JPH10142154A - Method for analyzing nitrogen by emission spectroscopic analysis - Google Patents

Method for analyzing nitrogen by emission spectroscopic analysis

Info

Publication number
JPH10142154A
JPH10142154A JP8296603A JP29660396A JPH10142154A JP H10142154 A JPH10142154 A JP H10142154A JP 8296603 A JP8296603 A JP 8296603A JP 29660396 A JP29660396 A JP 29660396A JP H10142154 A JPH10142154 A JP H10142154A
Authority
JP
Japan
Prior art keywords
nitrogen
concentration
sample
content
calibration curve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8296603A
Other languages
Japanese (ja)
Inventor
Wataru Nagasawa
度 長沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP8296603A priority Critical patent/JPH10142154A/en
Publication of JPH10142154A publication Critical patent/JPH10142154A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating And Analyzing Materials By Characteristic Methods (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

PROBLEM TO BE SOLVED: To analyze the concentration of nitrogen quantitatively and with good accuracy in an emission spectroscopic analytical method for the surface of a solid which is formed of an iron and steel material and which is nitriding- treated. SOLUTION: A plurality of solid samples which are formed of stainless steel, into which nitrogen is introduced up to a prescribed depth from their surface at a uniform concentration and in which the concentration of nitrogen is different are used as standard samples. The luminous intensity of a spectral line which indicates nitrogen is measured by using the respective standard samples, the relationship between the luminous intensity and the concentration of the nitrogen by the respective standard samples is corrected on the basis of the content of iron in the standard samples, and a working curve is created. The accuracy of the working curve is high even on the side of a high concentration. While the working curve is used, the concentration of the nitrogen in every sample to be analyzed is determined quantitatively.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、鉄鋼材料で形成さ
れ、特に、熱処理により表面に窒素や炭素が導入された
機械部品を、発光分光分析装置により分析する方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for analyzing a mechanical part formed of a steel material, and in particular, to a surface of which nitrogen or carbon has been introduced by heat treatment, using an emission spectrometer.

【0002】[0002]

【従来の技術】従来より、機械部品の機械的特性を向上
させる目的で、鉄鋼材料で形成した機械部品の表面に窒
素や炭素を導入すること(浸炭および/または窒化処
理)が行われている。そして、これらの処理により機械
部品の表面に存在させる炭素や窒素の量は、要求される
機械的特性によって異なり、処理後の表面が要求特性に
応じた炭素量、窒素量となっていることを分析により確
認することが行われる。
2. Description of the Related Art Conventionally, nitrogen or carbon has been introduced (carburized and / or nitrided) into the surface of a mechanical part formed of a steel material in order to improve the mechanical properties of the mechanical part. . The amount of carbon and nitrogen present on the surface of the machine part by these treatments differs depending on the required mechanical properties, and it is confirmed that the surface after treatment has the carbon and nitrogen amounts according to the required properties. Confirmation is performed by analysis.

【0003】このような、鉄鋼材料で形成され浸炭およ
び/または窒化処理された固体表面の分析法としては、
固体試料を電極として設置する発光分光分析が適してい
る。固体試料の発光分光分析においては、固体試料と対
電極との間の放電によって固体試料表面を励起させて発
光させ、これを分光器で分光し、各々の元素のスペクト
ル線の波長および強度を測定することによって、各元素
の定性および定量分析を行う。
[0003] As a method for analyzing a solid surface formed of a steel material and carburized and / or nitrided, the following methods have been used.
Emission spectroscopy using a solid sample as an electrode is suitable. In emission spectroscopy of a solid sample, the surface of the solid sample is excited by a discharge between the solid sample and the counter electrode to emit light, and this is separated by a spectroscope to measure the wavelength and intensity of the spectral lines of each element. By doing so, qualitative and quantitative analysis of each element is performed.

【0004】この発光分光分析では、分析対象となる元
素毎に、当該元素を種々の濃度で含有する複数個の標準
試料を用意して検量線を作成し、この検量線を用いて各
元素の定量分析を行う。そして、標準試料の各元素濃度
は、化学分析により正確に測定しておく。なお、鉄鋼材
料は鋼種によって各元素の配合率が異なるため、分析対
象の固体試料と同一鋼種で標準試料を作製することが好
ましい。また、検量線は、定量元素の含有率が高くても
十分に内挿できる範囲の複数個の標準試料により作成さ
れることが好ましい。また、標準試料は、芯部まで均一
な組成である必要がある。
In this emission spectroscopy, a calibration curve is prepared for each element to be analyzed by preparing a plurality of standard samples containing the element at various concentrations, and the calibration curve is used for each element. Perform quantitative analysis. Then, the concentration of each element in the standard sample is accurately measured by chemical analysis. In addition, since the mixing ratio of each element differs in steel materials according to steel types, it is preferable to prepare a standard sample using the same steel type as the solid sample to be analyzed. Further, it is preferable that the calibration curve is prepared from a plurality of standard samples within a range that can be sufficiently interpolated even when the content of the quantitative element is high. The standard sample needs to have a uniform composition up to the core.

【0005】軸受の軌道輪等の窒化処理では、要求性能
に応じて例えば0.05〜0.6重量%の窒素が表面に
導入される。したがって、軌道輪等の表面の窒素を精度
良く定量するためには、窒素が0.6重量%以上まで高
濃度に導入された標準試料を用意して、検量線を作成す
る必要がある。しかしながら、高炭素クロム軸受鋼や浸
炭鋼のような軸受鋼はCrの含有率が低く、高濃度の窒
素を芯部まで均一な濃度で含有させることができない。
すなわち、低濃度の窒素が導入された標準試料しか作製
できないため、高濃度側を外挿した検量線を作成するこ
とになる。
[0005] In the nitriding treatment of a bearing race or the like, for example, 0.05 to 0.6% by weight of nitrogen is introduced into the surface in accordance with required performance. Therefore, in order to accurately quantify nitrogen on the surface of a raceway or the like, it is necessary to prepare a standard sample in which nitrogen is introduced at a high concentration of 0.6% by weight or more and prepare a calibration curve. However, bearing steels such as high-carbon chromium bearing steel and carburized steel have a low Cr content, and cannot contain high-concentration nitrogen at a uniform concentration up to the core.
That is, since only a standard sample into which low-concentration nitrogen is introduced can be prepared, a calibration curve extrapolating the high-concentration side is prepared.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、このよ
うな高濃度側での信頼性に欠ける検量線を用いたので
は、発光分光分析により、軸受鋼で形成され窒化処理さ
れた固体試料の表面の窒素濃度を(特に高濃度側で)精
度良く定量分析することはできない。
However, when such a calibration curve lacking reliability on the high concentration side is used, the surface of a solid sample formed of bearing steel and subjected to nitriding treatment is determined by emission spectroscopy. Nitrogen concentration cannot be quantitatively analyzed with high accuracy (especially on the high concentration side).

