JPH10146633A - Production of twisted wire member consisting of nickel-titanium shape memory alloy fine wire - Google Patents

Production of twisted wire member consisting of nickel-titanium shape memory alloy fine wire

Info

Publication number
JPH10146633A
JPH10146633A JP30461296A JP30461296A JPH10146633A JP H10146633 A JPH10146633 A JP H10146633A JP 30461296 A JP30461296 A JP 30461296A JP 30461296 A JP30461296 A JP 30461296A JP H10146633 A JPH10146633 A JP H10146633A
Authority
JP
Japan
Prior art keywords
wire
shape memory
alloy
composite
memory alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30461296A
Other languages
Japanese (ja)
Inventor
Hisashi Mogi
久 茂木
Kaisuke Shiroyama
魁助 城山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP30461296A priority Critical patent/JPH10146633A/en
Publication of JPH10146633A publication Critical patent/JPH10146633A/en
Pending legal-status Critical Current

Links

Landscapes

  • Wire Processing (AREA)
  • Metal Extraction Processes (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce a twisted wire consisting of a Ni-Ti shape memory alloy fine wire having reduced surface oxidation and good quality by simultaneously subjecting plural wires to drawing, annealing, forming and shape memorizing treatment. SOLUTION: The twisted wire member consisting of a Ni-Ti shape memory alloy fine wire is produced so that plural wires of a Ni-Ti shape memory alloy wire subjected to a straight line memorizing treatment beforehand, while maintaining to a temp. state higher than the transformation temp. of a wire stock, is covered with a metal sheathing material to form a composite wire stock, successively, by repeating cold reducing and annealing for the composite wire stock, a composite drawn wire of a prescribed size is produced, by twisting the composite drawn wire and forming to a prescribed length and shape, a twisted composite drawn wire is produced, successively, after subjecting to memorizing treatment thereon, the sheathing material is removed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、Ni−Ti系形状
記憶合金細線からなる撚線部材の製造方法に関するもの
で、具体的には複数本の素線を外装材に挿入して複合体
素線とし、これを伸線加工と焼鈍を繰り返して複合伸線
材とし、これに捩じり加工を施した後、所定の長さと形
状に成形した後、形状記憶処理を施し、しかる後に外装
材を除去する製造方法で、この製造方法により、表面の
酸化の少ないNi−Ti系形状記憶合金細線からなる撚
線部材を安価に供給することが可能となる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a stranded wire member made of a Ni-Ti based shape memory alloy thin wire, and more specifically, to a method of inserting a plurality of wires into an exterior material to form a composite element. A wire is formed by repeating wire drawing and annealing to form a composite wire, twisted, formed into a predetermined length and shape, subjected to shape memory treatment, and then the exterior material is formed. With this manufacturing method, a stranded wire member made of a Ni-Ti-based shape memory alloy thin wire with less oxidation on the surface can be supplied at a low cost.

【0002】[0002]

【従来の技術】近年、Ni−Ti系形状記憶合金線(例
えば外径100〜500μmの細線)は、その形状記憶
特性若しくは超弾性特性を利用して、ばね材、電線管等
のガイドワイヤー、ブラジャーの芯材等に使用されてい
る。これらの線材は、従来ほとんど単線で使用されてい
るが、更なる軟らかさ若しくはしなやかさの点で、複数
の細線(例えば外径100〜500μmの細線)の複数
本を撚り合わた撚線で使用するのが好ましく、撚線部材
の供給が望まれている。しかしながら、一般にNi−T
i系形状記憶合金は、加工性が悪く、特に冷間加工にお
ける加工が困難で、冷間伸線時に焼鈍を必要とする冷間
加工率(減面率)は、30%以下で低い。そのため、伸
線工程において、多くの焼鈍と伸線を繰り返しながら、
1パス当たり8〜15%程度の加工率で伸線を行い、所
定の径の線とする。従って、線材特に細線の大量生産は
困難であり、高価となる問題がある。
2. Description of the Related Art In recent years, Ni-Ti based shape memory alloy wires (for example, thin wires having an outer diameter of 100 to 500 μm) have been developed by utilizing their shape memory characteristics or superelastic characteristics to guide spring wires, guide wires such as electric conduits, and the like. It is used as the core material of brassieres. Conventionally, these wires are mostly used as single wires, but in terms of further softness or flexibility, a plurality of fine wires (for example, a thin wire having an outer diameter of 100 to 500 μm) are used as a stranded wire. It is preferable to supply a stranded wire member. However, in general, Ni-T
The i-type shape memory alloy is poor in workability, particularly difficult to work in cold working, and the cold working rate (area reduction rate) requiring annealing at the time of cold drawing is as low as 30% or less. Therefore, in the drawing process, while repeating many annealing and drawing,
Drawing is performed at a processing rate of about 8 to 15% per pass to obtain a wire having a predetermined diameter. Therefore, it is difficult to mass-produce wires, especially fine wires, and there is a problem that it is expensive.

【0003】また、焼鈍回数が多くなると線材表面の酸
化膜が厚くなり、表面に傷が付きやすく断線の原因とな
るため、途中で数回の酸洗工程も必要であった。以上の
ように、Ni−Ti系合金の細線は、その加工性、歩留
り等が悪く、安価で良質のNi−Ti系形状記憶合金細
線の製造は、困難であった。更に、前記の撚線部材の製
造は、複数の細線を撚る工程が必要で、さらに高価とな
る問題がある。
Further, when the number of times of annealing increases, the oxide film on the surface of the wire becomes thicker, and the surface is easily damaged, which causes disconnection. Therefore, several pickling steps are required on the way. As described above, the fine wires of the Ni-Ti alloy have poor workability, yield, and the like, and it has been difficult to manufacture inexpensive and high-quality Ni-Ti-based shape memory alloy fine wires. Further, the production of the above-mentioned twisted wire member requires a step of twisting a plurality of fine wires, and there is a problem that the production becomes more expensive.

【0004】[0004]

【発明が解決しようとする課題】本発明の課題は、前記
で述べた問題点を解決することであり、具体的には、伸
線工程において、焼鈍で生じる線材表面の酸化を防止
し、且つ複数本の細線を同時に伸線加工することによ
り、安価で酸化の少ない良質の細線の製造方法を見出す
ことである。また、本発明の他の課題は、Ni−Ti系
合金の特性に合致し、上記製造目的に適合する、多数の
細線の具体的な製造方法を見出すことである。更に、本
発明の別の課題は、複数の細線による撚線部材を安価に
製造する製造方法を見出すことである。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems. Specifically, in the drawing step, oxidation of a wire surface caused by annealing is prevented, and An object of the present invention is to find a method for producing a high-quality fine wire that is inexpensive and less oxidized by simultaneously drawing a plurality of fine wires. Another object of the present invention is to find a specific method for producing a large number of fine wires that matches the characteristics of a Ni—Ti alloy and is suitable for the above-mentioned production purpose. Further, another object of the present invention is to find a manufacturing method for inexpensively manufacturing a stranded member made of a plurality of fine wires.

