JPH10145145A - Large power transmission equipment - Google Patents

Large power transmission equipment

Info

Publication number
JPH10145145A
JPH10145145A JP8308618A JP30861896A JPH10145145A JP H10145145 A JPH10145145 A JP H10145145A JP 8308618 A JP8308618 A JP 8308618A JP 30861896 A JP30861896 A JP 30861896A JP H10145145 A JPH10145145 A JP H10145145A
Authority
JP
Japan
Prior art keywords
temperature
power
temperature difference
detected
power amplification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8308618A
Other languages
Japanese (ja)
Inventor
Takatoshi Kawai
孝俊 河合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP8308618A priority Critical patent/JPH10145145A/en
Publication of JPH10145145A publication Critical patent/JPH10145145A/en
Pending legal-status Critical Current

Links

Landscapes

  • Amplifiers (AREA)
  • Transmitters (AREA)

Abstract

PROBLEM TO BE SOLVED: To suppress the fluctuation width of output by measuring the inner temperature of a power amplification means and correcting transmission output fluctuation to be small based on the temperature. SOLUTION: When a power amplification means 11 starts power amplification, temperature difference TD between the inner temperature TAMP of the means 11 an the detected temperature T0 of a temperature detection means 13 increases and is saturated at TDMAX. The temperature difference TD reduces with the stop of the power amplification of the means 11 and finally turns to zero. On the other hand, a temperature difference estimation means 14 models the change of the temperature difference TD or calculates it by an approximate calculation. A temperature difference correction means 15 adds the detected temperature T0 of the means 13 to the temperature difference TD which the means 14 calculates. The inner temperature estimation value temperature TOUT of the means 11 is obtained, and the transmission output of the means is corrected in an output correction means 16. Then, the fluctuation width of transmission output is reduced so as to provided a superior large power transmission equipment.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、温度により大電力
送信装置の送信出力が変動する場合に、出力補正手段に
より送信出力の変動幅を可能な限り小さくする大電力送
信装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-power transmitting apparatus in which, when the transmitting output of a high-power transmitting apparatus fluctuates due to temperature, the fluctuation range of the transmitting output is made as small as possible by output correction means.

【0002】[0002]

【従来の技術】従来の大電力送信装置は、温度による送
信出力の変動に対する対策として、温度検出手段で大電
力送信装置の電力増幅手段を取付けた放熱器の温度、ま
たは電力増幅手段の周囲温度を検出し、その検出温度に
基づいて出力補正手段で送信出力を補正して送信電力の
変動幅を小さくしている。
2. Description of the Related Art In a conventional large power transmission apparatus, as a measure against fluctuations in transmission output due to temperature, the temperature of a radiator provided with the power amplification means of the large power transmission apparatus by the temperature detection means or the ambient temperature of the power amplification means. Is detected, and the output correction means corrects the transmission output based on the detected temperature to reduce the fluctuation range of the transmission power.

【0003】また、送信電力制御手段としては、特開平
1−36124号公報に開示されているように、電力増
幅手段の出力を検波手段で検出し、検出した値に温度検
出手段で検出した周囲温度による補正を加えることで、
送信出力の変動幅を小さくしている。
As disclosed in JP-A-1-36124, the transmission power control means detects the output of the power amplifying means by a detecting means, and sets the detected value to the surrounding value detected by the temperature detecting means. By adding temperature compensation,
The fluctuation range of the transmission output is reduced.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記い
ずれの大電流送信装置においても、電力増幅手段が送信
出力の増幅制御を行うときは、電力増幅手段が動作する
直前は電力増幅手段の内部の温度と温度検出手段が温度
を検出している部分との間に温度差がないため精度の高
い出力補正が望められるが、電力増幅手段が電力増幅を
開始すると、電力増幅手段が発熱するために、電力増幅
手段と温度検出手段が温度を検出している部分との間の
熱抵抗により、電力増幅手段の内部の温度と温度検出手
段が検出する温度との間で次第に温度差が増加してい
き、最終的に電力増幅手段の発熱量と、電力増幅手段と
温度検出手段が温度を検出している部分との間の熱抵抗
により決まるある温度差が生じてしまい、この温度差に
より出力補正手段に誤差が生じて、送信出力が変動する
こととなる。
However, in any of the above-described large current transmitting devices, when the power amplifying means controls the amplification of the transmission output, the temperature inside the power amplifying means immediately before the power amplifying means operates. And accurate temperature correction is expected because there is no temperature difference between the temperature detection unit and the temperature detection unit.However, when the power amplification unit starts power amplification, the power amplification unit generates heat. The temperature difference between the temperature inside the power amplifying means and the temperature detected by the temperature detecting means gradually increases due to the thermal resistance between the power amplifying means and the portion where the temperature detecting means detects the temperature. Finally, a certain temperature difference determined by the heat generation amount of the power amplifying means and the thermal resistance between the power amplifying means and the portion where the temperature is detected by the temperature detecting means is generated. To The difference is caused, the transmission output is to be varied.