【0007】本発明は、このような従来技術の問題点に
着目してなされたものであり、鉄鋼材料で形成され窒化
処理された固体表面の発光分光分析法において、窒素濃
度を精度良く定量分析することができる方法を提供する
ことを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems of the prior art. In the emission spectroscopic analysis of a solid surface formed of a steel material and subjected to nitriding treatment, the nitrogen concentration is accurately and quantitatively analyzed. The aim is to provide a method that can do this.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に、本発明は、鉄鋼材料で形成され且つ窒素を含む固体
試料の発光分光分析による窒素の分析方法において、C
rを多く含む合金鋼で形成され且つ芯部まで均一濃度に
窒素が導入された、窒素濃度が異なる複数の固体試料を
標準試料として用意し、当該各標準試料により窒素を示
すスペクトル線の発光強度を測定し、当該発光強度と各
標準試料の鉄含有率に対する窒素濃度との関係を示す検
量線を作成し、この検量線に基づいて、分析対象である
固体試料の窒素の定量を行うことを特徴とする発光分光
分析による窒素の分析方法を提供する。
To achieve the above object, the present invention provides a method for analyzing nitrogen by emission spectroscopy of a solid sample formed of a steel material and containing nitrogen.
A plurality of solid samples having a different nitrogen concentration, prepared from an alloy steel containing a large amount of r and having nitrogen introduced at a uniform concentration up to the core, are prepared as standard samples, and the emission intensity of a spectral line indicating nitrogen by each standard sample is prepared. Is measured, and a calibration curve showing the relationship between the luminescence intensity and the nitrogen concentration with respect to the iron content of each standard sample is created.Based on the calibration curve, the amount of nitrogen in the solid sample to be analyzed is determined. A method for analyzing nitrogen by emission spectroscopy is provided.

【0009】Crを多く含む合金鋼は、高濃度の窒素を
芯部まで均一な濃度で含有させることができるため、高
濃度の窒素が導入された標準試料を作製できる。これに
より、分析対象となる固体試料の窒素濃度が高くても十
分に内挿できる範囲の複数個の標準試料により検量線が
作成されるため、精度の高い検量線が得られる。したが
って、この検量線を用いれば、軸受鋼等で形成されて高
濃度に窒化処理された表面の窒素濃度を精度良く定量分
析することができる。すなわち、本発明は、分析対象で
ある固体試料が、鉄鋼材料で形成されて表面が高濃度に
窒化処理されたものである場合に特に好適である。
An alloy steel containing a large amount of Cr can contain a high concentration of nitrogen at a uniform concentration up to the core, so that a standard sample into which a high concentration of nitrogen is introduced can be prepared. Accordingly, since a calibration curve is created from a plurality of standard samples within a range that can be sufficiently interpolated even when the nitrogen concentration of the solid sample to be analyzed is high, a highly accurate calibration curve can be obtained. Therefore, by using this calibration curve, it is possible to accurately and quantitatively analyze the nitrogen concentration on the surface formed of bearing steel or the like and subjected to high concentration nitriding. That is, the present invention is particularly suitable for the case where the solid sample to be analyzed is formed of a steel material and the surface of which is subjected to a high concentration nitriding treatment.

【0010】Crを多く含む合金鋼としては、ステンレ
ス鋼、冷間工具鋼、熱間金型用鋼などが挙げられ、合金
成分が50%以上の超耐熱合金(Co基やNi基)もC
rを多く含むものである。そして、標準試料とする固体
試料は、このようなCrを多く含む合金鋼を窒素雰囲気
下で溶融して当該合金鋼中に窒素を所定の割合で溶解さ
せ、その後に冷却(好ましくは急冷)することにより得
られる。
[0010] Examples of the alloy steel containing a large amount of Cr include stainless steel, cold tool steel, and steel for hot molds. Super heat-resistant alloys (Co-base or Ni-base) having an alloy component of 50% or more are also C-based.
It contains a large amount of r. The solid sample used as the standard sample is prepared by melting such an alloy steel containing a large amount of Cr in a nitrogen atmosphere to dissolve nitrogen in the alloy steel at a predetermined ratio, and thereafter cooling (preferably, rapidly cooling). It can be obtained by:

【0011】ここで、使用する合金鋼のCr含有率は、
10〜26重量%であることが好ましい。すなわち、使
用する合金鋼は、Crを多く含むものほど窒素を多く溶
解させることができるが、Cr含有量が26重量%を超
えると安価に入手し難い(ステンレス鋼は比較的安価に
入手できるが、そのCr含有量の上限は26重量%であ
るため)。また、Cr含有量が10重量%未満である
と、軸受軌道輪の表面へ導入される窒素濃度の上限値
(例えば0.6重量%)以上の濃度で窒素を含む標準試
料が作製し難い(短時間で安定的には得られない)。
Here, the Cr content of the alloy steel used is as follows:
It is preferably from 10 to 26% by weight. That is, as for the alloy steel used, the one containing more Cr can dissolve more nitrogen, but if the Cr content exceeds 26% by weight, it is difficult to obtain it cheaply (stainless steel can be obtained relatively cheaply). , Since the upper limit of the Cr content is 26% by weight). If the Cr content is less than 10% by weight, it is difficult to prepare a standard sample containing nitrogen at a concentration higher than or equal to the upper limit (for example, 0.6% by weight) of the nitrogen introduced into the surface of the bearing race ( It cannot be obtained stably in a short time).

【0012】なお、鉄鋼材料で形成された固体試料につ
いて発光分光分析で得られる各元素の発光強度は、バッ
クグラウンドとなる鉄の含有量の影響を受け、実際の当
該元素濃度が同じでも鉄の含有率が少ないほど発光強度
は高く出る(実際の濃度より高い濃度を表す発光強度に
なる)。したがって、各標準試料について、発光強度の
測定値と窒素濃度の化学分析値を鉄含有率で補正した値
(例えば、鉄を100としたときの窒素の含有量)との
関係をプロットすることにより、基準となる検量線(標
準試料の鉄含有率との関係が補正された検量線)が得ら
れる。
The emission intensity of each element obtained by emission spectroscopy on a solid sample formed of a steel material is affected by the background iron content. The lower the content, the higher the emission intensity (the emission intensity indicates a concentration higher than the actual concentration). Therefore, for each of the standard samples, the relationship between the measured value of the emission intensity and the value obtained by correcting the chemical analysis value of the nitrogen concentration by the iron content (for example, the nitrogen content when iron is 100) is plotted. And a reference calibration curve (a calibration curve in which the relationship with the iron content of the standard sample is corrected) is obtained.