【0005】[0005]

【課題を解決するための手段】本発明の前記課題を解決
するための請求項1の発明は、予め直線記憶処理が施さ
れたNi−Ti系形状記憶合金素線の複数本を、その素
線の変態点より高い温度の状態に保持しながら、金属製
の外装材で被覆して複合体素線を形成し、続いてその複
合体素線について、冷間伸線と焼鈍を繰り返して複合伸
線材とした後、この複合伸線材に捩じり加工を施し、続
いてこれを所定の長さと形状に成形して捩じり複合伸線
部材とし、次にこれに形状記憶処理を施した後、外装材
を除去することを特徴とするNi−Ti系形状記憶合金
細線からなる撚線部材の製造方法であり、
According to a first aspect of the present invention, a plurality of Ni-Ti based shape memory alloy wires which have been subjected to a straight line storage process are provided. While maintaining the temperature higher than the transformation point of the wire, the wire is covered with a metal sheathing material to form a composite wire, and then the composite wire is repeatedly subjected to cold drawing and annealing to form a composite wire. After being drawn, the composite wire was subjected to a twisting process, and then formed into a predetermined length and shape to obtain a twisted composite wire drawing member, which was then subjected to shape memory processing. Thereafter, a method of manufacturing a stranded wire member made of a Ni-Ti-based shape memory alloy thin wire, characterized by removing the exterior material,

【0006】また、請求項2の発明は、前記Ni−Ti
系形状記憶合金素線は、Ni49.5〜51.5at
%、残TiからなるNi−Ti合金、及び前記Ni−T
i合金におけるNiまたは/およびTiの一部をV、C
r、Fe、Co、Alの1種又は2種以上で、且つその
合計量を0.1〜3.0at%の範囲で置換したNi−
Ti系合金、若しくは前記Ni−Ti合金あるいはNi
−Ti系合金におけるNiまたは/およびTiの一部を
Cu、Pd、Nbのいずれかで且つその量が5〜10a
t%の範囲で置換したNi−Ti系合金からなることを
特徴とする請求項1に記載のNi−Ti系形状記憶合金
細線からなる撚線部材の製造方法であり、
[0006] The invention of claim 2 is characterized in that the Ni-Ti
The system shape memory alloy strand is Ni49.5-51.5 at.
%, A Ni-Ti alloy consisting of the remaining Ti, and the Ni-T
Part of Ni and / or Ti in the i alloy is V, C
one or more of r, Fe, Co, and Al, and a total amount of Ni-substituted in a range of 0.1 to 3.0 at%.
Ti-based alloy, or the above-mentioned Ni-Ti alloy or Ni
-A part of Ni and / or Ti in the Ti-based alloy is any of Cu, Pd, and Nb and the amount is 5 to 10a.
The method for producing a stranded wire member comprising a Ni-Ti-based shape memory alloy thin wire according to claim 1, wherein the stranded wire member is made of a Ni-Ti-based alloy substituted in a range of t%.

【0007】請求項3の発明は、前記Ni−Ti系形状
記憶合金素線が、予めその表面が清浄にされている素線
であることを特徴とする請求項1、2に記載のNi−T
i系形状記憶合金細線からなる撚線部材の製造方法であ
り、
According to a third aspect of the present invention, the Ni-Ti based shape memory alloy strand is a strand whose surface is previously cleaned. T
A method for producing a stranded wire member comprising an i-type shape memory alloy thin wire,

【0008】さらに請求項4の発明は、前記外装材が、
軟鋼材若しくはCu−Ni系合金材からなることを特徴
とする請求項1、2、3に記載のNi−Ti系形状記憶
合金細線による撚線部材の製造方法である。
[0008] Further, in the invention according to claim 4, the exterior material includes:
4. The method according to claim 1, wherein the stranded wire member is made of a mild steel material or a Cu-Ni-based alloy material.

【0009】[0009]

【発明の実施の形態】以下、前記各発明について、詳細
に説明する。まず、請求項1の発明について説明する。
請求項1の発明は、予め直線記憶処理が施されたNi−
Ti系形状記憶合金素線の複数本を、その素線の変態点
より高い温度の状態に保持しながら、金属製の外装材で
被覆して複合体素線を形成し、続いてその複合体素線に
ついて、冷間伸線と焼鈍を繰り返して複合伸線材とした
後、この複合伸線材に捩じり加工を施し、続いてこれを
所定の長さと形状に成形して捩じり複合伸線部材とし、
次にこれに形状記憶処理を施した後、外装材を除去する
撚線部材の製造方法である。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, each of the above inventions will be described in detail. First, the invention of claim 1 will be described.
According to the first aspect of the present invention, the Ni-
While holding a plurality of Ti-based shape memory alloy wires at a temperature higher than the transformation point of the wires, the wires are covered with a metal exterior material to form a composite wire, and then the composite wire is formed. The wire is repeatedly subjected to cold drawing and annealing to form a composite wire, then the composite wire is twisted, and then formed into a predetermined length and shape to form a composite wire. As a wire member,
Next, this is a method for manufacturing a stranded wire member in which a shape memory treatment is applied to this and then the exterior material is removed.

