JPH10144890A - Non-volatile semiconductor memory device - Google Patents

Non-volatile semiconductor memory device

Info

Publication number
JPH10144890A
JPH10144890A JP8315507A JP31550796A JPH10144890A JP H10144890 A JPH10144890 A JP H10144890A JP 8315507 A JP8315507 A JP 8315507A JP 31550796 A JP31550796 A JP 31550796A JP H10144890 A JPH10144890 A JP H10144890A
Authority
JP
Japan
Prior art keywords
film
insulating film
groove
contact hole
metal wiring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8315507A
Other languages
Japanese (ja)
Inventor
Takeshi Yamazaki
武 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP8315507A priority Critical patent/JPH10144890A/en
Publication of JPH10144890A publication Critical patent/JPH10144890A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B69/00Erasable-and-programmable ROM [EPROM] devices not provided for in groups H10B41/00 - H10B63/00, e.g. ultraviolet erasable-and-programmable ROM [UVEPROM] devices

Abstract

PROBLEM TO BE SOLVED: To enhance manufacturing yield by providing a striped element isolating insulation film on a semiconductor substrate and providing a groove exposing the source region of a transistor and extending in the direction crossing the element isolating insulation film on an interlayer insulating film on the semiconductor substrate to fill the groove with a metal wiring. SOLUTION: A striped pattern of SiO2 film exetnding in the column direction is formed on the surface of P-type Si substrate 21 to specify the element isolating region and a film 23 is formed as a gate oxide film for a tunnel on the surface of an element active region between the SiO2 films. A groove 32 exposing the source region 28s, and extending in the column direction riding over the SiO2 film and a contact hole 33 exposing the drain region 28d are formed on the BPSG film 32 by the etching process. Tungsten 34 is deposited and entire surface is etched back, leaving tungsten 34 only in the groove 32 and the contact hole 33. Thereby, manufacturing yield can be improved.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本願の発明は、制御ゲートが
容量結合絶縁膜を介して浮遊ゲート上に積層されている
不揮発性半導体記憶装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a nonvolatile semiconductor memory device in which a control gate is stacked on a floating gate via a capacitive coupling insulating film.

【0002】[0002]

【従来の技術】図4は、本願の発明の一従来例としての
フラッシュEEPROMを示している。この一従来例を
製造するためには、Si基板11の表面に行列状に並ぶ
島状のSiO2 膜12を形成して素子分離領域を規定
し、SiO2 膜12同士の間の素子活性領域の表面にト
ンネル用のゲート酸化膜としてのSiO2 膜13を形成
する。
2. Description of the Related Art FIG. 4 shows a flash EEPROM as a conventional example of the present invention. The one to make conventional example, defines the device isolation region to form island-shaped SiO 2 film 12 arranged in a matrix on the surface of the Si substrate 11, the element active regions between the SiO 2 film 12 A SiO 2 film 13 as a gate oxide film for tunneling is formed on the surface of the substrate.

【0003】その後、SiO2 膜12、13上の全面に
多結晶Si膜14を堆積させ、素子活性領域を覆って列
方向に延びる縞状のパターンに多結晶Si膜14を加工
する。そして、容量結合絶縁膜としてのONO膜15を
全面に形成し、ONO膜15上の全面に多結晶Si膜1
6を堆積させる。
Thereafter, a polycrystalline Si film 14 is deposited on the entire surface of the SiO 2 films 12 and 13, and the polycrystalline Si film 14 is processed into a stripe pattern extending in the column direction and covering the element active region. Then, an ONO film 15 as a capacitive coupling insulating film is formed on the entire surface, and the polycrystalline Si film 1 is formed on the entire surface of the ONO film 15.
6 is deposited.