【0013】また、分析対象となる固体試料(分析試
料)の鉄含有率は、前記検量線を作成する際に基準とし
た鉄含有量(例えば、100)とは当然に異なるため、
分析試料の発光強度測定値から前記検量線を用いて得ら
れる値は、分析試料の鉄含有率を考慮していないため正
確な窒素含有率とはならない。したがって、前記検量線
により特定された窒素含有率(仮の窒素含有率)を、分
析試料の鉄含有率で補正しないと正しい窒素含有率は得
られない。
Further, since the iron content of the solid sample to be analyzed (analytical sample) is naturally different from the iron content (for example, 100) used as a reference when preparing the calibration curve,
The value obtained from the measured emission intensity of the analysis sample using the above-mentioned calibration curve is not an accurate nitrogen content because the iron content of the analysis sample is not taken into account. Therefore, unless the nitrogen content (temporary nitrogen content) specified by the calibration curve is corrected by the iron content of the analysis sample, a correct nitrogen content cannot be obtained.

【0014】ここで、鉄および窒素以外の主要成分につ
いても前述の窒素の場合と同様にして仮の元素含有率を
求め、鉄以外の主要成分についての仮の元素含有率の総
和と仮の窒素含有率とを、所定の数式に導入して演算す
ることにより、分析試料の鉄含有率を正確に測定するこ
となしに、窒素の正しい含有率を算出することができ
る。
Here, for the main components other than iron and nitrogen, the provisional element contents are determined in the same manner as in the case of the above-mentioned nitrogen, and the total of the provisional element contents for the main components other than iron and the provisional nitrogen are determined. By calculating the content by introducing the content into a predetermined mathematical formula, the correct nitrogen content can be calculated without accurately measuring the iron content of the analysis sample.

【0015】すなわち、鉄鋼材料で形成され且つ窒素を
含む固体試料の発光分光分析による窒素の分析方法にお
いて、Crを多く含む合金鋼で形成され且つ芯部まで均
一濃度に窒素が導入された、窒素濃度の異なる複数の固
体試料を標準試料として用意し、当該各標準試料により
窒素を示すスペクトル線の発光強度を測定し、当該発光
強度と各標準試料の鉄含有率に対する窒素濃度との関係
を示す検量線を作成し、この検量線に基づいて、分析対
象である固体試料の仮の窒素含有率を求めるとともに、
分析対象である固体試料の鉄および窒素以外の主要成分
についても、前記窒素の場合と同様にして仮の元素含有
率を求め、鉄以外の主要成分についての仮の元素含有率
の総和(窒素も含む)と仮の窒素含有率とを、所定の数
式に導入して演算することにより窒素の定量を行う方法
が挙げられる。この方法によれば、分析試料の鉄含有率
を正確に測定することなしに、窒素の正しい含有率を算
出することができるため好ましい。
That is, in a method for analyzing nitrogen by emission spectroscopy of a solid sample formed of a steel material and containing nitrogen, a nitrogen sample formed of an alloy steel containing a large amount of Cr and having a uniform concentration of nitrogen introduced into the core. A plurality of solid samples having different concentrations are prepared as standard samples, and the emission intensity of a spectral line indicating nitrogen is measured by each of the standard samples, and the relationship between the emission intensity and the nitrogen concentration with respect to the iron content of each standard sample is shown. Create a calibration curve, based on this calibration curve, determine the temporary nitrogen content of the solid sample to be analyzed,
With respect to the main components other than iron and nitrogen of the solid sample to be analyzed, the provisional element contents are determined in the same manner as in the case of nitrogen, and the total of the provisional element contents of the main components other than iron (nitrogen ) And the provisional nitrogen content are calculated by introducing them into a predetermined mathematical formula. This method is preferable because the correct nitrogen content can be calculated without accurately measuring the iron content of the analysis sample.

【0016】また、浸炭および/または窒化処理された
軸受軌道面などの曲面を直接、発光分光分析によって定
量分析する際には、処理面を平面に加工する必要がある
が、その方法として、浸炭および/または窒化処理され
た曲面を有する部材を、真空中、不活性ガス中、還元ガ
ス中のいずれかの状態で焼鈍し、硬さをHRC(ロックウ
エル硬さ)35以下にした後にプレス機で平面に加工す
る発光分光分析の前処理方法が挙げられる。
Further, when a curved surface such as a bearing raceway surface that has been carburized and / or nitrided is directly subjected to quantitative analysis by emission spectroscopy, it is necessary to machine the treated surface into a flat surface. And / or a member having a curved surface subjected to a nitriding treatment is annealed in a vacuum, an inert gas, or a reducing gas to reduce the hardness to an HRC (Rockwell hardness) of 35 or less and then use a press machine. A pre-processing method for emission spectroscopy for processing into a flat surface is exemplified.

【0017】また、前記前処理方法において、前記焼鈍
が、高周波加熱装置によりオーステナイト化可能な温度
まで加熱し、当該温度に短時間保持した後に、冷却速度
3〜5℃/秒で冷却するものであれば、焼鈍処理による
表面の窒素濃度の減少率を5%以下に抑えながら、硬さ
をHRC35以下とすることができるため好ましい。
Further, in the pretreatment method, the annealing is performed by heating to a temperature at which austenitization can be performed by a high-frequency heating device, maintaining the temperature for a short time, and then cooling at a cooling rate of 3 to 5 ° C./sec. This is preferable because the hardness can be reduced to HRC 35 or less while the reduction rate of the nitrogen concentration on the surface due to the annealing treatment is suppressed to 5% or less.

【0018】[0018]

【発明の実施の形態】以下、本発明の実施形態について
説明する。 〔窒素分析の検量線作成〕発光分光分析の標準試料とし
て、芯部まで均一な組成であり、鉄および主要成分の組
成が下記の表1に示す組成である8種類の円板状物(直
径30mm、厚さ30mm)を用意した。
Embodiments of the present invention will be described below. [Creation of Calibration Curve for Nitrogen Analysis] As a standard sample for emission spectroscopy, eight kinds of disk-shaped materials (diameters) having a uniform composition up to the core and having the compositions of iron and main components shown in Table 1 below 30 mm, thickness 30 mm).