【0010】本発明は、まず、外装材例えば軟鋼管(J
IS規格G34541)内に、直線記憶処理したNi−
Ti系形状記憶合金素線の複数本を、平行状態に挿入し
て複合体素線を形成し、その複合体素線について、冷間
伸線と焼鈍を繰り返し行うことにより、外装材内部の細
線例えば径500μm以下のNi−Ti系形状記憶合金
細線を、同時に多数本(細線の束)を製造する。即ち、
本発明は、直線記憶処理した素線を互いに平行な状態
で、外装材である被覆管に挿入して、複合体素線を作製
し、その複合体素線について加工(伸線)と焼鈍を繰り
返して縮径して複合伸線材とした場合、、外装材に挿入
されている1本1本のNi−Ti系形状記憶合金線が、
例えば径250μm相当の太さの細線になっても、断線
することも、太さの極端な変動もなく、表面に酸化物の
ない良質の細線の束が得られる。ここで、前記の冷間伸
線には、再結晶温度以下の温間加工、即ち500℃以下
での加工が含まれる。温度を上げることで、焼鈍間の加
工を大きくできるし、上記温度範囲では線同志の結合
は、生じないことが判っている。このようにして得られ
た外装材内部の細線は、基本的には六角形の断面を有し
ており、外装材除去後でも、細線の1本1本は接合して
いなく、互いに分離した細線の束が得られる。
According to the present invention, first, an exterior material such as a mild steel pipe (J
Within the IS standard G34541), Ni-
A plurality of Ti-based shape memory alloy strands are inserted in parallel to form a composite strand, and the composite strand is repeatedly subjected to cold drawing and annealing to form a thin wire inside the exterior material. For example, a large number (a bundle of fine wires) of Ni-Ti-based shape memory alloy fine wires having a diameter of 500 µm or less are manufactured at the same time. That is,
According to the present invention, composite wires are produced by inserting straight wires subjected to linear memory processing in a state parallel to each other into a cladding tube as an exterior material, and processing (drawing) and annealing the composite wires. When the diameter is repeatedly reduced to form a composite wire, the Ni-Ti-based shape memory alloy wire inserted into the exterior material is
For example, even if a thin wire having a diameter equivalent to a diameter of 250 μm is obtained, a bundle of fine wires having no oxide on the surface can be obtained without disconnection or extreme variation in thickness. Here, the cold drawing includes warm working at a recrystallization temperature or lower, that is, working at 500 ° C. or lower. It has been found that by raising the temperature, the working during the annealing can be increased, and that the wires are not joined in the above temperature range. The thin wires inside the exterior material obtained in this way basically have a hexagonal cross section, and even after the exterior material is removed, each of the thin wires is not joined, and the thin wires separated from each other. Is obtained.

【0011】本発明の製造方法において、外装材に挿入
するNi−Ti系形状記憶合金素線に予め直線記憶処理
を施こすのは、外装材に対して素線が互いに平行な状態
で挿入されるようにするためである。このNi−Ti系
合金素線の直線記憶処理の条件は、350〜900℃、
好ましくは450〜750℃の温度で、線を直線状に走
行させながら、熱処理するのが好ましい(走間熱処理、
走間焼鈍)。また、素線をその変態点(Af点)より高
い温度の状態に保持しながら外装材に挿入するのは、予
め直線記憶処理が施されたNi−Ti系形状記憶合金素
線が、挿入が完了するまでの間、直線を維持して各線が
交差することなく平行に挿入されるようにするためであ
る。これらの長尺素線を扱う場合において、変態点(A
f点)が室温より高い場合には、加熱炉等を通して加熱
しながら直線のまま、複合体化のプロセスに送りこんで
やると、線の重なりがなくなり、伸線加工後の複合伸線
材の長手方向での形状変動・断線を防止できる。
In the manufacturing method of the present invention, the linear memory processing is performed in advance on the Ni—Ti based shape memory alloy wires to be inserted into the exterior material because the wires are inserted in parallel with the exterior material. This is so that The conditions for the linear storage processing of the Ni—Ti alloy wire are 350 to 900 ° C.
The heat treatment is preferably performed at a temperature of 450 to 750 ° C. while running the wire linearly (heat treatment during running,
Annealing during running). In addition, the reason why the wire is inserted into the exterior material while maintaining the wire at a temperature higher than its transformation point (Af point) is that the Ni-Ti-based shape memory alloy wire that has been subjected to the linear memory processing is inserted. Until the completion, the straight line is maintained so that each line is inserted in parallel without intersecting. When dealing with these long strands, the transformation point (A
When the point (f) is higher than room temperature, if the wire is fed straight into a composite process while heating through a heating furnace or the like, the wires will not overlap, and the longitudinal direction of the composite drawn material after wire drawing will be eliminated. Can prevent shape fluctuation and disconnection.

【0012】前記のように複数の素線を、外装材に挿入
若しくは外装材で被覆して複合体素線とするが、次にこ
れを常法に従って、冷間で縮径加工と焼鈍を繰り返して
細径化して所定のサイズの複合伸線材とし、次にこの複
合伸線材について、捩じり加工を施す。この複合伸線材
について、捩じり加工を施すのは、外装材内部の細線の
束をこの段階で撚線とするためである。この段階で、外
装材を被覆したままの複合伸線材について捩じり加工を
施すことによって、後に外装材を除去した後に、撚線部
材を直接得ることができる。
As described above, a plurality of strands are inserted into or covered with the sheathing material to form a composite strand, which is then repeatedly subjected to cold reduction and annealing in a conventional manner. Then, the diameter is reduced to obtain a composite wire having a predetermined size, and then the composite wire is subjected to a twisting process. The reason why this composite wire is subjected to twisting is to make the bundle of fine wires inside the exterior material into a stranded wire at this stage. At this stage, the twisted member is subjected to the twisting process on the composite wire with the outer member covered, so that the stranded member can be directly obtained after the outer member is removed later.

【0013】複合伸線材を捩じり加工した後、次にこれ
を所定の長さと形状に成形して捩じり複合伸線部材とす
る。例えば、ブラジャーの撚線芯材とする場合は、上記
捩じり加工した複合伸線材(図6)を、所定の長さに切
断し、これを図7に示すごとく湾曲型に成形して、ブラ
ジャーの芯材用捩じり複合伸線部材とする。また、撚線
のバネ材とする場合は、所定の長さに切断し、これをバ
ネ状に成形して、バネ用捩じり複合伸線部材とする。更
に、電線管等の撚線によるガイドワイヤーとする場合
は、直線で使用されるため、これを所定の長さに切断す
るだけである。
After the composite wire is twisted, it is formed into a predetermined length and shape to obtain a twisted composite wire. For example, in the case of a brass stranded core material, the twisted composite drawn material (FIG. 6) is cut into a predetermined length and formed into a curved shape as shown in FIG. A torsion composite wire drawing member for a brassier core material. When a stranded wire spring material is used, the wire is cut to a predetermined length and formed into a spring shape to obtain a torsion composite wire drawing member for a spring. Furthermore, when a guide wire is formed by a stranded wire such as a conduit tube, since the guide wire is used in a straight line, it is merely cut into a predetermined length.