【0005】そこで、このための対策として、大電力送
信装置の送信出力の調整において、電力増幅手段を動作
させてから送信出力が安定するには、電力増幅手段の内
部の温度と温度検出手段が検出する温度との間の温度差
が一定になるまで待たねばならず、調整に時間がかかる
ことになる。
Therefore, as a countermeasure against this, in adjusting the transmission output of the high-power transmitting apparatus, in order to stabilize the transmission output after operating the power amplifying means, the temperature inside the power amplifying means and the temperature detecting means must be adjusted. It is necessary to wait until the temperature difference between the temperature to be detected and the temperature to be detected becomes constant, and it takes time to adjust the temperature.

【0006】本発明は、以上の上記の問題を解決するた
めに、送信出力の変動幅がより小さい優れた大電力送信
装置を提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide an excellent high-power transmitting apparatus in which the fluctuation range of the transmission output is small, in order to solve the above-mentioned problems.

【0007】[0007]

【課題を解決するための手段】本発明は、この目的を達
成するために、電力増幅手段を取付けた放熱器の温度、
又は電力増幅手段の周囲温度を検出する温度検出手段
と、この温度検出手段が検出した温度と電力増幅手段の
内部の温度との温度差を推測する温度差推測手段と、温
度検出手段が検出した温度に温度差推測手段が推測した
温度差の補正を加える温度補正手段とこの温度補正手段
が補正を加えた後の温度をもとに送信出力を補正する出
力補正手段を備えて構成する。
SUMMARY OF THE INVENTION In order to achieve the above object, the present invention provides a heat radiator having a power amplifying means attached thereto.
Or, a temperature detecting means for detecting an ambient temperature of the power amplifying means, a temperature difference estimating means for estimating a temperature difference between the temperature detected by the temperature detecting means and a temperature inside the power amplifying means, and a temperature detecting means for detecting the temperature difference. The temperature compensating means includes a temperature compensating means for compensating for the temperature difference estimated by the temperature difference estimating means, and an output compensating means for compensating the transmission output based on the temperature after the temperature compensating means has compensated.

【0008】従って、温度検出手段が検出する温度と電
力増幅手段の発熱量をもとに、電力増幅手段の内部の温
度を推測し、推測した温度を使用して送信出力補正を行
い、送信出力の変動幅をより小さいすることが可能とな
る。
Therefore, based on the temperature detected by the temperature detecting means and the amount of heat generated by the power amplifying means, the internal temperature of the power amplifying means is estimated, and the transmission output is corrected using the estimated temperature. Can be made smaller.

【0009】[0009]

【発明の実施の形態】本発明の請求項に記載の発明は、
電力増幅手段を取付けた放熱器の温度又は電力増幅手段
の周囲温度T0 を検出する温度検出手段と、この温度検
出手段が検出した温度T0 と電力増幅手段の内部の温度
AMP との温度差を推測する温度差推測手段と、温度検
出手段が検出した温度T0 に温度差推測手段が推測した
温度差TD の補正を加える温度補正手段と、この温度補
正手段が補正を加えた後の温度TOUT をもとに送信出力
を補正する出力補正手段とを備えて構成している。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The invention described in the claims of the present invention
Temperature of the temperature detection means for detecting the ambient temperature T 0 of the radiator temperature or power amplifying means mounted power amplifying means, and the temperature T AMP inside temperature T 0 and a power amplifier for the temperature detection means detects Temperature difference estimating means for estimating the difference, temperature correcting means for correcting the temperature difference T D estimated by the temperature difference estimating means to the temperature T 0 detected by the temperature detecting means, and after the temperature correcting means makes a correction. Output correction means for correcting the transmission output based on the temperature T OUT .