【0019】[0019]

【表1】 各標準試料は、SCR材()および各種ステンレス鋼
(〜)を窒素雰囲気下において所定の条件で溶融す
ることにより、鋼中に窒素を所定の含有率(0.01〜
0.41重量%の8種類)で溶解させた後に急冷し、固
化させたものを前記形状の円板物に切り出して得られた
ものである。
[Table 1] Each standard sample was prepared by melting the SCR material () and various stainless steels (-) under a predetermined condition in a nitrogen atmosphere to thereby obtain a predetermined nitrogen content (0.01 to 0.01) in the steel.
(8 types of 0.41% by weight), quenched, and then solidified to obtain a disk having the above-mentioned shape.

【0020】鉄以外の主要成分の組成は、円板状物から
僅かな量の切り粉を採取し、JISに定める湿式の化学
分析を行うことによって測定した。また、鉄の含有率H
Feは、ΣHELをFe以外の主要成分の合計含有量、ΣH
MCを微量成分の合計含有量とすると、下記の(1)式で
算出される。そのため、表1に示す鉄の含有率は、化学
分析により得られた表1のC〜Nまでの値の総和をΣH
ELとし、ΣHMCを0に近似して、(1)式を用いて算出
した。
The composition of the main components other than iron was measured by collecting a small amount of cuttings from a disk-shaped material and performing a wet chemical analysis specified in JIS. In addition, the iron content H
Fe, the total amount of the major components other than the .SIGMA.H EL Fe, .SIGMA.H
When MC is the total content of the trace components, it is calculated by the following equation (1). Therefore, the iron content shown in Table 1 is obtained by adding the sum of the values C to N in Table 1 obtained by chemical analysis to ΔH
EL was calculated by approximating ΣH MC to 0 and using equation (1).

【0021】[0021]

【数1】 また、各標準試料について、(1)式で算出された鉄の
含有率HFeと、化学分析で測定した窒素の含有率HN
から、鉄を100としたときの窒素の比率ANを算出す
る。ここで、比率AN は下記の(2)式で表される。
(Equation 1) Further, for each of the standard samples, the nitrogen content A N when the iron content was 100 was calculated from the iron content H Fe calculated by the equation (1) and the nitrogen content H N measured by chemical analysis. calculate. Here, the ratio AN is represented by the following equation (2).

【0022】[0022]

【数2】 そして、各標準試料により窒素を示すスペクトル線の発
光強度を測定する。各標準試料について発光強度測定値
Iと比率AN との関係をプロットすることにより、窒素
についての基準となる検量線KN を得る。 〔分析試料の鉄含有率に基づく補正〕次に、分析試料に
ついて窒素を示すスペクトル線の発光強度を測定し、こ
の測定値IBNに応じた比率AN (仮の窒素含有率を示す
値)を前記検量線KN を使用して求めるが、この比率A
N は分析試料の鉄含有率にかかわらず発光強度が同じ場
合に同じ値として得られる。したがって、測定値IBN
ら前記検量線KN を使用して得られた比率AN を、分析
試料の鉄含有率に応じて補正しないと正しい窒素含有率
N を得ることはできない。正しい窒素含有率GN (重
量%)は下記の(3)式で表される。
(Equation 2) Then, the emission intensity of a spectral line indicating nitrogen is measured using each standard sample. By plotting the relationship between the measured emission intensity I and the ratio A N for each standard sample, a calibration curve K N serving as a reference for nitrogen is obtained. [Correction Based on Iron Content of Analytical Sample] Next, the emission intensity of a spectral line indicating nitrogen was measured for the analytical sample, and a ratio A N (a value indicating a temporary nitrogen content) corresponding to the measured value I BN was measured. Is determined using the calibration curve K N, and the ratio A
N is obtained as the same value when the emission intensity is the same regardless of the iron content of the analysis sample. Accordingly, the ratio A N obtained from the measured value I BN using the calibration curve K N, not corrected according to the iron content of the analyzed sample when it is impossible to obtain a correct nitrogen content G N. The correct nitrogen content G N (% by weight) is expressed by the following equation (3).

【0023】[0023]

【数3】 ここで、(HFe/100)は、前記(1)式から、下記
の(4)式〜(7)式を経て(8)式で表すことができ
る。
(Equation 3) Here, (H Fe / 100) can be expressed by the following equation (8) from the above equation (1) through the following equations (4) to (7).

【0024】[0024]

【数4】 両辺に(100/HFe)を掛けて、(Equation 4) Multiply both sides by (100 / H Fe )

【0025】[0025]

【数5】 右辺を変形して、(Equation 5) Transform the right side,

【0026】[0026]

【数6】 両辺にHFeを掛けて、(Equation 6) H Fe on both sides,

【0027】[0027]

【数7】 この式を変形して、(Equation 7) Transforming this equation,

【0028】[0028]

【数8】 これを前記(3)式に代入すると、下記の(9)式が得
られる。
(Equation 8) When this is substituted into the above equation (3), the following equation (9) is obtained.

【0029】[0029]

【数9】 ここで、(9)式は、右辺の分母の第2項が、鉄以外の
各主要成分について前述の窒素の場合と同様にして得ら
れる基準の検量線KELを用い、当該元素の発光強度IEL
で特定される当該元素の仮の含有率AELの総和に相当
し、ΣHMCは0に近似できるため、下記の(10)式で
表される。
(Equation 9) Here, equation (9), the second term on the right side of the denominator is, using a calibration line K EL criteria for each major component other than iron obtained in the same manner as the aforementioned nitrogen, of the element emission intensity I EL
In corresponds to the sum of the temporary content A EL of the element identified, since .SIGMA.H MC can be approximated to zero, it is represented by the following equation (10).

【0030】[0030]

【数10】 したがって、窒素以外の各主要元素についても予め基準
の検量線KELを作成しておき、分析試料の発光強度IEL
を測定し、各検量線KELから当該元素の仮の含有率AEL
を特定し、さらに、窒素の仮の含有率AN も同様に特定
し、ΣAELとA N を前記(10)式に導入して演算すれ
ば、分析試料の正確な窒素の含有率GNが算出される。
(Equation 10)Therefore, the main elements other than nitrogen must be
Calibration curve KELIs prepared, and the emission intensity I of the analysis sample isEL
Is measured, and each calibration curve KELFrom the provisional content A of the elementEL
And further, a provisional nitrogen content ANAlso specified
Then, AELAnd A NIs introduced into the above equation (10) to calculate
If the exact nitrogen content G of the analytical sample isNIs calculated.