【0014】本発明においては、前記のごとく使用目的
に応じて、切断、成形した後に、形状記憶処理が施され
る。この熱処理は、350〜900℃、好ましくは40
0〜600℃の温度で、行う。ここで形状記憶処理を行
うのは、言うまでもなく外装材内部の撚線がばらばらに
ならなく撚線の状態を保ことと、使用上の形状を記憶さ
せるためである。なお、この使用上の形状とは、例えば
前記のブラジャーの撚線芯材の場合は、湾曲形状であ
り、撚線のバネ材の場合は、バネ状の形状である。更に
電線管等の撚線によるガイドワイヤーの場合は、直線形
状である。
In the present invention, a shape memory process is performed after cutting and molding according to the purpose of use as described above. This heat treatment is performed at 350 to 900 ° C., preferably at 40 ° C.
Performed at a temperature of 0-600 ° C. Here, the shape memory processing is performed for the purpose of keeping the stranded wire inside the exterior material without breaking the stranded wire and storing the shape in use. The shape in use is, for example, a curved shape in the case of the above-mentioned brass stranded core material, and a spring-like shape in the case of the stranded wire spring material. Further, in the case of a guide wire formed by a stranded wire such as an electric conduit, the wire has a straight shape.

【0015】本発明においては、このように形状記憶処
理した後に、外装材を除去して、各目的に応じた撚線部
材を得るものである。なお、外装材を除去する前に、形
状記憶処理することにより、得られる各細線による撚線
部材は、形状記憶及び超弾性特性を有している。
In the present invention, after the shape memory process is performed, the exterior material is removed to obtain a stranded wire member suitable for each purpose. In addition, by performing a shape memory process before removing the exterior material, a stranded wire member obtained by each thin wire has shape memory and superelastic properties.

【0016】なお、Ni−Ti系形状記憶合金素線を挿
入若しくは被覆する外装材に関する金属の材質の詳細に
ついては後述の請求項4で説明するが、外装材の形状
は、図1に示すような継目無管による外装材、図4に示
すようなフォーミング溶接管による外装材、図5に示す
ようなフォーミング重ね巻き管による外装材、また金属
テープによる外装材等が採用できる。
The details of the material of the metal for the exterior material for inserting or coating the Ni-Ti based shape memory alloy wire will be described in claim 4 described later, but the shape of the exterior material is as shown in FIG. An outer casing made of a seamless pipe, an outer casing made of a formed welded pipe as shown in FIG. 4, an outer casing made of a lap wound tube as shown in FIG. 5, and an outer casing made of a metal tape can be used.

【0017】次に、請求項2の発明について説明する。
本発明に使用するNi−Ti系形状記憶合金は、Ni−
Ti合金をベースとするものならばいずれの合金系でも
対応可能である。即ち、Ni−Ti二元系、これにV、
Cr、Fe、Co、Al、Cu、Pd、Nb等の元素を
添加した多元系の合金に対応できる。請求項2の発明
は、外装材に挿入するNi−Ti系形状記憶合金素線の
好ましい実施態様である。即ち、そのNi−Ti系形状
記憶合金素線は、Ni49.5〜51.5at%、残T
iからなるNi−Ti合金、及び前記Ni−Ti合金に
おけるNiまたは/およびTiの一部をV、Cr、F
e、Co、Alの1種又は2種以上で、且つその合計量
を0.1〜3.0at%の範囲で置換したNi−Ti系
合金、若しくは前記Ni−Ti合金あるいはNi−Ti
系合金におけるNiまたは/およびTiの一部をCu、
Pd、Nbのいずれかで且つその量が5〜10at%の
範囲で置換したNi−Ti系合金である。
Next, the second aspect of the present invention will be described.
The Ni-Ti based shape memory alloy used in the present invention is Ni-
Any alloy based on a Ti alloy can be used. That is, Ni-Ti binary system, and V,
It can correspond to a multi-element alloy to which elements such as Cr, Fe, Co, Al, Cu, Pd, and Nb are added. The invention of claim 2 is a preferred embodiment of the Ni-Ti based shape memory alloy strand inserted into the exterior material. That is, the Ni—Ti-based shape memory alloy strand had Ni of 49.5 to 51.5 at% and the remaining T
i, a Ni—Ti alloy, and a part of Ni and / or Ti in the Ni—Ti alloy are V, Cr, F
e, one or more of Co, Al, and a Ni—Ti alloy substituted with a total amount of 0.1 to 3.0 at%, or the Ni—Ti alloy or Ni—Ti
Ni or / and part of Ti in the base alloy is Cu,
This is a Ni-Ti alloy substituted with either Pd or Nb in an amount of 5 to 10 at%.

【0018】本発明に用いるNi49.5〜51.5a
t%、残TiのNi−Ti合金において、Ni及びTi
の組成範囲をこのようにしたのは、下限未満でも又上限
を越えても、形状記憶効果若しくは超弾性効果が得られ
ないからである。
Ni 49.5 to 51.5a used in the present invention
t%, in the remaining Ti-Ni alloy, Ni and Ti
The reason for the above composition range is that a shape memory effect or a superelastic effect cannot be obtained if the composition is less than the lower limit or exceeds the upper limit.

【0019】また、本発明に用いるNi−Ti系合金
は、前記Ni−Ti合金におけるNiまたは/およびT
iの一部をV、Cr、Fe、Co、Alの1種又は2種
以上で、且つその添加の合計を0.1〜3.0at%の
範囲で置換したNi−Ti系合金であり、このような合
金組成としたのは、前述の形状記憶効果若しくは超弾性
効果の特性を有し、これを阻害することなく、材料の強
度、製造加工性等の向上をはかるためである。前記各添
加元素の合計量が、0.1at%未満では、その効果が
小さく、また3.0at%を越えると伸線加工時の加工
性を低下させる。従って各元素の置換添加量は、その合
計量を0.1〜3.0at%の範囲とした。
Further, the Ni—Ti alloy used in the present invention is the same as the Ni—Ti and / or T
a Ni-Ti alloy in which a part of i is one or more of V, Cr, Fe, Co, and Al, and the total addition thereof is substituted in a range of 0.1 to 3.0 at%; Such an alloy composition is used in order to improve the material strength, manufacturing workability, and the like without having the shape memory effect or the superelastic effect described above, and without impairing the characteristics. If the total amount of the respective additive elements is less than 0.1 at%, the effect is small, and if it exceeds 3.0 at%, the workability at the time of wire drawing decreases. Therefore, the total amount of the substitutional addition of each element is in the range of 0.1 to 3.0 at%.