【0010】従って、温度検出手段が電力増幅手段を取
付けた放熱器の温度又は電力増幅手段の周囲温度を検出
し、温度差推測手段が電力増幅手段の内部の温度TAMP
と温度検出手段が検出した温度T0 との温度差を、電力
増幅手段で消費される電力、電力増幅手段と温度検出手
段が温度の検出をおこなっている部分との熱抵抗、電力
増幅手段の動作状況より近似計算で算出し、温度補正手
段が温度検出手段が検出した温度T0 と、温度差推測手
段が算出した温度差TD を加算し、電力増幅手段の内部
の温度の推測値を求め、出力補正手段が温度補正手段で
求めた温度TOUT をもとに電力増幅手段の送信出力が一
定となるように電力増幅手段に制御を加えることとな
る。
Accordingly, the temperature detecting means detects the temperature of the radiator to which the power amplifying means is attached or the ambient temperature of the power amplifying means, and the temperature difference estimating means detects the temperature T AMP inside the power amplifying means.
The temperature difference between the temperature and the temperature T 0 detected by the temperature detecting means is determined by the power consumed by the power amplifying means, the thermal resistance between the power amplifying means and the part where the temperature detecting means detects the temperature, calculated in approximation from the operating conditions calculated, and the temperature T 0 of the temperature correction means temperature detecting means detects, by adding the temperature difference T D the temperature difference estimating means has calculating the estimated value of the internal temperature of the power amplifier means The output amplifying means then controls the power amplifying means based on the temperature T OUT obtained by the temperature correcting means so that the transmission output of the power amplifying means becomes constant.

【0011】以下、本発明の実施の形態について、図1
から図3を用いて説明する。
Hereinafter, an embodiment of the present invention will be described with reference to FIG.
This will be described with reference to FIG.

【0012】図1は本発明の実施の形態の構成を示す大
電力送信装置である。図1に示す大電力送信装置におい
て、10は送信しようとする被変調信号を生成する送信
信号生成手段、11は送信信号生成手段10で生成した
送信信号を規定された送信出力まで増幅する電力増幅手
段、12は電力増幅手段11で増幅された送信信号を送
出する空中線、13は電力増幅手段11を取付けた放熱
器の温度、または電力増幅手段11の周囲温度を検出す
る温度検出手段、14は電力増幅手段11の内部の温度
AMP と温度検出手段13が検出した温度T0 との温度
差を推測、近似計算で算出する温度差推測手段、15は
温度検出手段13が検出した温度T0 と温度差推測手段
14が算出した温度差TD を加算する温度補正手段、1
6は温度補正手段15が求めた温度TOUT をもとに電力
増幅手段11の送信出力を一定に保つように補正を加え
る出力補正手段、17は大電力送信装置全体の制御を行
う制御手段である。
FIG. 1 shows a high power transmitting apparatus showing a configuration of an embodiment of the present invention. In the high power transmission apparatus shown in FIG. 1, reference numeral 10 denotes a transmission signal generation unit for generating a modulated signal to be transmitted, and reference numeral 11 denotes power amplification for amplifying the transmission signal generated by the transmission signal generation unit 10 to a specified transmission output. Means 12, an antenna for transmitting the transmission signal amplified by the power amplifying means 11, 13 a temperature detecting means for detecting the temperature of the radiator to which the power amplifying means 11 is attached, or the ambient temperature of the power amplifying means 11, 14 A temperature difference estimating means for estimating a temperature difference between the temperature T AMP inside the power amplifying means 11 and the temperature T 0 detected by the temperature detecting means 13 and calculating by approximation calculation, and 15 is a temperature T 0 detected by the temperature detecting means 13 Temperature correction means for adding the temperature difference T D calculated by the
Reference numeral 6 denotes output correction means for correcting the transmission output of the power amplification means 11 based on the temperature T OUT obtained by the temperature correction means 15 so as to keep the transmission output constant, and 17 denotes control means for controlling the entire high power transmission apparatus. is there.