【0004】その後、SiO2 膜12を跨いで行方向に
延びる縞状のパターンに多結晶Si膜16、ONO膜1
5及び多結晶Si膜14を連続的に加工して、多結晶S
i膜14、16で夫々浮遊ゲート及び制御ゲートを形成
する。そして、多結晶Si膜14、16及びSiO2
12をマスクにした不純物のイオン注入で、N+ 型の拡
散層であるソース領域17s及びドレイン領域17dを
Si基板11中に形成して、メモリセルを形成するトラ
ンジスタ18を形成する。
Thereafter, the polycrystalline Si film 16 and the ONO film 1 are formed in a stripe pattern extending in the row direction over the SiO 2 film 12.
5 and the polycrystalline Si film 14 are continuously processed to obtain a polycrystalline S
A floating gate and a control gate are formed by the i films 14 and 16, respectively. Then, a source region 17s and a drain region 17d, which are N + -type diffusion layers, are formed in the Si substrate 11 by ion implantation of impurities using the polycrystalline Si films 14, 16 and the SiO 2 film 12 as a mask. A transistor 18 forming a cell is formed.

【0005】その後、図示されてはいないが、層間絶縁
膜を堆積させ、ドレイン領域17dに達するコンタクト
孔を層間絶縁膜に開孔し、このコンタクト孔を介してド
レイン領域17dに接続されるビット線を形成する。そ
して、更に、表面保護膜等を形成して、このフラッシュ
EEPROMを完成させる。
Thereafter, although not shown, an interlayer insulating film is deposited, a contact hole reaching the drain region 17d is opened in the interlayer insulating film, and a bit line connected to the drain region 17d through the contact hole. To form Then, a surface protective film and the like are further formed to complete the flash EEPROM.

【0006】[0006]

【発明が解決しようとする課題】ところが、図4に示し
た一従来例では、ソース領域17sとしての拡散層が共
通ソース線になっており、拡散層は抵抗が高いので、高
速の動作、特に高速の読出動作が困難であった。ソース
領域17sに金属配線で分路を設ければ、高速の動作が
可能になるが、ソース領域17sと分路とを接続するた
めのコンタクト孔を設ける専用の領域が必要になって、
微細化が困難になる。つまり、図4に示した一従来例で
は、高速動作と微細化とを両立させることが困難であっ
た。
However, in the conventional example shown in FIG. 4, the diffusion layer serving as the source region 17s is a common source line, and the diffusion layer has a high resistance. High-speed read operation has been difficult. If a shunt is provided in the source region 17s by metal wiring, high-speed operation is possible. However, a dedicated region for providing a contact hole for connecting the source region 17s and the shunt is required.
Miniaturization becomes difficult. That is, in the conventional example shown in FIG. 4, it is difficult to achieve both high-speed operation and miniaturization.

【0007】しかも、図4に示した一従来例では、素子
分離絶縁膜としてのSiO2 膜12が島状であるので、
浮遊ゲート及び制御ゲートを形成する際に、列方向のS
iO2 膜12同士の間の素子活性領域において、ONO
膜15のオーバエッチング時にゲート酸化膜としてのS
iO2 膜13も同時にエッチングされ、多結晶Si膜1
4のオーバエッチング時にSi基板11も同時にエッチ
ングされる。
Further, in the conventional example shown in FIG. 4, since the SiO 2 film 12 as the element isolation insulating film has an island shape,
When forming the floating gate and the control gate, the S
In the device active region between the iO 2 films 12, ONO
S as a gate oxide film during over-etching of the film 15
The SiO 2 film 13 is also etched at the same time, and the polycrystalline Si film 1
At the time of over-etching of 4, the Si substrate 11 is simultaneously etched.

【0008】この結果、図4(a)(c)に示す様にS
i基板11に凹部19が形成されるので、その後に不純
物のイオン注入でソース領域17sを形成しても、図4
(c)に示す様に凹部19の側面部ではソース領域17
sの幅が薄くなる。従って、図4に示した一従来例で
は、このことによっても、ソース領域17sの抵抗が高
くて、高速の動作が困難であった。
As a result, as shown in FIGS. 4A and 4C, S
Since the concave portion 19 is formed in the i-substrate 11, even if the source region 17s is subsequently formed by ion implantation of impurities, FIG.
As shown in (c), the source region 17
The width of s becomes thin. Accordingly, in the conventional example shown in FIG. 4, the resistance of the source region 17s is also high, which makes it difficult to operate at high speed.

