JPH10142068A - Temperature-measuring apparatus and method for measuring temperature using the apparatus - Google Patents

Temperature-measuring apparatus and method for measuring temperature using the apparatus

Info

Publication number
JPH10142068A
JPH10142068A JP8303234A JP30323496A JPH10142068A JP H10142068 A JPH10142068 A JP H10142068A JP 8303234 A JP8303234 A JP 8303234A JP 30323496 A JP30323496 A JP 30323496A JP H10142068 A JPH10142068 A JP H10142068A
Authority
JP
Japan
Prior art keywords
temperature
temperature measuring
substrate
measuring
function element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP8303234A
Other languages
Japanese (ja)
Inventor
Masateru Hara
昌輝 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP8303234A priority Critical patent/JPH10142068A/en
Publication of JPH10142068A publication Critical patent/JPH10142068A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To read measured results from a remote place by driving a card- shaped measuring apparatus having a temperature-measuring part and an operating function element formed on an Si substrate by an external energy supplied in a noncontact manner. SOLUTION: A control part 2, a memory part 3 and an operating part 4 are formed on a surface of an Si substrate 1 with the use of a semiconductor process. A data-receiving flat antenna 5, a data-transmitting flat antenna 6 and a power-receiving flat antenna 7 formed on the substrate 1, and a measuring part 8 of a Pt thin wire resistor formed at a rear face of the substrate 1 are connected to the control part 2. The thus-constituted IC card-type measuring apparatus is attached to an object to be measured, e.g. plasma generation device or the like. While a plasma generation high frequency power is OFF, a pulse drive force is supplied via the antenna 7 and a measuring signal is fed to the control part 2 from the antenna 5. A temperature of the plasma generation device is measured by the measuring part 8, stored in the memory 3, and transmitted to an external receiver from the antenna 6 before the high frequency power is turned ON.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体装置の製造
工程、例えば減圧容器内に保持した基板等の温度測定に
用いて好適な温度測定装置に関するものであり、さらに
は温度測定方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a temperature measuring apparatus suitable for use in a semiconductor device manufacturing process, for example, for measuring the temperature of a substrate or the like held in a reduced-pressure container, and more particularly to a temperature measuring method. is there.

【0002】[0002]

【従来の技術】半導体製造プロセスにおいては、品質を
維持するために精密な温度管理が必要であり、これまで
接触式の熱電対や非接触式の放射温度計等が広く用いら
れている。
2. Description of the Related Art In a semiconductor manufacturing process, precise temperature control is required in order to maintain quality, and a contact thermocouple, a non-contact radiation thermometer, and the like have been widely used.

【0003】しかしながら、例えば熱電対の場合、リー
ド線を引き回す必要があり、真空中での測定には不便で
ある。また、リード線の熱容量が無視できず、測定対象
であるウエハ表面等に熱電対を固定することが困難であ
るので、表面の温度測定には不向きである。さらに、熱
電対による測定は、高周波による外部擾乱に弱いという
欠点がある。
However, for example, in the case of a thermocouple, it is necessary to route the lead wire, which is inconvenient for measurement in a vacuum. Further, the heat capacity of the lead wire cannot be ignored, and it is difficult to fix the thermocouple on the surface of a wafer or the like to be measured. Furthermore, the measurement with a thermocouple has the disadvantage that it is vulnerable to external disturbance due to high frequency.

【0004】非接触式の放射温度計は、放射率が温度に
よって変化する,迷光の影響を受ける,正確な温度測定
位置がわかりにくい等の問題があり、精密な測定には不
向きで、数百℃以上のものを大まかに測定する場合にし
か使われていない。
[0004] Non-contact radiation thermometers have problems that emissivity varies with temperature, are affected by stray light, and it is difficult to determine an accurate temperature measurement position. It is used only when roughly measuring temperatures above ℃.