【0013】次に上記実施の形態の動作について図2及
び図3を参照して説明する。図2は大電力送信装置の周
囲温度と、電力増幅手段11の動作状況による温度検出
手段13が検出する温度T0 の変化の様子、電力増幅手
段11の内部の温度TAMP の変化の様子をモデル化した
グラフである。図3は図2より電力増幅手段11の内部
の温度TAMP と温度検出手段13が検出する温度T0
の温度差を示したグラフである。
Next, the operation of the above embodiment will be described with reference to FIGS. FIG. 2 shows a change in the ambient temperature of the large power transmission device, a change in the temperature T 0 detected by the temperature detecting means 13 due to the operation state of the power amplifying means 11, and a change in the temperature T AMP inside the power amplifying means 11. It is a modeled graph. FIG. 3 is a graph showing the temperature difference between the temperature T AMP inside the power amplifying means 11 and the temperature T 0 detected by the temperature detecting means 13 from FIG.

【0014】大電力送信装置制御手段17からの指示に
より、電力増幅手段11が送信信号生成手段10で生成
された送信信号の電力増幅制御を開始すると、電力増幅
手段11の内部の温度TAMP 、温度検出手段13が検出
する温度T0 は時間とともに増加してゆき、最終的にあ
る温度で飽和する(なお、温度検出手段13としては感
温抵抗や熱電対が使用でき、この場合、感温抵抗や熱電
対の特性の変化により温度検出対象の温度を検出するこ
ととなる)。
When the power amplifying means 11 starts power amplifying control of the transmission signal generated by the transmission signal generating means 10 according to an instruction from the high power transmitting apparatus control means 17, the temperature T AMP , The temperature T 0 detected by the temperature detecting means 13 increases with time and eventually saturates at a certain temperature (a temperature sensing resistor or a thermocouple can be used as the temperature detecting means 13. The temperature of the temperature detection target is detected based on a change in the characteristics of the resistance and the thermocouple.)

【0015】このとき、電力増幅手段11の内部の温度
AMP と温度検出手段13が検出する温度T0 との温度
差も時間とともに増加し、最終的にTDMAXで飽和する。
DMAXは、電力増幅手段11の内部で消費される電力W
と、電力増幅手段11と温度検出手段13が温度を検出
している部分との間の熱抵抗Rの積によって求めること
ができる(TDMAX=W×R)。
At this time, the temperature difference between the temperature T AMP inside the power amplifying means 11 and the temperature T 0 detected by the temperature detecting means 13 also increases with time, and finally saturates at T DMAX .
T DMAX is the power W consumed inside the power amplification means 11.
And the product of the thermal resistance R between the power amplifying unit 11 and the part where the temperature is detected by the temperature detecting unit 13 (TDMAX = W × R).

【0016】大電力送信装置制御手段17からの指示に
より、電力増幅手段11が送信信号生成手段10で生成
された送信信号の電力増幅を停止すると、または大電力
送信装置制御手段17からの指示により、送信信号生成
手段10が送信信号の生成を停止して電力増幅手段11
が電力増幅を行わなくなると、電力増幅手段11の内部
の温度TAMP 、温度検出手段13が検出する温度T0
時間とともに減少して最終的に大電力送信装置の周囲温
度と等しくなる。
When the power amplification means 11 stops power amplification of the transmission signal generated by the transmission signal generation means 10 according to an instruction from the high power transmission device control means 17, or in response to an instruction from the high power transmission device control means 17 , The transmission signal generation means 10 stops generating the transmission signal and the power amplification means 11
Does not perform power amplification, the temperature T AMP inside the power amplification unit 11 and the temperature T 0 detected by the temperature detection unit 13 decrease with time, and finally become equal to the ambient temperature of the large power transmission device.