【0009】また、図4(a)では島状のSiO2 膜1
2が長方形に表されているが、リソグラフィ工程におけ
る近接効果等のために、実際には図5(b)に示す様に
SiO2 膜12の角部が丸くなっている。もしSiO2
膜12が長方形であれば、図5(a)からも明らかな様
に、多結晶Si膜14、16がチャネル長方向へ位置ず
れしてもトランジスタ18のチャネル幅Wは変動しな
い。
FIG. 4A shows an island-shaped SiO 2 film 1.
Although 2 is shown as a rectangle, the corners of the SiO 2 film 12 are actually rounded as shown in FIG. 5B due to the proximity effect and the like in the lithography process. If SiO 2
If the film 12 is rectangular, the channel width W of the transistor 18 does not change even if the polycrystalline Si films 14 and 16 are displaced in the channel length direction, as is clear from FIG.

【0010】しかし、実際にはSiO2 膜12の角部が
丸いので、図5(b)からも明らかな様に、多結晶Si
膜14、16がチャネル長方向へ位置ずれするとトラン
ジスタ18のチャネル幅Wが変動して、トランジスタ1
8の特性も変動する。従って、図4に示した一従来例で
は、製造歩留りが低かった。
However, since the corners of the SiO 2 film 12 are actually round, as is apparent from FIG.
When the films 14 and 16 are displaced in the channel length direction, the channel width W of the transistor 18 fluctuates, and the transistor 1
8 also varies. Therefore, in the conventional example shown in FIG. 4, the manufacturing yield was low.

【0011】[0011]

【課題を解決するための手段】本願の発明による不揮発
性半導体記憶装置は、メモリセルを形成しているトラン
ジスタの制御ゲートが容量結合絶縁膜を介して浮遊ゲー
ト上に積層されている不揮発性半導体記憶装置におい
て、縞状の素子分離絶縁膜が半導体基板の表面に設けら
れており、前記トランジスタのソース領域を露出させる
と共に前記素子分離絶縁膜と交わる方向へ延びる溝が前
記半導体基板上の層間絶縁膜に設けられており、前記溝
が金属配線で埋められていることを特徴としている。
According to the present invention, there is provided a nonvolatile semiconductor memory device in which a control gate of a transistor forming a memory cell is stacked on a floating gate via a capacitive coupling insulating film. In the storage device, a stripe-shaped element isolation insulating film is provided on a surface of a semiconductor substrate, and a groove extending in a direction intersecting the element isolation insulating film while exposing a source region of the transistor is formed on the semiconductor substrate. The groove is filled with a metal wiring.

【0012】本願の発明による不揮発性半導体記憶装置
は、前記トランジスタのドレイン領域を露出させるコン
タクト孔が前記層間絶縁膜に設けられており、前記金属
配線と同一層の金属配線で前記コンタクト孔が埋められ
ていることが好ましい。
In the nonvolatile semiconductor memory device according to the present invention, a contact hole exposing a drain region of the transistor is provided in the interlayer insulating film, and the contact hole is filled with a metal wiring of the same layer as the metal wiring. Preferably.

【0013】本願の発明による不揮発性半導体記憶装置
は、前記金属配線が高融点金属から成っていてもよい。
In the nonvolatile semiconductor memory device according to the present invention, the metal wiring may be made of a high melting point metal.

【0014】本願の発明による不揮発性半導体記憶装置
では、縞状の素子分離絶縁膜が半導体基板の表面に設け
られているが、半導体基板上の層間絶縁膜に設けられて
いてトランジスタのソース領域を露出させると共に素子
分離絶縁膜と交わる方向へ延びる溝が金属配線で埋めら
れているので、この金属配線が共通ソース線になってい
て、共通ソース線の抵抗が低い。このため、共通ソース
線に対する分路が不要で分路用のコンタクト孔を設ける
専用の領域が不要である。
In the nonvolatile semiconductor memory device according to the present invention, the stripe-shaped element isolation insulating film is provided on the surface of the semiconductor substrate, but is provided on the interlayer insulating film on the semiconductor substrate to reduce the source region of the transistor. Since the groove that is exposed and extends in the direction intersecting with the element isolation insulating film is filled with the metal wiring, the metal wiring serves as a common source line, and the resistance of the common source line is low. Therefore, a shunt for the common source line is unnecessary, and a dedicated area for providing a shunt contact hole is unnecessary.