【0005】これらの問題を解決する温度測定技術とし
て、蛍光物質の蛍光緩和特性(特定の波長の光を受けて
発する蛍光物質の蛍光減衰に要する時間が周辺の温度に
依存して変化する性質)を利用して温度計測を行う方法
が提案されている。
As a temperature measurement technique for solving these problems, a fluorescence relaxation property of a fluorescent substance (a property in which the time required for the fluorescence decay of a fluorescent substance which emits light upon receiving light of a specific wavelength varies depending on the surrounding temperature). There has been proposed a method of performing temperature measurement by using a method.

【0006】この方法は、電磁気環境においてノイズの
影響を受けない、電磁気環境を乱さない、電気的に安全
である、等の優れた特徴を有する。
This method has excellent characteristics such as being not affected by noise in an electromagnetic environment, not disturbing the electromagnetic environment, and being electrically safe.

【0007】しかしながら、この蛍光体を使った非接触
式温度計の場合、蛍光体を測定面に塗布する必要があ
り、また非接触とはいえセンサー部を数mmまで近づけ
る必要がある。このため、遠隔点からの温度読み取りに
は不向きな技術である。
However, in the case of a non-contact type thermometer using this phosphor, it is necessary to apply the phosphor to the measurement surface, and, even though it is non-contact, it is necessary to bring the sensor unit close to several mm. Therefore, this technique is not suitable for temperature reading from a remote point.

【0008】[0008]

【発明が解決しようとする課題】上述のように、従来の
温度計測技術を、例えば半導体装置の製造工程における
温度管理に応用しようとした場合、多くの問題があり、
満足する結果が得られていない。
As described above, there are many problems when the conventional temperature measurement technique is applied to, for example, temperature control in a semiconductor device manufacturing process.
Satisfactory results have not been obtained.

【0009】そこで、本発明は、このような従来の実情
に鑑みて提案されたものであって、遠隔点から測定結果
を読み取ることができ、しかも精密な温度計測が可能な
温度測定装置を提供することを目的とし、さらには温度
測定方法を提供することを目的とする。
Therefore, the present invention has been proposed in view of such a conventional situation, and provides a temperature measuring device capable of reading a measurement result from a remote point and capable of precise temperature measurement. It is another object of the present invention to provide a temperature measuring method.

【0010】[0010]

【課題を解決するための手段】上述の目的を達成するた
めに、本発明の温度測定装置は、温度計測部及び演算機
能素子を有し、非接触で供給される外部エネルギーによ
って駆動されることを特徴とするものである。
In order to achieve the above-mentioned object, a temperature measuring apparatus according to the present invention has a temperature measuring section and an arithmetic function element, and is driven by external energy supplied in a non-contact manner. It is characterized by the following.

【0011】また、本発明の温度測定装置は、前記温度
計測部、演算機能素子の他、記憶機能素子を有していて
もよい。
Further, the temperature measuring device of the present invention may have a storage function element in addition to the temperature measurement section and the arithmetic function element.

【0012】これら演算機能素子や記憶機能素子は、最
表面にある材料層の熱容量に応じた熱伝導、昇温レー
ト、拡散に与える影響等を算出するもので、算出結果
は、いわゆるサーマルバジェットの作成やシミュレーシ
ョン、品質管理データに用いられる。
These arithmetic function elements and storage function elements calculate heat conduction, temperature rise rate, influence on diffusion, and the like in accordance with the heat capacity of the material layer on the outermost surface. Used for creation, simulation and quality control data.

【0013】上記温度計測部や演算機能素子、さらには
記憶機能素子は、例えば、同一の半導体基板に作り込む
ことによって、軽量コンパクトな構成とすることができ
る。
The temperature measuring section, the arithmetic function element, and the storage function element can be made into a lightweight and compact structure, for example, by being formed on the same semiconductor substrate.