【0017】このとき電力増幅手段11の内部の温度T
AMP と温度検出手段13が検出する温度T0 との温度差
も時間とともに減少し最終的に0となる。温度差推測手
段14において、この電力増幅手段11の動作にともな
う、電力増幅手段11の内部の温度TAMP と温度検出手
段13が検出する温度T0 との温度差の変化をモデル化
することで、電力増幅手段11の内部の温度TAMP と温
度検出手段13が検出する温度T0 との温度差を推測ま
たは近似計算により算出することができる。この近似値
計算の一例として、図2のグラフおよび図3のグラフに
示すモデルにより行う。
At this time, the temperature T inside the power amplifying means 11
The temperature difference between the AMP and the temperature T 0 detected by the temperature detecting means 13 also decreases with time and eventually becomes zero. The temperature difference estimating means 14 models the change in the temperature difference between the temperature T AMP inside the power amplifying means 11 and the temperature T 0 detected by the temperature detecting means 13 due to the operation of the power amplifying means 11. The temperature difference between the temperature T AMP inside the power amplifying means 11 and the temperature T 0 detected by the temperature detecting means 13 can be estimated or calculated by an approximate calculation. As an example of this approximation value calculation, the calculation is performed using the models shown in the graphs of FIGS.

【0018】電力増幅手段11が電力増幅を開始する
と、電力増幅手段11の内部の温度TAMP と温度検出手
段13が検出する温度T0 は、それぞれ一定の割合で温
度上昇し、大電力送信装置の周囲温度に対して、それぞ
れ一定の温度上昇をした時点で同時に飽和する。
When the power amplifying means 11 starts power amplification, the temperature T AMP inside the power amplifying means 11 and the temperature T 0 detected by the temperature detecting means 13 rise at a constant rate, respectively, and the high power transmitting apparatus Are saturated at the same time when the respective temperature rises with respect to the ambient temperature.

【0019】次に、電力増幅手段11が電力増幅を停止
すると、温度検出手段13が検出する温度T0 は一定の
割合で温度下降し、最終的に大電力送信装置の周囲温度
と等しくなる。このとき電力増幅手段11の内部の温度
AMP は一定の割合で温度下降し、温度検出手段13が
検出する温度T0 と等しい温度となり、以降は温度検出
手段13が検出する温度T0 と等しい温度変化をする
(図2参照)。
Next, when the power amplification unit 11 stops power amplification, the temperature T 0 detected by the temperature detection unit 13 decreases at a fixed rate, and finally becomes equal to the ambient temperature of the large power transmission device. At this time, the temperature T AMP inside of the power amplifier means 11 and the temperature lowered at a constant rate, it becomes a temperature equal to the temperature T 0 of detecting temperature detecting means 13 is equal to the temperature T 0 of detecting temperature detecting means 13 since The temperature changes (see FIG. 2).

【0020】図2のグラフより電力増幅手段11の内部
の温度TAMP と温度検出手段13が検出する温度T0
温度差TD を求めると、図3のようになる。電力増幅手
段11が電力増幅を開始すると、温度差TD は一定の割
合で増加し、TDMAXで飽和する。電力増幅手段11が電
力増幅を停止すると、温度差TD は一定の割合で減少し
最終的に0となる。図3のグラフで示される関係を利用
すれば、電力増幅手段11が電力増幅を行っているとき
の温度差TD は、数1の式で求められる。
FIG. 3 shows the temperature difference T D between the temperature T AMP inside the power amplifying means 11 and the temperature T 0 detected by the temperature detecting means 13 from the graph of FIG. When the power amplification means 11 starts power amplification, the temperature difference T D increases at a constant rate and saturates at T DMAX . When the power amplification means 11 stops power amplification, the temperature difference TD decreases at a fixed rate and finally becomes zero. If the relationship shown in the graph of FIG. 3 is used, the temperature difference T D when the power amplifying unit 11 performs power amplification can be obtained by Expression (1).