【0015】しかも、半導体基板の表面に設けられてい
る素子分離絶縁膜が縞状であるために、丸い角部が素子
分離絶縁膜に存在しておらず、制御ゲート及び浮遊ゲー
トがチャネル長方向へ位置ずれしてもトランジスタのチ
ャネル幅が変動しなくて、トランジスタの特性のばらつ
きが少ない。
In addition, since the element isolation insulating film provided on the surface of the semiconductor substrate is striped, no rounded corner exists in the element isolation insulating film, and the control gate and the floating gate are formed in the channel length direction. Even if the position shifts, the channel width of the transistor does not fluctuate, and variation in characteristics of the transistor is small.

【0016】また、トランジスタのドレイン領域を露出
させるコンタクト孔が共通ソース線としての金属配線と
同一層の金属配線で埋められていれば、溝とコンタクト
孔とを同時に形成することができ且つ共通ソース線とし
ての金属配線とコンタクト孔を埋める金属配線とを同時
に形成することができるので、製造工程を増加させるこ
となくビット線用のコンタクト孔を浅くすることができ
る。
Further, if the contact hole exposing the drain region of the transistor is filled with a metal wiring of the same layer as the metal wiring as the common source line, the trench and the contact hole can be formed simultaneously and the common source line can be formed. Since the metal wiring as the line and the metal wiring filling the contact hole can be formed at the same time, the contact hole for the bit line can be made shallow without increasing the number of manufacturing steps.

【0017】[0017]

【発明の実施の形態】以下、フラッシュEEPROMに
適用した本願の発明の一実施形態を、図1〜3を参照し
ながら説明する。本実施形態のフラッシュEEPROM
を製造するためには、図1、2(a)に示す様に、P型
のSi基板21の表面に列方向に延びる縞状で厚さが4
00nm程度のSiO2 膜22を形成して素子分離領域
を規定し、SiO2 膜22同士の間の素子活性領域の表
面に厚さが5.0〜10nm程度のSiO2 膜23をト
ンネル用のゲート酸化膜として形成する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention applied to a flash EEPROM will be described below with reference to FIGS. Flash EEPROM of this embodiment
As shown in FIGS. 1 and 2 (a), stripes extending in the column direction and having a thickness of 4 are formed on the surface of a P-type Si substrate 21.
Defining an isolation region to form the SiO 2 film 22 of about nm, a thickness on the surface of the element active regions between the SiO 2 film 22 for tunnel SiO 2 film 23 of about 5.0~10nm It is formed as a gate oxide film.

【0018】その後、SiO2 膜22、23上の全面に
多結晶Si膜24をCVD法で堆積させ、素子活性領域
を覆って列方向に延びる縞状のパターンに多結晶Si膜
24を加工する。そして、容量結合絶縁膜としてのON
O膜25を全面に形成し、ONO膜25上の全面に多結
晶Si膜26をCVD法で堆積させる。
Thereafter, a polycrystalline Si film 24 is deposited on the entire surface of the SiO 2 films 22 and 23 by the CVD method, and the polycrystalline Si film 24 is processed into a stripe pattern extending in the column direction so as to cover the element active region. . And ON as a capacitive coupling insulating film
An O film 25 is formed on the entire surface, and a polycrystalline Si film 26 is deposited on the entire surface of the ONO film 25 by a CVD method.

【0019】その後、SiO2 膜22を跨いで行方向に
延びる縞状のパターンに多結晶Si膜26、ONO膜2
5及び多結晶Si膜24を連続的に加工して、多結晶S
i膜24、26で夫々浮遊ゲート及び制御ゲートを形成
する。そして、多結晶Si膜24、26及びSiO2
22をマスクにした不純物のイオン注入と、SiO2
27等から成る側壁保護膜の形成と、多結晶Si膜2
4、26及びSiO2 膜22、27をマスクにした不純
物のイオン注入とを順次に行う。
Thereafter, the polycrystalline Si film 26 and the ONO film 2 are formed in a striped pattern extending in the row direction across the SiO 2 film 22.
5 and the polycrystalline Si film 24 are continuously processed to obtain polycrystalline S
A floating gate and a control gate are formed by the i films 24 and 26, respectively. Then, ion implantation of impurities using the polycrystalline Si films 24 and 26 and the SiO 2 film 22 as a mask, formation of a sidewall protective film composed of the SiO 2 film 27 and the like, and polycrystalline Si film 2
4, 26 and the ion implantation of impurities using the SiO 2 films 22 and 27 as a mask are sequentially performed.