【0020】更に、本発明に用いるNi−Ti系合金
は、前記のNi−Ti合金あるいはV、Cr、Fe、C
o、Alの1種又は2種以上含有するNi−Ti系合金
におけるNiまたは/およびTiの一部をCu、Pd、
Nbのいずれかで且つその量が5〜10at%の範囲で
置換したNi−Ti系合金である。必要に応じて、C
u、Pd、Nbのいずれかを、且つその量が5〜10a
t%の範囲で置換添加するのは、5at%未満では形状
記憶若しくは超弾性特性の改善が不十分であり、また1
0at%を越えると加工性が悪くなり製品化が困難とな
るからである。
Further, the Ni-Ti alloy used in the present invention is the above-mentioned Ni-Ti alloy or V, Cr, Fe, C
o, a part of Ni and / or Ti in a Ni-Ti alloy containing one or more of Al, Cu, Pd,
This is a Ni—Ti alloy substituted with any of Nb and in an amount of 5 to 10 at%. C if necessary
u, Pd, or Nb, and the amount is 5 to 10 a
When the substitutional addition is performed in the range of t%, if the content is less than 5 at%, the shape memory or superelastic properties are insufficiently improved.
If the content exceeds 0 at%, workability deteriorates and commercialization becomes difficult.

【0021】次に、請求項3の発明について説明する。
請求項3の発明は、請求項1の発明の実施態様であり、
前記Ni−Ti系形状記憶合金素線は、予めその表面が
清浄にされている素線を使用するものである。具体的に
は、各素線を酸洗い後、大気中又は不活性雰囲気中で直
線記憶処理を施し、この素線を図1に示すように外装材
(継目無管)に挿入して複合体素線を形成し、次に図2
に示すように、この複合体素線の一端をスエージャーに
より口付け加工し、次にこの口付け部より伸線すること
により、外装材とNi−Ti系合金素線若しくは素線同
志が密着して外装材内部の空気が外部に排出される。こ
のようにすると、後の伸線と焼鈍工程において、内部の
Ni−Ti系合金線は、表面が酸化されない。また、短
いものでは、図3に示すように、外装材に前記と同様の
Ni−Ti系合金素線を挿入した後、両端を真空封着し
て複合体素線とし、これを冷間伸線と焼鈍を繰り返して
縮径加工すれば、表面が酸化されない清浄な細線を得る
ことができる。
Next, the third aspect of the present invention will be described.
The invention of claim 3 is an embodiment of the invention of claim 1,
The Ni-Ti based shape memory alloy strand uses a strand whose surface has been cleaned in advance. Specifically, each wire is pickled, subjected to a linear memory treatment in the air or in an inert atmosphere, and inserted into a sheathing material (seamless pipe) as shown in FIG. After forming the strands,
As shown in the figure, one end of the composite element wire is knotted by a swager, and then drawn from this knot portion, so that the armoring material and the Ni-Ti alloy element wire or element wires come into close contact with each other, and The air inside the material is discharged to the outside. By doing so, the surface of the internal Ni—Ti-based alloy wire is not oxidized in the subsequent drawing and annealing steps. In the case of a short wire, as shown in FIG. 3, a Ni-Ti alloy wire similar to the above is inserted into the exterior material, and both ends are vacuum sealed to form a composite wire, which is then cold drawn. By repeating the wire and annealing to reduce the diameter, a clean fine wire whose surface is not oxidized can be obtained.

【0022】次に、請求項4の発明について説明する。
請求項4の発明は、請求項1の発明の好ましい実施態様
であり、前記外装材が、軟鋼材若しくはCu−Ni系合
金材からなるものである。本発明に用いる外装材は、上
記に限定されるものではないが、軟鋼材若しくはCu−
Ni系合金材を用いるのが好ましい。この軟鋼材は、適
度の機械的特性と加工性を有する点で、炭素含有量が
0.15〜0.3%程度のものが好ましい。炭素含有量
が0.3〜0.5%の中炭素鋼では、変形抵抗が大きす
ぎて加工が困難になる。また、Cu−Ni系合金材は、
適度の機械的特性と加工性等を有するため、好ましい。
例えば、Cu、Cu−Zn合金は、軟らかすぎたり、熱
処理時の結晶粒粗大化により適合しない。
Next, the invention of claim 4 will be described.
The invention according to claim 4 is a preferred embodiment of the invention according to claim 1, wherein the exterior material is made of a mild steel material or a Cu-Ni alloy material. The exterior material used in the present invention is not limited to the above, but mild steel or Cu-
It is preferable to use a Ni-based alloy material. The mild steel material preferably has a carbon content of about 0.15 to 0.3% in view of having appropriate mechanical properties and workability. In a medium carbon steel having a carbon content of 0.3 to 0.5%, the deformation resistance is too large and processing becomes difficult. Further, Cu-Ni-based alloy material is
It is preferable because it has appropriate mechanical properties and workability.
For example, Cu and Cu-Zn alloys are too soft or unsuitable due to crystal grain coarsening during heat treatment.

【0023】外装材は、少量の製造で短い素線を使用す
る場合は、短い軟鋼管を使用するのが便利である。ま
た、長尺の素線を使用する場合は、図4に示すように、
外装材となるテープ材をフォーミング・溶接しながら素
線を供給してもよく、また、図5に示すように、テープ
材をフォーミングしながら、素線を包んでいく方法等、
従来の技術を採用することができる。
In the case where a short strand is used in a small amount of production, it is convenient to use a short mild steel pipe. In addition, when using a long strand, as shown in FIG.
The wire may be supplied while forming and welding the tape material as the exterior material, and as shown in FIG. 5, a method of wrapping the wire while forming the tape material may be used.
Conventional techniques can be employed.

【0024】本発明による製造方法は、外装材と直線記
憶処理した複数本のNi−Ti系形状記憶合金素線を組
み合わせて複合体素線とし、これを加工(伸線、焼鈍)
するため、Ni−Ti系形状記憶合金線材を酸化させる
ことなく、多数の細径線材を同時に、且つ容易に得るこ
とができる。また、本発明による製造方法は、焼鈍間の
伸線加工率を従来の単線引きに比べて、20〜30%程
度多く引き落とすことが可能であり、かつ複数本を同時
に製造できるので、安価な細線を製造することができ
る。また、被覆管等の外装材に、軟鋼材若しくはCu−
Ni系合金材を用いているので、伸線ダイスへの焼き付
き度合いも、Ni−Ti系形状記憶合金の単線引きに比
べ少ないので、伸線工程での断線が皆無となる効果があ
る。
In the manufacturing method according to the present invention, a composite element wire is formed by combining an exterior material and a plurality of Ni-Ti-based shape memory alloy elements subjected to linear memory processing, and this is processed (drawn and annealed).
Therefore, many small-diameter wires can be obtained simultaneously and easily without oxidizing the Ni-Ti-based shape memory alloy wires. In addition, the manufacturing method according to the present invention can reduce the wire drawing rate during annealing by about 20 to 30% as compared with the conventional single wire drawing, and can manufacture a plurality of wires at the same time. Can be manufactured. In addition, mild steel or Cu-
Since the Ni-based alloy material is used, the degree of seizure to the wire drawing die is smaller than that of the single wire drawing of the Ni-Ti shape memory alloy, so that there is an effect that there is no disconnection in the wire drawing process.

