約0.9%であった。このことより、基板上に基
板側から数えて第1層目に酸化アルミニウムを設けるこ
とにより吸収損失を低減することができ、各層の光学膜
厚を最適化することにより分光特性には何等影響を与え
ていないことがわかる。
The absorption loss of the anti-reflection coating of the second embodiment of the present invention was about 0.1%, and the absorption loss of the anti-reflection coating of Comparative Example 2 was about 0.9%. Thus, the absorption loss can be reduced by providing aluminum oxide on the first layer counted from the substrate side on the substrate, and the spectral characteristics are not affected by optimizing the optical film thickness of each layer. You can see that it was not given.

【0019】[0019]

【発明の効果】以上説明した通り、本発明にかかる光学
薄膜は基板上に基板側から数えて第1層目に酸化アルミ
ニウムを設けたことにより吸収損失を大幅に減少するこ
とができ、光学膜厚を最適化することにより、分光特性
には何等影響を与えることがない。
As described above, the optical thin film according to the present invention can significantly reduce the absorption loss by providing aluminum oxide as the first layer on the substrate, counting from the substrate side. By optimizing the thickness, the spectral characteristics are not affected at all.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態1の光学薄膜の概略断面図で
ある。
FIG. 1 is a schematic sectional view of an optical thin film according to a first embodiment of the present invention.

【図2】比較例1の光学薄膜の概略断面図である。FIG. 2 is a schematic sectional view of an optical thin film of Comparative Example 1.

【図3】比較例1の光学薄膜の第1層目の膜厚を変化さ
せたときの吸収損失量が示されている。
FIG. 3 shows the amount of absorption loss when the thickness of the first layer of the optical thin film of Comparative Example 1 was changed.

【図4】本発明の実施形態2の反射防止膜の概略断面図
である。
FIG. 4 is a schematic sectional view of an antireflection film according to a second embodiment of the present invention.

【図5】比較例2の反射防止膜の概略断面図である。FIG. 5 is a schematic sectional view of an antireflection film of Comparative Example 2.

【図6】本発明の実施形態2の反射防止膜(破線)と
比較例2の反射防止膜(実線)の分光反射特性図であ
る。
FIG. 6 is a spectral reflection characteristic diagram of the antireflection film (dashed line) of Embodiment 2 of the present invention and the antireflection film (solid line) of Comparative Example 2.

【符号の説明】[Explanation of symbols]

11、21、31、41・・・光学基板 12、23、43、45・・・酸化アルミニウム層 13、33、35、37・・・高屈折率層 14、32、34、36、38・・・中間屈折率層又は
低屈折率層 22、42、44、46・・・TiO2とZrO2との混
合物層 47・・・MgF2
11, 21, 31, 41 ... optical substrate 12, 23, 43, 45 ... aluminum oxide layer 13, 33, 35, 37 ... high refractive index layer 14, 32, 34, 36, 38 ... and intermediate refractive index layer or low refractive index layer 22,42,44,46 ··· TiO 2 and mixtures layer 47 · · · MgF 2 and ZrO 2

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】基板上に基板側から数えて第1層目に酸化
アルミニウム、第2層目以降に高屈折率層、中間屈折率
層又は低屈折率層の交互層を積層してなる吸収損失の少
ない光学薄膜。
1. An absorption structure in which aluminum oxide is formed as a first layer on a substrate and an alternate layer of a high refractive index layer, an intermediate refractive index layer or a low refractive index layer is formed on the second and subsequent layers counted from the substrate side. Optical thin film with low loss.
【請求項2】前記基板側から数えて第3層目が酸化アル
ミニウムであることを特徴とする請求項1記載の吸収損
失の少ない光学薄膜。
2. The optical thin film according to claim 1, wherein the third layer counted from the substrate side is aluminum oxide.
【請求項3】前記高屈折率層が酸化チタン、酸化チタン
含有物質、酸化チタンと酸化ジルコニウム含有物質から
なることを特徴とする請求項1又は2記載の吸収損失の
少ない光学薄膜。
3. The optical thin film according to claim 1, wherein said high refractive index layer is made of titanium oxide, a material containing titanium oxide, or a material containing titanium oxide and zirconium oxide.
JP9253737A 1996-09-20 1997-09-18 Optical thin film with small absorption loss Pending JPH10148703A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9253737A JPH10148703A (en) 1996-09-20 1997-09-18 Optical thin film with small absorption loss

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP25006796 1996-09-20
JP8-250067 1996-09-20
JP9253737A JPH10148703A (en) 1996-09-20 1997-09-18 Optical thin film with small absorption loss

Publications (1)

Publication Number Publication Date
JPH10148703A true JPH10148703A (en) 1998-06-02

Family

ID=26539624

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9253737A Pending JPH10148703A (en) 1996-09-20 1997-09-18 Optical thin film with small absorption loss

Country Status (1)

Country Link
JP (1) JPH10148703A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012078829A (en) * 2010-10-01 2012-04-19 Carl Zeiss Vision Gmbh Optical lens having antistatic coating

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH052101A (en) * 1991-06-26 1993-01-08 Konica Corp Optical component
JPH0894802A (en) * 1994-09-27 1996-04-12 Canon Inc Optical element

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH052101A (en) * 1991-06-26 1993-01-08 Konica Corp Optical component
JPH0894802A (en) * 1994-09-27 1996-04-12 Canon Inc Optical element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012078829A (en) * 2010-10-01 2012-04-19 Carl Zeiss Vision Gmbh Optical lens having antistatic coating
DE102010048089B4 (en) * 2010-10-01 2016-09-01 Carl Zeiss Vision International Gmbh A method of producing a multilayer antistatic coating for a lens element

Similar Documents

Publication Publication Date Title
JP3332879B2 (en) Dichroic mirror
JPH05188202A (en) Multilayered optical thin film
US20060245056A1 (en) Thin-film structure with counteracting layer
JP4171362B2 (en) Transparent substrate with antireflection film
JPH03109503A (en) Antireflection film of optical parts made of plastic and formation thereof
JP2007333806A (en) Antireflection film and optical member
JPH1020102A (en) Antireflection film
JP2002107506A (en) Antireflection coating and optical component using the same
CN116819661A (en) Optical film with variable spectral characteristics and method for adjusting spectral characteristics of optical film
JP2006259124A (en) Cold mirror
JP2002014203A (en) Antireflection film and optical member using the same
JPH07111482B2 (en) Multi-layer antireflection film
JP2000347002A (en) Antireflection film
JPH052101A (en) Optical component
JP2566634B2 (en) Multi-layer antireflection film
JP2001100002A (en) Antireflection film and optical member using same
JPH10148703A (en) Optical thin film with small absorption loss
JP2019059986A (en) Method for forming thin film, and optical element
JPS61159602A (en) Multi-layered antireflection film
JPS6222121B2 (en)
JP2001074903A (en) Antireflection film and optical device
JP2002267801A (en) Antireflection film and optical member which uses the same
US20200041694A1 (en) Thin film forming method and porous thin film
JPH0756004A (en) Conductive antireflection film
JP2000171607A (en) Highly dense multilayered thin film and its film forming method

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040917

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040917

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080219

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080701