【0020】この結果、LDD構造の拡散層であるソー
ス領域28s及びドレイン領域28dがSi基板21中
に形成されて、メモリセルを形成するトランジスタ29
が形成される。その後、厚さが600nm程度のBPS
G膜31をCVD法で堆積させ、リフローまたはエッチ
バックでBPSG膜31の表面を平坦化する。
As a result, the source region 28s and the drain region 28d, which are the diffusion layers of the LDD structure, are formed in the Si substrate 21, and the transistor 29 forming the memory cell is formed.
Is formed. After that, BPS with a thickness of about 600 nm
The G film 31 is deposited by the CVD method, and the surface of the BPSG film 31 is flattened by reflow or etch back.

【0021】次に、図1、2(b)に示す様に、ソース
領域28sを露出させSiO2 膜22を跨いで行方向へ
延びる溝32とドレイン領域28dを露出させるコンタ
クト孔33とをBPSG膜31にエッチングで同時に形
成する。その後、図2(c)に示す様に、タングステン
34等をCVD法で堆積させ、このタングステン34の
全面をエッチバックして、図1、2(d)に示す様に、
溝32及びコンタクト孔33内にのみタングステン34
を残す。
Next, as shown in FIGS. 1 and 2 (b), a groove 32 extending in the row direction across the SiO 2 film 22 by exposing the source region 28s and a contact hole 33 exposing the drain region 28d are formed by BPSG. The film 31 is formed simultaneously by etching. After that, as shown in FIG. 2C, tungsten 34 or the like is deposited by the CVD method, and the whole surface of the tungsten 34 is etched back, and as shown in FIGS.
Tungsten 34 only in groove 32 and contact hole 33
Leave.

【0022】次に、図3(a)に示す様に、層間絶縁膜
35を形成し、コンタクト孔33中のタングステン34
を露出させるコンタクト孔36を層間絶縁膜35のエッ
チングで形成する。そして、図1、3(b)に示す様
に、コンタクト孔36をタングステン37等で埋め、A
l膜38等でビット線や電極パッド等を形成する。
Next, as shown in FIG. 3A, an interlayer insulating film 35 is formed, and tungsten 34 in contact hole 33 is formed.
Is formed by etching the interlayer insulating film 35. Then, as shown in FIGS. 1 and 3 (b), the contact hole 36 is filled with tungsten 37 or the like.
A bit line, an electrode pad, and the like are formed by the l film 38 and the like.

【0023】次に、図3(c)に示す様に、表面保護膜
39を形成し、電極パッド用の開口(図示せず)を表面
保護膜39に形成して、本実施形態のフラッシュEEP
ROMを完成させる。なお、以上の実施形態では、溝3
2及びコンタクト孔33を単層のタングステン34のみ
で埋めているが、タングステン以外の高融点金属を用い
てもよく、層間絶縁膜の層数を増加させることによって
複数層の金属をタングステン34の代わりに用いること
もできる。
Next, as shown in FIG. 3C, a surface protection film 39 is formed, and an opening (not shown) for an electrode pad is formed in the surface protection film 39.
Complete the ROM. In the above embodiment, the groove 3
2 and the contact hole 33 are filled with only a single layer of tungsten 34, but a refractory metal other than tungsten may be used. By increasing the number of interlayer insulating films, a plurality of layers of metal can be used instead of tungsten 34. Can also be used.

【0024】また、以上の実施形態はフラッシュEEP
ROMに本願の発明を適用したものであるが、EPRO
M等の様に制御ゲートが容量結合絶縁膜を介して浮遊ゲ
ート上に積層されている不揮発性半導体記憶装置であれ
ばフラッシュEEPROM以外にも本願の発明を適用す
ることができる。
In the above embodiment, the flash EEP
This is an application in which the present invention is applied to a ROM.
The invention of the present application can be applied to a nonvolatile semiconductor memory device other than a flash EEPROM as long as the control gate is stacked on the floating gate via a capacitive coupling insulating film, such as M.