【0025】更に、本発明による製造方法は、外装材が
を被覆されたままの複合伸線材の段階で、捩じり加工を
施すため、外装材内部の細線の束を撚線とすることがで
きる。このため、後に外装材を除去した後に、撚線部材
を直接得ることができる。また、本発明による製造方法
は、捩じり加工した複合伸線材を所定の長さと形状に加
工した後に、形状記憶熱処理を施すため、外装材を除去
した後に、直ちに目的に応じた形状の撚線部材を得るこ
とができる効果がある。以上のように、本発明による製
造方法は、Ni−Ti系形状記憶合金細線による撚線部
材を、容易で安価に製造することができる。
Further, in the manufacturing method according to the present invention, since the twisting is performed at the stage of the composite wire having the outer material covered, the bundle of fine wires inside the outer material may be formed into a stranded wire. it can. Therefore, the stranded wire member can be directly obtained after the exterior material is removed later. Further, in the manufacturing method according to the present invention, the twisted composite wire is processed into a predetermined length and shape, and then subjected to shape memory heat treatment. There is an effect that a wire member can be obtained. As described above, the manufacturing method according to the present invention can easily and inexpensively manufacture a stranded member made of a Ni—Ti based shape memory alloy thin wire.

【0026】[0026]

【実施例】次に、本発明の実施例(本発明例)につい
て、具体的に説明する。 〔実施例1〕直径1mmのNi51.0at%、残Ti
からなるNi−Ti合金素線を酸洗い後、650℃のア
ルゴンガス中で直線記憶処理を行って超弾性特性を付与
した。この素線の変態点(Af点)は、−10℃であ
る。次に、外径9mm、内径5mm、長さ1000mm
の軟鋼(SS41)製被覆管(外装材)に、この直線記
憶処理した素線19本を、図1に示すように、常温で、
各線が平行になるように挿入して、複合体素線を作製し
た。
Next, examples of the present invention (examples of the present invention) will be specifically described. [Example 1] Ni having a diameter of 1 mm was 51.0 at% and the remaining Ti was
After pickling the Ni—Ti alloy strand consisting of, a linear memory treatment was performed in argon gas at 650 ° C. to impart superelastic properties. The transformation point (Af point) of this wire is −10 ° C. Next, outer diameter 9mm, inner diameter 5mm, length 1000mm
As shown in FIG. 1, nineteen wires subjected to the straight-line storage process were applied to a mild steel (SS41) cladding tube (exterior material) at room temperature.
The composite wires were prepared by inserting the wires in parallel.

【0027】次に、図2に示すように、この複合体素線
をの一端をスエージャーで絞り、被覆管とNi−Ti系
合金素線が、完全に密着するまで焼鈍なしで伸線した。
このようにするのは、複合体素線内部の空気を完全に追
い出すことによって、加工(伸線、焼鈍)中のNi−T
i系合金素線の表面酸化を防止するためである。次に、
この複合体素線について、700℃×20分の焼鈍と冷
間伸線を繰り返して、複合伸線材の外径が2.25mm
になるまで伸線した。この複合伸線材の一部を切断し、
被覆管を刃物で除去して調査したところ、内部のNi−
Ti系合金細線は、1本1本を容易に分離することがで
きた。また、細線の断面は、ほぼ6角形で、対向辺は2
50μmとなり、表面酸化も少なく、断面形状(面積)
もほぼ一定で、断線のない良好な細線(19本)の束が
得られることが確認された。
Next, as shown in FIG. 2, one end of the composite wire was drawn with a swager, and drawn without annealing until the cladding tube and the Ni—Ti alloy wire were completely adhered.
This is because the air inside the composite wire is completely expelled, and the Ni-T during processing (drawing and annealing) is removed.
This is for preventing surface oxidation of the i-based alloy strand. next,
This composite strand was repeatedly subjected to annealing and cold drawing at 700 ° C. for 20 minutes, and the outer diameter of the composite drawn wire was 2.25 mm.
Wire was drawn until. Cut a part of this composite wire,
When the cladding tube was removed and inspected, the internal Ni-
The Ti-based alloy fine wires could be easily separated one by one. The cross section of the thin line is almost hexagonal, and the opposite side is 2
50 μm, less surface oxidation, cross-sectional shape (area)
Was almost constant, and it was confirmed that a bundle of fine wires (19) without disconnection was obtained.

【0028】次に、このようにして製造した複合伸線材
について、図6に示すごとくピッチ4.5mmの捩じり
加工を施した。続いて、この捩じり加工した複合伸線材
を所定の長さに切断して、図7に示すごとくブラジャー
用芯材の形状に成形加工して、その部材とした。次に、
この成形部材について、500℃×1hrの形状記憶熱
処理を行った後、外装材を除去して19本の細線からな
るブラジャー芯材用の撚線部材を得た。このブラジャー
芯材用の撚線部材について、特性試験を行った結果、超
弾性特性を有し、非常に柔軟性に富んでいることが確認
された。
Next, the composite wire thus manufactured was subjected to a twisting process at a pitch of 4.5 mm as shown in FIG. Subsequently, the twisted composite wire rod was cut into a predetermined length and formed into a brassier core material as shown in FIG. next,
The formed member was subjected to shape memory heat treatment at 500 ° C. × 1 hr, and then the exterior material was removed to obtain a stranded wire member for a brassier core consisting of 19 thin wires. A characteristic test was performed on the stranded wire member for a brassier core material, and as a result, it was confirmed that the braided core member had superelastic properties and was very flexible.