【0031】このようにすれば、分析試料の正確な窒素
含有率GN が算出されるが、工場などの現場では、窒素
の検量線KN と分析試料に含まれる他の主要元素の検量
線K ELについて、同じ発光分光分析装置によって得られ
たデータを予め研究機関などから入手し、そのデータを
発光分光分析装置に接続したデータ処理装置に入力する
ことによって、手間を省くことができる。
In this way, accurate nitrogen of the analysis sample can be obtained.
Content GNIs calculated.
Calibration curve KNAnd calibration of other major elements contained in the analytical sample
Line K ELObtained by the same emission spectrometer
Data obtained from research institutes in advance, and
Input to a data processor connected to the emission spectrometer
This can save time and effort.

【0032】なお、窒素以外の主要成分(C,Si,M
n,Ni,Cr,Cu,Mo等)の定量についても、前
述の窒素の定量と同様にして、最終的に前記(10)式
に相当する式から真の元素濃度を定量することができ
る。 〔現場における分析試料の窒素定量〕次に、下記の表2
に示す組成(鉄以外の主要成分の組成)の鉄鋼材料(S
UJ2)で、標準試料と同じ円板状成形物を作製し、そ
の表面に所定の条件で窒化処理を施すことにより分析対
象となる固体試料(分析試料)を作製した。
The main components other than nitrogen (C, Si, M
In the determination of n, Ni, Cr, Cu, Mo, etc., the true element concentration can be finally determined from the equation corresponding to the equation (10) in the same manner as in the above-described determination of nitrogen. [Determination of nitrogen in analytical sample on site] Next, Table 2 below
The steel materials (S
In UJ2), the same disk-shaped molded product as the standard sample was prepared, and its surface was subjected to nitriding treatment under predetermined conditions to prepare a solid sample (analytical sample) to be analyzed.

【0033】[0033]

【表2】 この分析試料を発光分光装置にかけ、窒素を示すスペク
トル線の発光強度IBNを測定すると、当該発光分光分析
装置に接続したデータ処理装置内で、測定値I BNから予
め入力された検量線KN のデータに基づいて仮の窒素含
有率AN が特定される。また、窒素および鉄以外の主要
元素を示す各スペクトル線の発光強度I ELを測定する
と、前記データ処理装置内で、予め入力された窒素以外
の主要元素の検量線KELから各元素の仮の含有率AEL
特定される。さらに、鉄以外の主要元素の仮の含有率の
総和ΣAEL(仮の窒素含有率AN を含む値)が算出さ
れ、この総和ΣAELと仮の窒素含有率AN とにより、前
記(10)式から真の窒素含有率GN が算出される。
[Table 2]This analysis sample was applied to an emission spectrometer to obtain a spectrometer indicating nitrogen.
Luminous intensity I of torr lineBNIs measured, the emission spectroscopy
In the data processing device connected to the device, the measured value I BNFrom
Calibration curve K inputNProvisional nitrogen
Rate ANIs specified. In addition, major other than nitrogen and iron
Emission intensity I of each spectral line showing the element ELMeasure
Other than nitrogen previously input in the data processing device.
Calibration curve K of main elementsELFrom the provisional content A of each elementELBut
Specified. In addition, the temporary content of major elements other than iron
Summation AEL(Temporary nitrogen content ANIs calculated)
This sum ΣAELAnd provisional nitrogen content ANAnd by
From equation (10), the true nitrogen content GNIs calculated.

【0034】なお、この実施形態では、表1のおよび
の標準試料を標準化試料として用い、分析装置の経時
変動による検量線の較正をしてから測定を行った。ま
た、ここでは、深さ方向の窒素濃度分布を調べるため
に、分析試料の分析面を所定深さまで平面研磨盤で研削
し、ベルター研磨機で仕上げ研磨を行ってから分析装置
にかけた。また、同時に窒化処理した同形状で同じ組成
の分析試料について、前記と同じ各深さで分析試料の切
り粉を採取し、この切り粉の窒素含有率をJIS122
8に従い湿式の化学分析を行うことによって測定した。
これらの結果を図1にグラフで示す。
In this embodiment, the standard samples shown in Table 1 and were used as standardized samples, and the calibration curve was calibrated due to the change over time in the analyzer, and then the measurement was performed. Further, here, in order to examine the nitrogen concentration distribution in the depth direction, the analysis surface of the analysis sample was ground to a predetermined depth by a plane polishing machine, subjected to finish polishing by a Belter polishing machine, and then subjected to an analyzer. Simultaneously, with respect to an analysis sample having the same composition and the same composition, which was simultaneously nitrided, chips of the analysis sample were collected at the same depths as described above, and the nitrogen content of the chips was determined according to JIS 122
The measurement was performed by performing a wet chemical analysis in accordance with Example 8.
These results are shown graphically in FIG.

【0035】このグラフから分かるように、発光分光に
よる分析値と化学分析による分析値とはほぼ一致してお
り、この実施形態の方法により正しい窒素含有量を分析
できることが分かる。 〔軸受軌道面を発光分光分析する際の前処理方法〕発光
分光分析の分析試料は少なくとも分析対象面が平面であ
る必要があり、実際の軸受軌道面を直接分析する際に
は、軌道面を平面にする前処理を行う。この前処理の実
施形態について以下に述べる。
As can be seen from this graph, the analysis values obtained by the emission spectroscopy and the chemical analysis values are almost the same, and it can be seen that the correct nitrogen content can be analyzed by the method of this embodiment. [Pretreatment method for emission spectral analysis of bearing raceway surface] The analysis sample of emission spectral analysis needs to have at least a flat analysis target surface, and when directly analyzing the actual bearing raceway surface, Perform pre-processing to make a plane. An embodiment of this preprocessing will be described below.