【0021】[0021]

【数1】Tonは電力増幅手段11が電力増幅を開始した
ときの温度差TD 、dTonは温度差TD の増加の割合、
onは電力増幅手段11が電力増幅を開始したときから
の経過時間である。電力増幅手段11が電力増幅を停止
しているときの温度差TD は、数2の式で求められる。
## EQU1 ## Ton is the temperature difference T D when the power amplification means 11 starts power amplification, dT on is the rate of increase of the temperature difference T D ,
t on is the elapsed time from when the power amplification means 11 starts power amplification. The temperature difference T D when the power amplifying unit 11 stops power amplification is obtained by the equation (2).

【0022】[0022]

【数2】Toff は電力増幅手段11が電力増幅を停止し
たときの温度差TD 、dToffは温度差TD の減少の割
合、toff は電力増幅手段11が電力増幅を停止したと
きからの経過時間である。上記の温度差TD の近似計算
はデジタル処理で離散的におこなうことも可能である。
dTon、dToff 実験等により求めることができる。温
度補正手段15において温度検出手段13が検出する温
度T0 と温度差推測手段14が算出した温度差TD の加
算をおこない電力増幅手段11の内部の温度の推測値を
求める。温度補正手段15で求めた温度Tout を用いて
出力補正手段17により電力増幅手段11の送信出力に
補正を加え送信出力の変動幅を小さくすることができ
る。
## EQU2 ## T off is the temperature difference T D when the power amplification means 11 stops power amplification, dT off is the rate of decrease of the temperature difference T D , and t off is the time when the power amplification means 11 stops power amplification. This is the elapsed time since The above-described approximate calculation of the temperature difference T D can be performed discretely by digital processing.
It can be determined by dT on and dT off experiments. Request estimate of the temperature of the interior of the power amplifier means 11 performs addition of the temperature difference T D the temperature T 0 and the temperature difference estimation unit 14 calculates the temperature detecting means 13 detects the temperature correction means 15. Using the temperature T out obtained by the temperature correction means 15, the transmission output of the power amplification means 11 is corrected by the output correction means 17 to reduce the fluctuation range of the transmission output.

【0023】送信出力の補正方法としては、送信信号生
成手段10の出力電力に補正を加え、電力増幅手段11
の入力電力を変化させる、または電力増幅手段11に補
正を加え、電力増幅手段11の利得を変化させるといっ
た手段が考えられる。
As a method of correcting the transmission output, the output power of the transmission signal generating means 10 is corrected, and the power amplifying means 11
The input power of the power amplifier 11 may be changed, or the power amplifier 11 may be corrected to change the gain of the power amplifier 11.

【0024】このような構成にしたことで大電力送信装
置の送信出力の変動幅を小さくすることができる。
With such a configuration, the fluctuation range of the transmission output of the high power transmission device can be reduced.

【0025】[0025]

【発明の効果】以上のように本発明によれば、温度差推
測手段は温度検出手段が検出した温度と電力増幅手段の
動作状況をもとに、電力増幅手段の内部の温度と温度検
出手段が検出した温度の温度差を推測し、温度補正手段
が電力増幅手段の内部の温度を推測し、この温度をもと
に出力補正手段が大電力送信装置の送信出力の変動が小
さくなるように補正を加えるために、温度差推測手段を
持たない大電力送信装置よりも出力の変動幅を小さく抑
えることができるという効果を有する。
As described above, according to the present invention, the temperature difference estimating means uses the temperature inside the power amplifying means and the temperature detecting means based on the temperature detected by the temperature detecting means and the operating condition of the power amplifying means. Guess the temperature difference between the detected temperatures, the temperature correcting means estimates the temperature inside the power amplifying means, and the output correcting means based on this temperature makes the fluctuation of the transmission output of the high power transmitting device small. Since the correction is performed, there is an effect that the fluctuation range of the output can be suppressed to be smaller than that of the high power transmitting apparatus having no temperature difference estimating means.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態における大電力送信装置の
構成を示すブロック図。
FIG. 1 is a block diagram showing a configuration of a high power transmission device according to an embodiment of the present invention.

【図2】本発明の実施の形態における大電力送信装置の
周囲温度、温度検出手段の検出する温度、電力増幅手段
の内部の温度の関係をモデル化したグラフ。
FIG. 2 is a graph showing a model of a relationship among an ambient temperature of a high-power transmission device, a temperature detected by a temperature detection unit, and a temperature inside a power amplification unit according to the embodiment of the present invention.