【0014】この場合、演算機能素子、あるいは演算機
能素子と記憶機能素子の両者を、SiC等の広バンドギ
ャップ半導体材料(エネルギーギャップEgが大きく、
電子移動度も比較的大きいので、高温で使用できる電子
デバイス材料である。)で作製することにより、例えば
80℃以上の高温下でも使用可能となる。
In this case, the operation function element or both the operation function element and the storage function element are made of a wide band gap semiconductor material such as SiC (energy gap Eg is large,
Since the electron mobility is relatively high, it is an electronic device material that can be used at high temperatures. ), It can be used even at a high temperature of, for example, 80 ° C. or more.

【0015】さらに、上記温度測定装置において、温度
計測部における測定結果を発信する発信部を設けること
により、測定結果が非接触手段により外部より読み取り
可能となる。
Further, in the above-mentioned temperature measuring device, by providing a transmitting section for transmitting the measurement result in the temperature measuring section, the measurement result can be read from outside by non-contact means.

【0016】また、上記温度計測部を制御する制御部及
び外部からの信号を受信しこれを制御部に送出する受信
部を設けることにより、温度計測のタイミングが外部よ
り非接触手段により制御可能となる。
Further, by providing a control unit for controlling the temperature measuring unit and a receiving unit for receiving a signal from the outside and transmitting the signal to the control unit, the timing of temperature measurement can be controlled from the outside by non-contact means. Become.

【0017】上述の本発明の温度測定装置は、例えば半
導体装置の製造工程において減圧容器内に置かれ、これ
により、温度の表示部を計測部から切り離すことがで
き、計測データの読み取りが遠隔点でも可能な温度計測
システムが実現される。
The above-described temperature measuring device of the present invention is placed, for example, in a decompression container in a semiconductor device manufacturing process, whereby the temperature display section can be separated from the measurement section, and reading of the measurement data can be performed at a remote point. However, a possible temperature measurement system is realized.

【0018】これを具体化したものが本発明の温度測定
方法であり、半導体装置を基板上に作製するに際し、温
度計測部及び演算機能素子を有し、非接触で供給される
外部エネルギーによって駆動される温度測定装置を上記
基板に作製し、温度を測定することを特徴とするもので
ある。
A specific example of this is the temperature measuring method of the present invention, which has a temperature measuring unit and an arithmetic function element when a semiconductor device is manufactured on a substrate, and is driven by external energy supplied in a non-contact manner. The temperature measurement device is manufactured on the substrate, and the temperature is measured.

【0019】一方、本発明の第2の温度測定方法は、高
周波をパルス状に印加することによりプラズマを発生さ
せるプラズマ発生装置内における温度を測定するに際
し、温度計測部及び演算機能素子を有し、非接触で供給
される外部エネルギーによって駆動される温度測定装置
を用い、高周波が印加されていない時間内に温度計測を
行うことを特徴とするものである。
On the other hand, a second temperature measuring method according to the present invention includes a temperature measuring unit and an arithmetic function element for measuring a temperature in a plasma generating apparatus for generating a plasma by applying a high frequency pulse. In addition, a temperature measurement device driven by external energy supplied in a non-contact manner is used to perform temperature measurement within a period in which no high frequency is applied.

【0020】このような構成を採用することにより、通
常困難とされてきたプラズマ中での温度計測が可能とな
る。
By adopting such a configuration, it becomes possible to measure the temperature in plasma, which has been considered difficult.

【0021】[0021]

【発明の実施の形態】以下、本発明を適用した具体的な
実施形態について、図面を参照しながら説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, specific embodiments to which the present invention is applied will be described with reference to the drawings.

【0022】本例は、各部をSi基板上に作り込んだ、
いわゆるICカードタイプの温度測定装置である。
In this embodiment, each part is formed on a Si substrate.
This is a so-called IC card type temperature measuring device.