【0036】下記の表3に示す組成(鉄以外の主要成分
の組成)の鉄鋼材料(SCr420)を用いて、内径3
0mm外径62mm厚さ16mmの単列深みぞ玉軸受
(日本精工(株)製、呼び番号6206)の内輪を作製
し、これを炭素雰囲気中に940℃で5時間保持後、油
焼入れし、その後160℃で1時間焼戻しすることによ
り浸炭処理を行った。また、同様に作製した内輪に対し
て、炭素および窒素の雰囲気中に940℃で5時間保持
後、油焼入れし、その後160℃で1時間焼戻しするこ
とにより浸炭窒化処理を行った。
Using a steel material (SCr420) having the composition shown in Table 3 below (the composition of main components other than iron),
An inner ring of a single row deep groove ball bearing (manufactured by Nippon Seiko Co., Ltd., nominal number 6206) having a 0 mm outer diameter of 62 mm and a thickness of 16 mm was prepared, and this was held at 940 ° C. for 5 hours in a carbon atmosphere, followed by oil quenching. Thereafter, carburizing treatment was performed by tempering at 160 ° C. for 1 hour. Further, the inner ring similarly prepared was subjected to carbonitriding by holding in an atmosphere of carbon and nitrogen at 940 ° C. for 5 hours, oil quenching, and then tempering at 160 ° C. for 1 hour.

【0037】[0037]

【表3】 この浸炭処理または浸炭窒化処理された内輪を適当な大
きさに切断し、真空中(処理A)、Arガス中(処理
B)、還元性ガス(Ar:H2 =1:1の混合ガス)中
(処理C)のいずれかの雰囲気中で、A1 変態点(72
3℃)より30〜50℃低い温度で1時間保持し、その
後1℃/分の速度で徐々に冷却することで軟化させた。
処理A〜Cのいずれの場合でも軟化されて得られたもの
は、ロックウエル硬さでHRC30程度になり、ハンドプ
レス機で曲げることにより軌道面を容易に平面に加工す
ることができた。
[Table 3] The carburized or carbonitrided inner ring is cut into an appropriate size, and is reduced in vacuum (process A), in Ar gas (process B), and in a reducing gas (mixed gas of Ar: H 2 = 1: 1). during in either atmosphere (process C), a 1 transformation point (72
(3 ° C.) for 30 minutes at a temperature lower by 30 to 50 ° C., and then softened by gradually cooling at a rate of 1 ° C./min.
In any of the treatments A to C, the softened material obtained had a Rockwell hardness of about HRC30, and the track surface could be easily processed into a flat surface by bending it with a hand press.

【0038】このようにして軌道面が平面になった内輪
試料を発光分光分析にかけて、軌道面の深さ方向での炭
素濃度分布および窒素濃度分布を測定した。また、比較
のために、同時に浸炭処理または浸炭窒化処理された同
じ内輪の軌道面から、所定深さ毎に切り粉を採取し、こ
れをJIS1228に従い化学分析することにより、正
確な炭素濃度分布および窒素濃度分布を測定した。これ
らの結果を図2〜4に示す。なお、図中の「化学値」は
化学分析により得られた分析値を意味する。
The inner ring sample having the flat raceway surface was subjected to emission spectroscopy to measure the carbon concentration distribution and the nitrogen concentration distribution in the depth direction of the raceway surface. For comparison, chips were taken at predetermined depths from the raceway surface of the same inner ring that was simultaneously carburized or carbonitrided, and subjected to chemical analysis in accordance with JIS1228 to obtain accurate carbon concentration distribution and The nitrogen concentration distribution was measured. These results are shown in FIGS. Note that “chemical value” in the figure means an analytical value obtained by chemical analysis.

【0039】図2は浸炭処理された内輪についての炭素
濃度分布の測定結果を、図3は浸炭窒化処理された内輪
についての炭素濃度分布の測定結果を、図4は浸炭窒化
処理された内輪についての窒素濃度分布の測定結果をそ
れぞれ示すグラフである。これらのグラフから、この実
施形態での各前処理方法で平面にされた分析試料を用い
た発光分光分析の結果が化学値とほぼ一致し、前記各前
処理方法が適切であることが分かる。 〔焼鈍条件による窒素減少率および硬さの変化〕下記の
表4に示す組成(鉄以外の主要成分の組成)の鉄鋼材料
(SUJ2)を用いて、前記と同じ円板状成形物を作製
し、これを840℃で4時間保持する条件で浸炭窒化を
行い、180℃で1時間の焼戻しを行った。この試料に
対して、下記の1〜4の各条件で焼鈍処理を行った。
FIG. 2 shows the measurement results of the carbon concentration distribution of the carburized inner ring, FIG. 3 shows the measurement results of the carbon concentration distribution of the carbonitrided inner ring, and FIG. 4 shows the measurement results of the carbonitrided inner ring. 7 is a graph showing the measurement results of the nitrogen concentration distribution of the sample. From these graphs, the results of the emission spectroscopy using the analysis sample planarized by each pretreatment method in this embodiment almost match the chemical values, and it is understood that each of the above pretreatment methods is appropriate. [Changes in Nitrogen Reduction Rate and Hardness Due to Annealing Conditions] Using the steel material (SUJ2) having the composition shown in Table 4 below (the composition of main components other than iron), the same disk-shaped molded product as described above was produced. Then, carbonitriding was performed under the condition of maintaining the temperature at 840 ° C. for 4 hours, and tempering was performed at 180 ° C. for 1 hour. This sample was annealed under the following conditions 1-4.

【0040】[0040]

【表4】 (条件1)温度保持の可能な高周波炉内に試料を入れ、
950℃(オーステナイト化温度)まで急速に加熱した
(昇温速度1℃/秒以上、好ましくは2℃/秒以上)
後、20秒間950℃に保持する。その後、予め950
℃に保持された電気炉にこの試料を移し、内部に窒素ガ
スを流して10℃/secで急速に冷却する。
[Table 4] (Condition 1) A sample is placed in a high-frequency furnace capable of maintaining temperature,
Heated rapidly to 950 ° C (austenitizing temperature) (heating rate 1 ° C / sec or more, preferably 2 ° C / sec or more)
Thereafter, the temperature is maintained at 950 ° C. for 20 seconds. Then, 950
The sample is transferred to an electric furnace maintained at a temperature of 0 ° C., and is cooled rapidly at 10 ° C./sec by flowing a nitrogen gas into the sample.

【0041】(条件2)高周波炉内での加熱条件は(条
件1)と同じであるが、20秒間950℃に保持した後
に電気炉に移さないで、高周波炉の電源を切ってそのま
ま5℃/secの速度で冷却する。
(Condition 2) The heating conditions in the high-frequency furnace are the same as those in (Condition 1), but after holding at 950 ° C. for 20 seconds, do not transfer to the electric furnace. / Sec.