【0029】〔実施例2〕外装材となる被覆管(外径9
mm、内径5mm、長さ2500mm)としてCu−N
i系合金、JIS7100(Cu−20wt%Ni−
0.8wt%Fe−0.5wt%Mn合金)に、実施例
1と同様に、直径1mmのNi51.0at%、残Ti
からなるNi−Ti合金素線19本を挿入して複合体素
線を作製した。次に、実施例1と同様に、この複合体素
線を加工して、複合伸線材の外径が5.0mmになるま
で伸線した。この複合伸線材の一部を切断し、被覆管を
刃物で除去して調査したところ、内部のNi−Ti系合
金細線は、1本1本を容易に分離することができた。ま
た、細線の断面は、ほぼ6角形で、対向辺は500μm
となり、表面酸化も少なく、断面形状(面積)もほぼ一
定で、断線のない良好な細線(19本)の束が得られる
ことが確認された。
Example 2 A cladding tube (outer diameter 9
mm, inner diameter 5 mm, length 2500 mm) as Cu-N
i-based alloy, JIS7100 (Cu-20wt% Ni-
0.8 wt% Fe-0.5 wt% Mn alloy), in the same manner as in Example 1, Ni of 5 mm at 1 mm and residual Ti
The composite wire was manufactured by inserting 19 Ni-Ti alloy wires consisting of Next, in the same manner as in Example 1, the composite element wire was processed and drawn until the outer diameter of the composite drawn material became 5.0 mm. A part of this composite wire was cut, and the cladding tube was removed with a blade to investigate. As a result, it was possible to easily separate the internal Ni—Ti-based alloy wires one by one. The cross section of the thin line is almost hexagonal, and the opposite side is 500 μm.
It was confirmed that a bundle of fine wires (19 wires) with little surface oxidation, almost constant cross-sectional shape (area), and no disconnection was obtained.

【0030】次に、このようにして製造した複合伸線材
について、図6に示すごとくピッチ4.5mmの捩じり
加工を施した。続いて、この捩じり加工した複合伸線材
を所定の長さ5000mmに切断して、電線管の撚線に
よるガイドワイヤーの部材とした。次に、この部材につ
いて、600℃×30分の直線形状記憶の熱処理を行っ
た後、外装材を除去して19本の細線からなる電線管の
ガイドワイヤー用の撚線部材を得た。このガイドワイヤ
ー用の撚線部材について、特性試験を行った結果、超弾
性特性を有する撚線部材であることが確認された。
Next, the composite wire thus produced was subjected to a twisting process at a pitch of 4.5 mm as shown in FIG. Subsequently, the twisted composite wire was cut into a predetermined length of 5000 mm to obtain a guide wire member formed by stranded wires of a conduit tube. Next, this member was subjected to a heat treatment of a linear shape memory at 600 ° C. for 30 minutes, and then the sheath material was removed to obtain a stranded wire member for a guide wire of a conduit made of 19 thin wires. A characteristic test was performed on the stranded wire member for a guide wire, and as a result, it was confirmed that the stranded wire member had superelastic properties.

【0031】[0031]

【発明の効果】以上述べたように、本発明は、Ni−T
i系形状記憶合金の細線が複数本同時に製造できるこ
と、又この細線の束を同時に捩じり加工して撚線とする
ことができること、更にはこの撚線部材を同時に形状記
憶処理できること等により、形状記憶特性若しくは超弾
性特性を有するNi−Ti系合金細線からなる撚線部材
を、安価にに供給することが可能となり、広範囲な用途
開発が展開できる等工業上顕著な効果を奏するものであ
る。
As described above, according to the present invention, Ni-T
By being able to simultaneously produce a plurality of thin wires of the i-based shape memory alloy, to be able to twist and twist a bundle of these thin wires at the same time to form a stranded wire, and to be able to simultaneously shape-process this stranded wire member, It is possible to supply inexpensively a stranded wire member made of a Ni-Ti alloy thin wire having shape memory properties or superelastic properties, and has a remarkable industrial effect such that a wide range of application development can be developed. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】継目無管外装材による複合体素線の断面拡大図
である。
FIG. 1 is an enlarged cross-sectional view of a composite element wire made of a seamless pipe sheathing material.

【図2】一端をスエージャー加工で絞った複合体素線の
外観図である。
FIG. 2 is an external view of a composite element wire whose one end is squeezed by swaging.

【図3】両端を真空封着した複合体素線の外観図であ
る。
FIG. 3 is an external view of a composite element wire having both ends vacuum sealed.

【図4】フォーミング溶接管外装材による複合体素線の
断面拡大図である。
FIG. 4 is a cross-sectional enlarged view of a composite element wire formed by a forming material for a welded pipe;

【図5】フォーミング重ね巻き管外装材による複合体素
線の断面拡大図である。
FIG. 5 is an enlarged cross-sectional view of a composite strand using a forming wrapped tube sheathing material.

【図6】複合体素線を伸線加工して複合伸線材とし、こ
れに更に捩じり加工を施した複合伸線材の外観である。
FIG. 6 is an external view of a composite wire obtained by drawing a composite wire into a composite wire and further twisting the composite wire.

【図7】本発明の一実施例であり、ブラジャー芯材用N
i−Ti系形状記憶合金細線からなる撚線部材(捩じり
複合伸線部材)の外観である。
FIG. 7 is an embodiment of the present invention, which is N for a brassier core material.
1 is an external view of a stranded wire member (twisted composite wire drawn member) made of an i-Ti-based shape memory alloy thin wire.

【符号の説明】[Explanation of symbols]

1 Ni−Ti系合金素線 2 金属製外装材 21 継目無管による外装材 22 フォーミング溶接管による外装材 23 フォーミング重ね巻き管による外装材 3 スエージャー加工部 4、4' 封止部 5 溶接部 6 重ね部 7 捩じり複合伸線材 8 成形した捩じり複合伸線部材DESCRIPTION OF SYMBOLS 1 Ni-Ti alloy wire 2 Metal exterior material 21 Exterior material by seamless pipe 22 Exterior material by forming welding tube 23 Exterior material by forming lap winding tube 3 Swager processing part 4, 4 ' sealing part 5 Welding part 6 Overlapping part 7 Torsion composite wire drawing material 8 Molded torsion composite wire drawing member

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI B21F 21/00 B21F 21/00 C22C 14/00 C22C 14/00 Z 19/03 19/03 A ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification code FI B21F 21/00 B21F 21/00 C22C 14/00 C22C 14/00 Z 19/03 19/03 A