【図3】本発明の実施の形態における電力増幅手段の内
部の温度と温度検出手段の検出する温度の温度差をモデ
ル化したグラフ。
FIG. 3 is a graph showing a model of a temperature difference between the temperature inside the power amplifying unit and the temperature detected by the temperature detecting unit in the embodiment of the present invention.

【符号の説明】[Explanation of symbols]

11 電力増幅手段 13 温度検出手段 14 温度差推測手段 15 温度補正手段 16 出力補正手段化学式等を記載した書面 明細書 11 Power amplifying means 13 Temperature detecting means 14 Temperature difference estimating means 15 Temperature correcting means 16 Output correcting means Documents describing chemical formulas etc.

【数1】 (Equation 1)

【数2】 (Equation 2)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 電力増幅手段を取付けた放熱器の温度又
は電力増幅手段の周囲温度を検出する温度検出手段と、
この温度検出手段が検出した温度と電力増幅手段の内部
の温度との温度差を推測する温度差推測手段と、温度検
出手段が検出した温度に温度差推測手段が推測した温度
差の補正を加える温度補正手段とこの温度補正手段が補
正を加えた後の温度をもとに送信出力を補正する出力補
正手段を備えた大電力送信装置。
A temperature detecting means for detecting a temperature of a radiator to which the power amplifying means is attached or an ambient temperature of the power amplifying means;
A temperature difference estimating means for estimating a temperature difference between the temperature detected by the temperature detecting means and a temperature inside the power amplifying means; and correcting the temperature difference estimated by the temperature difference estimating means to the temperature detected by the temperature detecting means. A high-power transmitting apparatus comprising: a temperature correcting unit; and an output correcting unit that corrects a transmission output based on the temperature after the temperature correcting unit has corrected the temperature.
JP8308618A 1996-11-06 1996-11-06 Large power transmission equipment Pending JPH10145145A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8308618A JPH10145145A (en) 1996-11-06 1996-11-06 Large power transmission equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8308618A JPH10145145A (en) 1996-11-06 1996-11-06 Large power transmission equipment

Publications (1)

Publication Number Publication Date
JPH10145145A true JPH10145145A (en) 1998-05-29

Family

ID=17983224

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8308618A Pending JPH10145145A (en) 1996-11-06 1996-11-06 Large power transmission equipment

Country Status (1)

Country Link
JP (1) JPH10145145A (en)

Similar Documents

Publication Publication Date Title
US6900607B2 (en) Combined feedforward and feedback parameter estimation for electric machines
US11165388B2 (en) Thermostatic oven type electronic instrument
CN111034036B (en) Radio frequency power amplifier system
US7254117B2 (en) Closed-loop power control apparatus for mobile satellite communication system and method thereof
US11638093B2 (en) Thermal limiter for a panel speaker
JPH10145145A (en) Large power transmission equipment
JP2004086858A (en) Controller, thermoregulator and thermal treatment equipment
JP2003042849A (en) Noncontact temperature detector
US6286996B1 (en) Method and arrangement for measuring temperature of a semiconductor component in an inactive state
EP3388805A1 (en) Abnormal temperature detecting circuit
JP2003133969A (en) Transmitting device and automatic gain control method therefor
JP3829575B2 (en) Temperature controller and heat treatment equipment
JP2002048830A (en) Method and device for measuring output characteristics of power amplifier
JP3539093B2 (en) Temperature control device for measuring equipment
JPH1198031A (en) Transmitter and its automatic power control method
JP3279938B2 (en) Transmission power control method for wireless device
JPS6324570B2 (en)
JP2003304121A (en) Adaptive predestination system amplifier
JP2004007149A (en) Transmission power controller
JP2767319B2 (en) Thermal environment measurement device
JP2008146411A (en) System for stabilizing thermal displacement decay time constant of machine tool
JP2919208B2 (en) Diffusion furnace equipment
EP1063874A1 (en) Heating control for base station
KR20200003528A (en) Power amplifier that can guarantee circuit operation stability
JP3299238B2 (en) Transmission power control device and transmission power control method