【0042】(条件3)高周波炉内での加熱条件および
電気炉に移すまでは(条件1)と同じであるが、電気炉
内での冷却速度を3℃/secとする。
(Condition 3) Heating conditions in the high-frequency furnace and up to transfer to the electric furnace are the same as in (Condition 1), but the cooling rate in the electric furnace is 3 ° C./sec.

【0043】(条件4)高周波炉内での加熱条件および
電気炉に移すまでは(条件1)と同じであるが、電気炉
内での冷却速度を1℃/secとする。
(Condition 4) Heating conditions in the high-frequency furnace and up to transfer to the electric furnace are the same as in (Condition 1), but the cooling rate in the electric furnace is 1 ° C./sec.

【0044】そして、焼鈍処理前の試料表面の窒素濃度
と、焼鈍処理後の試料表面の窒素濃度を測定し、焼鈍処
理による窒素の減少率を算出した。また、焼鈍処理後の
試料表面のロックウエル硬さHRCを測定した。以上の結
果を下記の表4に示す。
Then, the nitrogen concentration on the sample surface before the annealing treatment and the nitrogen concentration on the sample surface after the annealing treatment were measured, and the nitrogen reduction rate by the annealing treatment was calculated. Further, the Rockwell hardness HRC of the sample surface after the annealing treatment was measured. The above results are shown in Table 4 below.

【0045】[0045]

【表5】 なお、表5の「処理時間」は、昇温開始時点から冷却終
了時点までにかかる時間を示す。
[Table 5] The “processing time” in Table 5 indicates the time required from the start of heating up to the end of cooling.

【0046】また、これらの結果を、冷却速度と窒素減
少率との関係、および冷却速度とロックウエル硬さHRC
との関係を示すグラフとして図5に示す。前記形状の軸
受内輪(日本精工(株)製、呼び番号6206)では、
焼鈍後の硬さがHRC35以下であれば容易に平面に加工
することができるが、これを基準とすると、図5のグラ
フから分かるように、冷却速度は5℃/sec以下であ
ることが好ましい。また、軸受内輪の窒素濃度について
は5%以内の精度に保持するという管理基準があるた
め、これをクリアするには、図5のグラフから分かるよ
うに、冷却速度は3℃/sec以上であることが好まし
い。
Further, these results are shown in the relationship between the cooling rate and the nitrogen reduction rate, and the cooling rate and the Rockwell hardness HRC.
FIG. 5 is a graph showing the relationship with. In the bearing inner ring (Nippon Seiko Co., Ltd., nominal number 6206) having the above shape,
If the hardness after annealing is HRC 35 or less, it can be easily processed into a flat surface. On the basis of this, as can be seen from the graph of FIG. 5, the cooling rate is preferably 5 ° C./sec or less. . In addition, since there is a management criterion for maintaining the nitrogen concentration of the bearing inner ring with an accuracy of 5% or less, as clear from the graph of FIG. 5, the cooling rate is 3 ° C./sec or more to clear this. Is preferred.

【0047】したがって、冷却速度を3〜5℃/sec
の範囲(図5のLの範囲)に設定にすれば、焼鈍処理に
よる表面の窒素濃度の減少率を5%以下に抑えながら、
硬さをHRC35以下とすることができるため好ましい。
Therefore, the cooling rate should be 3-5 ° C./sec.
(The range of L in FIG. 5), the reduction rate of the nitrogen concentration on the surface due to the annealing treatment is suppressed to 5% or less.
It is preferable because the hardness can be HRC35 or less.

【0048】また、高周波炉を用いることによって、オ
ーステナイト化温度まで短時間で加熱することができる
ため、前処理による影響を小さく抑えることができる。
なお、軸受軌道面などのように曲がった面を平面にする
ための前処理方法は、前述のように、発光分光分析によ
る窒素濃度および炭素濃度のみに分析対象が限定される
わけではなく、これら以外の鉄鋼材料中の各元素を発光
分光分析で分析する場合にも当然に適用される。
Further, by using a high-frequency furnace, heating to the austenitizing temperature can be performed in a short time, so that the influence of the pretreatment can be reduced.
Note that, as described above, the pretreatment method for flattening a curved surface such as a bearing raceway surface is not limited to only the nitrogen concentration and the carbon concentration by emission spectroscopy. Of course, the present invention is also applied to the case where each element in other steel materials is analyzed by emission spectroscopy.

【0049】[0049]

【発明の効果】以上説明したように、本発明によれば、
鉄鋼材料で形成され且つ窒素を含む固体の発光分光分析
法において、高濃度に窒化された表面の窒素濃度を精度
良く定量分析することができる。
As described above, according to the present invention,
In emission spectroscopy of a solid formed of a steel material and containing nitrogen, the nitrogen concentration on a highly nitrided surface can be quantitatively analyzed with high accuracy.

【図面の簡単な説明】[Brief description of the drawings]

【図1】窒化処理された面の深さ方向の窒素濃度分布
を、本発明の一実施形態の方法により測定した場合と化
学分析で測定した場合とで比較したグラフである。
FIG. 1 is a graph comparing the nitrogen concentration distribution in the depth direction of a surface subjected to nitriding treatment when measured by a method according to an embodiment of the present invention and when measured by chemical analysis.

【図2】浸炭処理された内輪について、各種条件で焼鈍
による前処理を行って発光分光分析試料用に平面とした
ものの炭素濃度分布を発光分光分析により測定した結果
と、同じ浸炭処理された内輪についての炭素濃度分布を
化学分析で測定した結果を示すグラフである。
FIG. 2 shows the results of measurement of the carbon concentration distribution of a carburized inner ring subjected to pretreatment by annealing under various conditions to obtain a flat surface for an emission spectroscopic analysis sample by emission spectroscopy, and the same carburized inner ring. 5 is a graph showing the result of measuring the carbon concentration distribution of the sample by chemical analysis.

【図3】浸炭窒化処理された内輪について、各種条件で
焼鈍による前処理を行って発光分光分析試料用に平面と
したものの炭素濃度分布を発光分光分析により測定した
結果と、同じ浸炭処理された内輪についての炭素濃度分
布を化学分析で測定した結果を示すグラフである。
FIG. 3 shows that the inner ring that has been carbonitrided has been subjected to pretreatment by annealing under various conditions, and has been subjected to the same carburizing treatment as the result of measuring the carbon concentration distribution of a flat surface for an emission spectroscopic analysis sample by emission spectrometry. It is a graph which shows the result of having measured carbon concentration distribution about an inner ring by chemical analysis.