【0023】本例では、基板に両面研磨Si基板を用い
た。また、このSi基板を貫通する貫通孔を穿設し、こ
の貫通孔を金属で塞ぐことにより、表裏両面間の電気的
な接続を確保しておいた。
In this example, a double-side polished Si substrate was used as the substrate. In addition, a through-hole penetrating the Si substrate is formed, and the through-hole is closed with a metal, thereby ensuring electrical connection between the front and back surfaces.

【0024】続いて、図1に示すように、上記Si基板
1の表面に、半導体プロセスを用いて制御部2、メモリ
ー部3、及び演算部4をそれぞれ集積回路(LSI)と
して形成した。
Subsequently, as shown in FIG. 1, the control unit 2, the memory unit 3, and the arithmetic unit 4 were formed as integrated circuits (LSI) on the surface of the Si substrate 1 by using a semiconductor process.

【0025】さらに、上記Si基板1上に、データ受信
用平面アンテナ5、データ送信用平面アンテナ6、及び
パワー受信用平面アンテナ7を形成し、これらを先に形
成した制御部2と電気的に接続した。なお、上記各アン
テナ5,6,7は、例えば印刷配線により形成されるも
のである。
Further, a planar antenna 5 for data reception, a planar antenna 6 for data transmission, and a planar antenna 7 for power reception are formed on the Si substrate 1, and are electrically connected to the control unit 2 previously formed. Connected. The antennas 5, 6, and 7 are formed by, for example, printed wiring.

【0026】次に、上記Si基板1の裏面側に、Ptを
用いた細線抵抗を設置し、計測部8とした。この計測部
8は、上記金属で塞いだ貫通孔を介して上記制御部2と
電気的に接続されている。
Next, a thin wire resistor using Pt was installed on the back surface side of the Si substrate 1 to obtain a measuring unit 8. The measuring unit 8 is electrically connected to the control unit 2 via a through hole closed with the metal.

【0027】上記構成を有する温度測定装置は、軽量コ
ンパクトで、遠隔点からの計測データの読み取りが可能
である。
The temperature measuring device having the above configuration is lightweight and compact, and can read measurement data from a remote point.

【0028】また、このようにして作製した温度測定装
置は、極めて面積の小さいSiチップ上に作り込まれて
おり、表面の凹凸もほとんどないため、計測対象物の表
面に貼り付けて表面温度を測定するのに好適である。
The temperature measuring device manufactured in this manner is built on an Si chip having a very small area, and has almost no surface irregularities. It is suitable for measuring.

【0029】上記の例は、あくまでも一つの例にすぎ
ず、構造や材質、各部の配置等は、本発明の要旨を逸脱
しない範囲で適宜変更可能である。
The above example is merely one example, and the structure, material, arrangement of each part and the like can be appropriately changed without departing from the gist of the present invention.

【0030】次に、上述の温度測定装置を用い、高周波
を印加してプラズマを発生させているプラズマ発生装置
(例えばプラズマCVD装置)において、プラズマ発生
時に温度測定を行った測定例について説明する。
Next, a description will be given of a measurement example in which a temperature is measured at the time of plasma generation in a plasma generating apparatus (for example, a plasma CVD apparatus) which generates a plasma by applying a high frequency using the above-described temperature measuring apparatus.

【0031】本測定方法における温度測定のタイミング
チャートを図2に示す。
FIG. 2 shows a timing chart of the temperature measurement in this measuring method.

【0032】先ず、上述の構造の温度測定装置を貼り付
けたSiウエハを、高周波電力を投入してプラズマを発
生させているプラズマ発生装置の減圧容器内に入れた。
First, the Si wafer to which the temperature measuring device having the above-mentioned structure was attached was placed in a reduced-pressure vessel of a plasma generating apparatus which was supplied with high-frequency power to generate plasma.

【0033】このとき、プラズマ発生装置においては、
パルス状の高周波電力によりプラズマを発生させている
(図2中のA)。
At this time, in the plasma generator,
Plasma is generated by pulsed high-frequency power (A in FIG. 2).