【0025】[0025]

【発明の効果】本願の発明による不揮発性半導体記憶装
置では、共通ソース線の抵抗が低く、共通ソース線に対
する分路が不要で分路用のコンタクト孔を設ける専用の
領域が不要であるので、動作が高速で且つ微細化も可能
であり、しかも、トランジスタの特性のばらつきが少な
いので、製造歩留りが高い。
In the nonvolatile semiconductor memory device according to the present invention, the resistance of the common source line is low, a shunt to the common source line is unnecessary, and a dedicated area for providing a shunt contact hole is unnecessary. Since the operation is performed at high speed and miniaturization is possible, and the characteristics of the transistor are less varied, the production yield is high.

【0026】また、トランジスタのドレイン領域を露出
させるコンタクト孔が共通ソース線としての金属配線と
同一層の金属配線で埋められていれば、製造工程を増加
させることなくビット線用のコンタクト孔を浅くするこ
とができるので、ビット線の段差被覆性が優れていて製
造歩留りが更に高い。
Further, if the contact hole exposing the drain region of the transistor is filled with a metal wiring of the same layer as the metal wiring as the common source line, the contact hole for the bit line can be made shallow without increasing the number of manufacturing steps. As a result, the step coverage of the bit line is excellent, and the production yield is further increased.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本願の発明の一実施形態の平面図である。FIG. 1 is a plan view of an embodiment of the present invention.

【図2】一実施形態の前半の製造工程を順次に示してお
り、図1のD−D線に沿う位置における側断面図であ
る。
FIG. 2 is a side sectional view at a position along a line DD of FIG. 1 sequentially showing a first half of a manufacturing process of the embodiment;

【図3】一実施形態の後半の製造工程を順次に示してお
り、図1のD−D線に沿う位置における側断面図であ
る。
FIG. 3 is a side cross-sectional view at a position along a line DD in FIG. 1, which sequentially illustrates manufacturing steps in the latter half of the embodiment.

【図4】本願の発明の一従来例を示しており、(a)は
平面図、(b)(c)及び(d)は(a)の夫々B−B
線、C−C線及びD−D線に沿う位置における側断面図
である。
4A and 4B show a conventional example of the invention of the present application, wherein FIG. 4A is a plan view, and FIGS. 4B, 4C and 4D are BB of FIG.
It is a sectional side view in the position along a line, CC line, and DD line.

【図5】一従来例における課題を説明するための平面図
である。
FIG. 5 is a plan view for explaining a problem in one conventional example.

【符号の説明】[Explanation of symbols]

21 Si基板(半導体基板) 22 SiO2
(素子分離絶縁膜) 24 多結晶Si膜(浮遊ゲート) 25 ONO膜
(容量結合絶縁膜) 26 多結晶Si膜(制御ゲート) 28d ドレイン
領域 28s ソース領域 29 トランジス
タ 31 BPSG膜(層間絶縁膜) 32 溝 33 コンタクト孔 34 タングステ
ン(金属配線)
Reference Signs List 21 Si substrate (semiconductor substrate) 22 SiO 2 film (element isolation insulating film) 24 Polycrystalline Si film (floating gate) 25 ONO film (capacitive coupling insulating film) 26 Polycrystalline Si film (control gate) 28 d Drain region 28 s Source region 29 Transistor 31 BPSG film (interlayer insulating film) 32 Groove 33 Contact hole 34 Tungsten (metal wiring)