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 予め直線記憶処理が施されたNi−Ti
系形状記憶合金素線の複数本を、その素線の変態点より
高い温度の状態に保持しながら、金属製の外装材で被覆
して複合体素線を形成し、続いてその複合体素線につい
て、冷間伸線と焼鈍を繰り返して複合伸線材とした後、
この複合伸線材に捩じり加工を施し、続いてこれを所定
の長さと形状に成形して捩じり複合伸線部材とし、次に
これに形状記憶処理を施した後、外装材を除去すること
を特徴とするNi−Ti系形状記憶合金細線からなる撚
線部材の製造方法。
1. Ni-Ti which has been subjected to a straight line storage process in advance
While holding a plurality of the system shape memory alloy wires at a temperature higher than the transformation point of the wires, the wires are covered with a metal exterior material to form a composite wire, and then the composite wire is formed. For the wire, after repeated cold drawing and annealing to make a composite drawn material,
This composite wire is subjected to a twisting process, and then formed into a predetermined length and shape to form a twisted composite wire, and then subjected to shape memory processing, and then the exterior material is removed. A method for manufacturing a stranded wire member made of a Ni-Ti based shape memory alloy thin wire, characterized in that:
【請求項2】 前記Ni−Ti系形状記憶合金素線は、
Ni49.5〜51.5at%、残TiからなるNi−
Ti合金、及び前記Ni−Ti合金におけるNiまたは
/およびTiの一部をV、Cr、Fe、Co、Alの1
種又は2種以上で、且つその合計量を0.1〜3.0a
t%の範囲で置換したNi−Ti系合金、若しくは前記
Ni−Ti合金あるいはNi−Ti系合金におけるNi
または/およびTiの一部をCu、Pd、Nbのいずれ
かで且つその量が5〜10at%の範囲で置換したNi
−Ti系合金からなることを特徴とする請求項1に記載
のNi−Ti系形状記憶合金細線からなる撚線部材の製
造方法。
2. The Ni—Ti based shape memory alloy strand is:
Ni 49.5 to 51.5 at%, Ni-
In the Ti alloy and a part of Ni and / or Ti in the Ni—Ti alloy, V, Cr, Fe, Co, Al
Species or two or more species, and the total amount is 0.1 to 3.0a
Ni-Ti alloy substituted in the range of t% or Ni in the above-mentioned Ni-Ti alloy or Ni-Ti alloy
And / or Ni in which part of Ti is substituted with any of Cu, Pd, and Nb and the amount thereof is in the range of 5 to 10 at%.
The method for producing a stranded wire member made of a Ni-Ti-based shape memory alloy thin wire according to claim 1, wherein the stranded wire member is made of a -Ti-based alloy.
【請求項3】 前記Ni−Ti系形状記憶合金素線は、
予めその表面が清浄にされている素線であることを特徴
とする請求項1及び2に記載のNi−Ti系形状記憶合
金細線からなる撚線部材の製造方法。
3. The Ni—Ti based shape memory alloy strand is:
3. The method for producing a stranded wire member made of a Ni-Ti based shape memory alloy thin wire according to claim 1, wherein the wire is a wire whose surface is previously cleaned.
【請求項4】 前記外装材が、軟鋼材若しくはCu−N
i系合金材からなることを特徴とする請求項1、2、及
び3に記載のNi−Ti系形状記憶合金細線からなる撚
線部材の製造方法。
4. The exterior material is made of mild steel or Cu—N.
The method for producing a stranded wire member comprising a Ni-Ti-based shape memory alloy thin wire according to any one of claims 1, 2, and 3, wherein the method is made of an i-based alloy material.
JP30461296A 1996-11-15 1996-11-15 Production of twisted wire member consisting of nickel-titanium shape memory alloy fine wire Pending JPH10146633A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30461296A JPH10146633A (en) 1996-11-15 1996-11-15 Production of twisted wire member consisting of nickel-titanium shape memory alloy fine wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30461296A JPH10146633A (en) 1996-11-15 1996-11-15 Production of twisted wire member consisting of nickel-titanium shape memory alloy fine wire

Publications (1)

Publication Number Publication Date
JPH10146633A true JPH10146633A (en) 1998-06-02

Family

ID=17935114

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30461296A Pending JPH10146633A (en) 1996-11-15 1996-11-15 Production of twisted wire member consisting of nickel-titanium shape memory alloy fine wire

Country Status (1)

Country Link
JP (1) JPH10146633A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016505705A (en) * 2012-11-16 2016-02-25 ザ テキサス エー アンド エム ユニバーシティ システム Self-adaptive ultra-low modulus shape memory alloy
CN109202382A (en) * 2018-10-15 2019-01-15 中国航空制造技术研究院 A kind of preparation method of nickel-titanium alloy material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016505705A (en) * 2012-11-16 2016-02-25 ザ テキサス エー アンド エム ユニバーシティ システム Self-adaptive ultra-low modulus shape memory alloy
CN109202382A (en) * 2018-10-15 2019-01-15 中国航空制造技术研究院 A kind of preparation method of nickel-titanium alloy material

Similar Documents

Publication Publication Date Title
US6329069B1 (en) Composite structure and devices made from same and method
JP6185419B2 (en) Aluminum plated stainless steel wire
JP2001025813A (en) Manufacture of titanium fiber or titanium alloy fiber
JPH0588304B2 (en)
JP3041585B2 (en) Mainspring manufacturing method
US4134528A (en) Method of producing copper clad steel wire
JP3560907B2 (en) NiTi-based alloy wire, method for producing the same, and guide wire for catheter using the NiTi-based alloy wire
JPH10146633A (en) Production of twisted wire member consisting of nickel-titanium shape memory alloy fine wire
JP2010024489A (en) COVERED Fe-Ni ALLOY WIRE, AND STRAND WIRE USING THE SAME, AND ELECTRIC WIRE
JPS6362583B2 (en)
JP3345851B2 (en) Method for simultaneously producing a plurality of Ni-Ti based shape memory alloy fine wires
JPH0259109A (en) Manufacture of very fine titanium wire
JP6706856B2 (en) Wire connection structure for wire harness
JPS5910522B2 (en) copper coated aluminum wire
JP4479270B2 (en) Manufacturing method of electrode wire for wire electric discharge machining
JP2001087835A (en) PRODUCTION OF beta TITANIUM ALLOY FINE WIRE
JPH0416246B2 (en)
JP2502058B2 (en) Manufacturing method of NiTi alloy
JPS59183906A (en) Method for rolling ti-base alloy
JPH10219404A (en) Antenna material and its production
JP3884222B2 (en) Manufacturing method of oxide superconducting composite multi-core wire
JP2923597B2 (en) Manufacturing method of fine diameter composite metal plated wire
JPS5918510A (en) Conductive composite wire and method of producing same
JPH04237532A (en) Manufacture of composite wire
JPH03230415A (en) Copper alloy wire rod