【0034】一方、温度測定装置の駆動電力は、プラズ
マ発生用の高周波電力がオフの間に、マイクロ波(μ
波)によりパワー受信用平面アンテナ7を介してパルス
電力として供給した(図2中のB)。
On the other hand, the driving power of the temperature measuring apparatus is set to a value of the microwave (μm) while the high frequency power for plasma generation is off.
And supplied as pulse power through the power receiving flat antenna 7 (B in FIG. 2).

【0035】この駆動用のパルス電力は、発生している
プラズマに擾乱を与えない程度の微弱なものである。ま
た、電力供給用のマイクロ波が、温度測定装置を構成す
る制御部2、メモリー部3、演算部4のような集積回路
に悪影響を与えないことは勿論である。
The driving pulse power is so weak that it does not disturb the generated plasma. Further, it is needless to say that the microwave for power supply does not adversely affect the integrated circuits such as the control unit 2, the memory unit 3, and the arithmetic unit 4 which constitute the temperature measuring device.

【0036】温度測定開始のタイミングを指示する測定
開始信号は、プラズマ発生用の高周波電力がオフされ、
駆動電力であるパルス電力が供給された後、直ちにデー
タ受信用平面アンテナ5から制御部2に与えた。
The measurement start signal for instructing the temperature measurement start timing is such that the high frequency power for plasma generation is turned off,
Immediately after the pulse power, which was the driving power, was supplied, the data was supplied from the data receiving flat antenna 5 to the control unit 2.

【0037】このデータ受信後に計測部8において温度
測定を開始し、測定したデータをメモリー部3に記憶さ
せた。
After receiving the data, the temperature measurement was started in the measuring section 8, and the measured data was stored in the memory section 3.

【0038】記憶されたデータは、次に高周波電力がオ
ンされる前に、一括してデータ送信用平面アンテナ6よ
り外部受信機に送信するようにした。
The stored data is collectively transmitted from the data transmitting flat antenna 6 to the external receiver before the high frequency power is turned on next time.

【0039】温度測定装置における上記測定開始信号の
受信、及びデータの送信のタイミングは、図2のCに示
す通りである。
The timing of receiving the measurement start signal and transmitting data in the temperature measuring device is as shown in FIG. 2C.

【0040】以上の方法により、これまで困難であった
プラズマ発生装置内でのウエハ表面温度の測定が可能と
なり、非接触で精度良い温度測定が実現された。
By the above method, the wafer surface temperature in the plasma generator can be measured, which has been difficult so far, and the non-contact and accurate temperature measurement is realized.

【0041】[0041]

【発明の効果】以上の説明からも明らかなように、本発
明の温度測定装置によれば、遠隔点から温度測定結果を
読み取ることができ、しかも精密な温度計測が可能であ
る。
As is clear from the above description, according to the temperature measuring device of the present invention, the temperature measurement result can be read from a remote point, and the temperature can be measured precisely.

【0042】また、本発明の温度測定装置においては、
例えば温度表示部や電源を計測部から切り離すことがで
き、装置の軽量化、小型化が可能である。
Further, in the temperature measuring device of the present invention,
For example, the temperature display unit and the power supply can be separated from the measurement unit, and the weight and size of the device can be reduced.

【0043】一方、本発明の温度測定方法によれば、こ
れまで困難とされたきたプラズマ発生装置での温度計測
が可能であり、特に減圧容器内の温度計測に適用して大
きな効果が期待される。
On the other hand, according to the temperature measuring method of the present invention, it is possible to measure the temperature in the plasma generator, which has been difficult so far, and a great effect is expected especially when applied to the temperature measurement in the decompression vessel. You.

【図面の簡単な説明】[Brief description of the drawings]

【図1】Si基板上に作製した温度測定装置の一構成例
を示す模式図である。
FIG. 1 is a schematic view showing one configuration example of a temperature measuring device manufactured on a Si substrate.