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 メモリセルを形成しているトランジスタ
の制御ゲートが容量結合絶縁膜を介して浮遊ゲート上に
積層されている不揮発性半導体記憶装置において、 縞状の素子分離絶縁膜が半導体基板の表面に設けられて
おり、 前記トランジスタのソース領域を露出させると共に前記
素子分離絶縁膜と交わる方向へ延びる溝が前記半導体基
板上の層間絶縁膜に設けられており、 前記溝が金属配線で埋められていることを特徴とする不
揮発性半導体記憶装置。
In a nonvolatile semiconductor memory device in which a control gate of a transistor forming a memory cell is stacked on a floating gate via a capacitive coupling insulating film, a striped element isolation insulating film is formed on a semiconductor substrate. A groove is provided on the surface and extends in a direction intersecting the element isolation insulating film while exposing the source region of the transistor, and is provided in the interlayer insulating film on the semiconductor substrate, and the groove is filled with a metal wiring. A nonvolatile semiconductor memory device characterized in that:
【請求項2】 前記トランジスタのドレイン領域を露出
させるコンタクト孔が前記層間絶縁膜に設けられてお
り、 前記金属配線と同一層の金属配線で前記コンタクト孔が
埋められていることを特徴とする請求項1記載の不揮発
性半導体記憶装置。
2. The method according to claim 1, wherein a contact hole exposing a drain region of the transistor is provided in the interlayer insulating film, and the contact hole is filled with a metal wiring in the same layer as the metal wiring. Item 3. The nonvolatile semiconductor memory device according to Item 1.
【請求項3】 前記金属配線が高融点金属から成ってい
ることを特徴とする請求項1記載の不揮発性半導体記憶
装置。
3. The nonvolatile semiconductor memory device according to claim 1, wherein said metal wiring is made of a high melting point metal.
JP8315507A 1996-11-12 1996-11-12 Non-volatile semiconductor memory device Pending JPH10144890A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8315507A JPH10144890A (en) 1996-11-12 1996-11-12 Non-volatile semiconductor memory device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8315507A JPH10144890A (en) 1996-11-12 1996-11-12 Non-volatile semiconductor memory device

Publications (1)

Publication Number Publication Date
JPH10144890A true JPH10144890A (en) 1998-05-29

Family

ID=18066191

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8315507A Pending JPH10144890A (en) 1996-11-12 1996-11-12 Non-volatile semiconductor memory device

Country Status (1)

Country Link
JP (1) JPH10144890A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004055657A (en) * 2002-07-17 2004-02-19 Oki Electric Ind Co Ltd Method of manufacturing non-volatile semiconductor storage device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004055657A (en) * 2002-07-17 2004-02-19 Oki Electric Ind Co Ltd Method of manufacturing non-volatile semiconductor storage device
JP4481557B2 (en) * 2002-07-17 2010-06-16 Okiセミコンダクタ株式会社 Method for manufacturing nonvolatile semiconductor memory device

Similar Documents

Publication Publication Date Title
JP3056983B2 (en) Method of manufacturing electrically erasable programmable memory
JP3615765B2 (en) Manufacturing method of read-only memory cell device
US7388249B2 (en) Semiconductor device having self-aligned gate pattern
US6346725B1 (en) Contact-less array of fully self-aligned, triple polysilicon, source-side injection, nonvolatile memory cells with metal-overlaid wordlines
US20030132471A1 (en) Semiconductor device and method of manufacturing the same
US7442985B2 (en) Semiconductor memory device having memory cell section and peripheral circuit section and method of manufacturing the same
US20050201155A1 (en) Memory device and fabrication method thereof
US7564092B2 (en) Flash memory device having a split gate
US6384450B1 (en) Semiconductor memory device and method of manufacturing the same
JP3389112B2 (en) Nonvolatile semiconductor memory device and method of manufacturing the same
KR19990072300A (en) Nvram cell having increased coupling ratio between a control gate and floating gate without an increase in cell area
JP2655124B2 (en) Nonvolatile semiconductor memory device and method of manufacturing the same
JPH11111872A (en) Eeprom cell structure and its manufacture
JPH0817948A (en) Semiconductor device and its manufacture
US6188115B1 (en) Semiconductor device with a conductive layer of small conductive resistance
US20050105332A1 (en) Memory device and fabrication method thereof
US6034395A (en) Semiconductor device having a reduced height floating gate
JPH08162547A (en) Semiconductor memory
US6146932A (en) Method for fabricating metal-oxide-semiconductor field effect transistor device
JP2000286350A (en) Nonvolatile semiconductor memory device and manufacture thereof
KR20040010061A (en) Method of fabricating semiconductor device
US6548857B2 (en) Low resistance contact structure for a select transistor of EEPROM memory cells in a NO-DPCC process
JP3308727B2 (en) Method for manufacturing semiconductor device
JPH07254652A (en) Semiconductor memory and fabrication thereof
JP2003158206A (en) Method for manufacturing silicide film of flat cell memory device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050330

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050414

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060926