【図4】浸炭窒化処理された内輪について、各種条件で
焼鈍による前処理を行って発光分光分析試料用に平面と
したものの窒素濃度分布を発光分光分析により測定した
結果と、同じ浸炭処理された内輪についての窒素濃度分
布を化学分析で測定した結果を示すグラフである。
FIG. 4 shows that the inner ring subjected to carbonitriding was subjected to pretreatment by annealing under various conditions, and was subjected to the same carburizing treatment as a result of measuring the nitrogen concentration distribution of a flat surface for an emission spectroscopic analysis sample by emission spectrometry. It is a graph which shows the result of having measured nitrogen concentration distribution about an inner ring by chemical analysis.

【図5】浸炭窒化処理された試料に焼鈍処理を行った場
合の、焼鈍処理の冷却速度と焼鈍処理による表面の窒素
減少率との関係、および焼鈍処理の冷却速度と焼鈍処理
された表面のロックウエル硬さHRCとの関係を示すグラ
フである。
FIG. 5 shows the relationship between the cooling rate of the annealing treatment and the nitrogen reduction rate of the surface due to the annealing treatment when the carbonitrided sample is subjected to the annealing treatment, and the relationship between the cooling rate of the annealing treatment and the annealing treatment of the surface. It is a graph which shows the relationship with Rockwell hardness HRC.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 鉄鋼材料で形成され且つ窒素を含む固体
試料の発光分光分析による窒素の分析方法において、 Crを多く含む合金鋼で形成され且つ芯部まで均一濃度
に窒素が導入された、窒素濃度の異なる複数の固体試料
を標準試料として用意し、当該各標準試料により窒素を
示すスペクトル線の発光強度を測定し、当該発光強度と
各標準試料の鉄含有率に対する窒素濃度との関係を示す
検量線を作成し、この検量線に基づいて、分析対象であ
る固体試料の窒素の定量を行うことを特徴とする発光分
光分析による窒素の分析方法。
1. A method for analyzing nitrogen by emission spectroscopy of a solid sample formed of a steel material and containing nitrogen, the nitrogen being formed of an alloy steel containing a large amount of Cr and having a uniform concentration of nitrogen introduced into the core. A plurality of solid samples having different concentrations are prepared as standard samples, and the emission intensity of a spectral line indicating nitrogen is measured by each of the standard samples, and the relationship between the emission intensity and the nitrogen concentration with respect to the iron content of each standard sample is shown. A method for analyzing nitrogen by emission spectroscopy, comprising preparing a calibration curve and quantifying nitrogen in a solid sample to be analyzed based on the calibration curve.
JP8296603A 1996-11-08 1996-11-08 Method for analyzing nitrogen by emission spectroscopic analysis Pending JPH10142154A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8296603A JPH10142154A (en) 1996-11-08 1996-11-08 Method for analyzing nitrogen by emission spectroscopic analysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8296603A JPH10142154A (en) 1996-11-08 1996-11-08 Method for analyzing nitrogen by emission spectroscopic analysis

Publications (1)

Publication Number Publication Date
JPH10142154A true JPH10142154A (en) 1998-05-29

Family

ID=17835696

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8296603A Pending JPH10142154A (en) 1996-11-08 1996-11-08 Method for analyzing nitrogen by emission spectroscopic analysis

Country Status (1)

Country Link
JP (1) JPH10142154A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1724567A1 (en) * 2005-05-17 2006-11-22 Nitrex Metal Inc Apparatus and method for controlling atmospheres in heat treating of metals
JP2008537764A (en) * 2005-04-01 2008-09-25 ロベルト ボッシュ ゲゼルシャフト ミト ベシュレンクテル ハフツング Quality monitoring method in push belt manufacturing process
JPWO2021100687A1 (en) * 2019-11-19 2021-05-27

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008537764A (en) * 2005-04-01 2008-09-25 ロベルト ボッシュ ゲゼルシャフト ミト ベシュレンクテル ハフツング Quality monitoring method in push belt manufacturing process
JP4929276B2 (en) * 2005-04-01 2012-05-09 ロベルト ボッシュ ゲゼルシャフト ミト ベシュレンクテル ハフツング Quality monitoring method in push belt manufacturing process
EP1724567A1 (en) * 2005-05-17 2006-11-22 Nitrex Metal Inc Apparatus and method for controlling atmospheres in heat treating of metals
JPWO2021100687A1 (en) * 2019-11-19 2021-05-27
WO2021100687A1 (en) * 2019-11-19 2021-05-27 日鉄ステンレス株式会社 Ferritic stainless steel sheet

Similar Documents

Publication Publication Date Title
Bensely et al. Enhancing the wear resistance of case carburized steel (En 353) by cryogenic treatment
JP5679543B2 (en) Bearing parts and bearings
CN104220621B (en) Gear having excellent seizing resistance
JP6772499B2 (en) Steel parts and their manufacturing methods
EP3006756A1 (en) Bearing component and rolling bearing
JPH10142154A (en) Method for analyzing nitrogen by emission spectroscopic analysis
JPH0633441B2 (en) Bearing race
Gegner et al. Alloy dependence of the diffusion coefficient of carbon in austenite and analysis of carburization profiles in case hardening of steels
EP3006754B1 (en) Bearing component and rolling bearing
JP7201092B2 (en) Vacuum carburizing treatment method and carburized part manufacturing method
CN105814230B (en) The method for manufacturing ferrous metal part
Berdiev et al. Influence of cyclic heating modes on the wear resistance of steel
Bomas et al. Application of the weakest‐link concept to the endurance limit of notched and multiaxially loaded specimens of carburized steel 16MnCrS5
JP6026915B2 (en) Inspection method for bearing parts and rolling bearings
JP2002302715A (en) Method for manufacturing steel product
JP2002275526A (en) Method for producing steel material
Bernard Methods of Measuring Case Depth in Steels
Mukhametzyanov et al. The Rationale for the Choice of Material and Hardening Technology for the Part Transmission Selector Fork of a Truck
Athavale et al. On a modified approach of measuring quench severity and its application
Wang et al. Development of nitrogen-hydrocarbon atmospheric carburizing and process control methods
WO2021100746A1 (en) Raceway member, rolling bearing, bearing ring for rolling bearing, and method for manufacturing bearing ring for rolling bearing
KR102309003B1 (en) Cementation heat treatment method for steel and manufactured steel by the same
EP3006577A1 (en) Bearing part and rolling bearing
JPH11352061A (en) Method for analyzing surface layer by emission spectrochemical analysis
KR101263936B1 (en) Method for drawing heat treatment depth in the product by specimen

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050719

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20051115