【図2】プラズマ発生装置において温度測定を行う際の
タイミングチャートである。
FIG. 2 is a timing chart when performing temperature measurement in a plasma generator.

【符号の説明】[Explanation of symbols]

1 Si基板、 2 制御部、 3 メモリー部、 4
演算部、 8 計測部
1 Si substrate, 2 control unit, 3 memory unit, 4
Arithmetic unit, 8 measuring unit

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 温度計測部及び演算機能素子を有し、非
接触で供給される外部エネルギーによって駆動されるこ
とを特徴とする温度測定装置。
1. A temperature measuring device having a temperature measuring unit and an arithmetic function element, and driven by external energy supplied in a non-contact manner.
【請求項2】 記憶機能素子を有することを特徴とする
請求項1記載の温度測定装置。
2. The temperature measuring device according to claim 1, further comprising a storage function element.
【請求項3】 上記温度計測部と演算機能素子が同一の
半導体基板上に形成されていることを特徴とする請求項
1記載の温度測定装置。
3. The temperature measuring device according to claim 1, wherein the temperature measuring section and the arithmetic function element are formed on the same semiconductor substrate.
【請求項4】 上記演算機能素子がシリコンと比較して
広バンドギャップ半導体材料により形成されていること
を特徴とする請求項1記載の温度測定装置。
4. The temperature measuring device according to claim 1, wherein said arithmetic function element is formed of a material having a wider bandgap than silicon.
【請求項5】 上記温度計測部における測定結果を発信
する発信部を有し、測定結果が非接触手段により外部よ
り読み取り可能であることを特徴とする請求項1記載の
温度測定装置。
5. The temperature measuring device according to claim 1, further comprising a transmitting unit for transmitting a measurement result in the temperature measuring unit, wherein the measurement result can be read from outside by a non-contact means.
【請求項6】 上記温度計測部を制御する制御部及び外
部からの信号を受信しこれを制御部に送出する受信部を
有し、温度計測のタイミングが外部より非接触手段によ
り制御可能であることを特徴とする請求項1記載の温度
測定装置。
6. A control unit for controlling the temperature measuring unit and a receiving unit for receiving a signal from the outside and transmitting the signal to the control unit, wherein the timing of the temperature measurement can be controlled from outside by a non-contact means. The temperature measuring device according to claim 1, wherein:
【請求項7】 半導体装置を基板上に作製するに際し、
温度計測部及び演算機能素子を有し、非接触で供給され
る外部エネルギーによって駆動される温度測定装置を上
記基板に作製し、温度を測定することを特徴とする温度
測定方法。
7. When manufacturing a semiconductor device on a substrate,
A temperature measuring method, comprising: producing a temperature measuring device having a temperature measuring section and an arithmetic function element and driven by external energy supplied in a non-contact manner on the substrate, and measuring the temperature.
【請求項8】 高周波をパルス状に印加することにより
プラズマを発生させるプラズマ発生装置内における温度
を測定するに際し、 温度計測部及び演算機能素子を有し、非接触で供給され
る外部エネルギーによって駆動される温度測定装置を用
い、 高周波が印加されていない時間内に温度計測を行うこと
を特徴とする温度測定方法。
8. When measuring a temperature in a plasma generating apparatus for generating plasma by applying a high frequency in a pulse form, the apparatus has a temperature measuring unit and an arithmetic function element, and is driven by external energy supplied in a non-contact manner. A temperature measurement method comprising: performing temperature measurement within a time period in which no high frequency is applied, using a temperature measurement device that is used.
JP8303234A 1996-11-14 1996-11-14 Temperature-measuring apparatus and method for measuring temperature using the apparatus Withdrawn JPH10142068A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8303234A JPH10142068A (en) 1996-11-14 1996-11-14 Temperature-measuring apparatus and method for measuring temperature using the apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8303234A JPH10142068A (en) 1996-11-14 1996-11-14 Temperature-measuring apparatus and method for measuring temperature using the apparatus

Publications (1)

Publication Number Publication Date
JPH10142068A true JPH10142068A (en) 1998-05-29

Family

ID=17918500

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8303234A Withdrawn JPH10142068A (en) 1996-11-14 1996-11-14 Temperature-measuring apparatus and method for measuring temperature using the apparatus

Country Status (1)

Country Link
JP (1) JPH10142068A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003533882A (en) * 2000-05-15 2003-11-11 ザ・ガバナーズ・オブ・ザ・ユニバーシティ・オブ・アルバータ Radio frequency technology structures and methods for testing integrated circuits and wafers
US6773158B2 (en) 2000-02-29 2004-08-10 Tokyo Electron Limited Resonant circuit for measuring temperature profile of a semiconductor substrate
JP2005202933A (en) * 2003-11-29 2005-07-28 Onwafer Technologies Inc Method and apparatus for controlling sensor device
CN106644111A (en) * 2016-11-07 2017-05-10 上海精密计量测试研究所 Vacuum temperature measuring device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6773158B2 (en) 2000-02-29 2004-08-10 Tokyo Electron Limited Resonant circuit for measuring temperature profile of a semiconductor substrate
JP2003533882A (en) * 2000-05-15 2003-11-11 ザ・ガバナーズ・オブ・ザ・ユニバーシティ・オブ・アルバータ Radio frequency technology structures and methods for testing integrated circuits and wafers
JP4869535B2 (en) * 2000-05-15 2012-02-08 スキャニメトリクス インコーポレーティッド Radio frequency technology structure and method for testing integrated circuits and wafers
JP2005202933A (en) * 2003-11-29 2005-07-28 Onwafer Technologies Inc Method and apparatus for controlling sensor device
CN106644111A (en) * 2016-11-07 2017-05-10 上海精密计量测试研究所 Vacuum temperature measuring device

Similar Documents

Publication Publication Date Title
CN103997339B (en) Quantum interference device, atomic oscillator and moving body
JP6275830B2 (en) Method and system for measuring heat flux
US20060075760A1 (en) Temperature measuring device using a matrix switch, a semiconductor package and a cooling system
US20070170170A1 (en) Temperature measuring device, thermal processor having temperature measurement function and temperature measurement method
TW200302543A (en) Process condition sensing wafer and data analysis system
CN103323486B (en) Test chip for Seebeck coefficient of high resistance material
JP2007178253A (en) Device and method for measuring temperature
US20220262661A1 (en) Temperature control device, temperature control method, and inspection apparatus
US11221358B2 (en) Placement stand and electronic device inspecting apparatus
JPH10142068A (en) Temperature-measuring apparatus and method for measuring temperature using the apparatus
US6812800B2 (en) Atomic oscillator
JP3250285B2 (en) Substrate to be processed provided with information measuring means
US7363971B2 (en) Method and apparatus for maintaining a multi-chip module at a temperature above downhole temperature
CN110926630A (en) Wafer temperature sensing device with flexible circuit board
JP7213080B2 (en) Mounting table
US7170310B2 (en) System and method using locally heated island for integrated circuit testing
US11740643B2 (en) Temperature control device and method, and inspection apparatus
US3611786A (en) Measurement of thermal conductivity of hard crystalline bodies
JP2004150999A (en) Probe card
EP1239561A3 (en) Semiconductor laser device and semiconductor laser module
CN111736052B (en) Probe card, wafer detection equipment with probe card and bare chip test process using probe card
JP2000138268A (en) Inspection method and inspection device of semiconductor circuit
JP2008170194A (en) Test method of electronic device, tester of electronic device, and test system of electronic device
JP3337013B2 (en) Non-contact measurement equipment for large-scale integrated circuits
US3956932A (en) Wind sensor

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20040203