JPH10141458A - Continuously variable transmission controller - Google Patents

Continuously variable transmission controller

Info

Publication number
JPH10141458A
JPH10141458A JP8300199A JP30019996A JPH10141458A JP H10141458 A JPH10141458 A JP H10141458A JP 8300199 A JP8300199 A JP 8300199A JP 30019996 A JP30019996 A JP 30019996A JP H10141458 A JPH10141458 A JP H10141458A
Authority
JP
Japan
Prior art keywords
pressure
oil passage
valve
continuously variable
pulley
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8300199A
Other languages
Japanese (ja)
Other versions
JP3849186B2 (en
Inventor
Akira Takagi
章 高木
Ryuji Murakawa
隆二 村川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP30019996A priority Critical patent/JP3849186B2/en
Publication of JPH10141458A publication Critical patent/JPH10141458A/en
Application granted granted Critical
Publication of JP3849186B2 publication Critical patent/JP3849186B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Control Of Transmission Device (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a continuously variable transmission controller which ensures the minimum running function by a simple and low-cost configuration. SOLUTION: An oil passage 56 branched from a control output port oil passage 53 of a solenoid valve 12 is led to a fail-safe valve 13 to control pressure in an oil passage 69 in accordance with pressure of an oil passage 58 branched from an oil passage 57. Moreover, pressure of the oil passage 57 is introduced into a primary pressure control valve 19 to control pressure of an oil passage 68 by pressure of an oil passage 80 and the oil passage 57. When output pressure of the solenoid valve 12 drops below a specified value and a failure occurs, the fail-safe valve 13 is changed over to the right position so that pressure of an oil passage 55 and an oil passage 51 which detour the solenoid valves 12 and 11 is communicated with the oil passage 57 and the oil passage 80. As a result, it is possible to transmit large torque because primary pressure and secondary pressure are controlled in such a manner that they become the maximum values. Consequently, it is possible to ensure tensile force of a belt which hardly obstructs actual running at the time of fail and ensure the minimum running function.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ベルト式無段変速
機の変速制御を行う制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a control device for controlling a speed change of a belt-type continuously variable transmission.

【0002】[0002]

【従来の技術】従来より、無段変速機の油圧制御回路と
して、電磁弁でプライマリ圧およびセカンダリ圧を発生
させる構成が知られている。このような無段変速機の油
圧制御回路では、無段変速機の変速比およびベルト張力
を電子制御することにより、燃費の向上、変速フィーリ
ングの向上および加速性能の向上等の効果が得られる。
しかし、電子制御の機能障害によって変速比およびベル
トの張力が制御不能となり、走行機能が失われる恐れが
あった。
2. Description of the Related Art Hitherto, as a hydraulic control circuit of a continuously variable transmission, a configuration in which a solenoid valve generates a primary pressure and a secondary pressure has been known. In such a hydraulic control circuit of a continuously variable transmission, effects such as improvement of fuel consumption, improvement of shift feeling, improvement of acceleration performance, and the like can be obtained by electronically controlling the gear ratio and belt tension of the continuously variable transmission. .
However, the gear ratio and the belt tension cannot be controlled due to the malfunction of the electronic control, and there is a possibility that the running function is lost.

【0003】そこで、特開平7−4485号公報に開示
されている無段変速機制御装置においては、新たに電磁
弁を追加し、この電磁弁の作動によりシフト弁を作動さ
せ、プライマリ圧およびセカンダ圧を同一の圧力に設定
して、フェイル時、最低限の走行機能を確保するように
している。
Therefore, in the continuously variable transmission control device disclosed in Japanese Patent Application Laid-Open No. 7-4485, a solenoid valve is newly added, and the shift valve is operated by operating the solenoid valve to thereby change the primary pressure and the secondary pressure. The pressure is set to the same pressure so that a minimum running function is ensured during a failure.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、このよ
うな従来の無段変速機制御装置では、高価な電磁弁と駆
動回路が必要であるためコストが高くなるという問題点
がある。また、電磁弁はメニカル弁と比較して故障し易
いため、信頼性に欠けるという問題点がある。本発明は
このような問題を解決するためになされたものであり、
簡素かつ低コストな構成で最低限の走行機能を確保する
無段変速機制御装置を提供することを目的とする。
However, such a conventional continuously variable transmission control device has a problem in that the cost is increased because an expensive solenoid valve and a drive circuit are required. In addition, the solenoid valve has a problem that it is liable to be broken down as compared with the mechanical valve, and thus lacks reliability. The present invention has been made to solve such a problem,
It is an object of the present invention to provide a continuously variable transmission control device that secures a minimum traveling function with a simple and low-cost configuration.

【0005】[0005]

【課題を解決するための手段】本発明の請求項1記載の
無段変速機制御装置によると、駆動軸から入力されるト
ルクに応じて調節される第1圧力を発生する第1圧力発
生手段と、変速比の目標値に応じて調節される第2圧力
を発生する第2圧力発生手段とを迂回し、第1および第
2ピストンに圧力を供給するバイパス弁により、第2圧
力が所定値より低くなったときに第1および第2ピスト
ンに圧力を供給するので、電子制御がフェイルしたと
き、バイパス弁により最低限の走行機能を確保すること
ができる。また、メカニカルなバイパス弁により簡素か
つ低コストな構成を実現することができる。
According to the continuously variable transmission control device of the present invention, the first pressure generating means for generating the first pressure adjusted according to the torque input from the drive shaft. And a bypass valve that supplies pressure to the first and second pistons, bypassing a second pressure generating means that generates a second pressure that is adjusted in accordance with the target value of the gear ratio, so that the second pressure is reduced to a predetermined value. Since the pressure is supplied to the first and second pistons when it becomes lower, a minimum traveling function can be ensured by the bypass valve when the electronic control fails. Further, a simple and low-cost configuration can be realized by the mechanical bypass valve.

【0006】本発明の請求項2記載の無段変速機制御装
置によると、バイパス弁は、第1プーリの伝達ベルト挟
み力と第2プーリの伝達ベルト挟み力とが同一となるよ
うに設定されているので、電子制御がフェイルしたと
き、駆動軸と従動軸との変速比が1となる。したがっ
て、フェイル時、最低限の走行機能を確保することがで
きる。
According to the continuously variable transmission control device of the second aspect of the present invention, the bypass valve is set so that the transmission belt clamping force of the first pulley and the transmission belt clamping force of the second pulley are equal. Therefore, when the electronic control fails, the gear ratio between the drive shaft and the driven shaft becomes 1. Therefore, at the time of a failure, a minimum traveling function can be ensured.

【0007】本発明の請求項3記載の無段変速機制御装
置によると、バイパス弁は、第1および第2圧力発生手
段のパイロット弁を迂回し、第1および第2圧力発生手
段のメイン弁に圧力を供給するので、第1および第2圧
力発生手段を小型かつ軽量な電磁弁とすることができ
る。したがって、制御装置の小型軽量化を図ることがで
きる。
According to the continuously variable transmission control device of the third aspect of the present invention, the bypass valve bypasses the pilot valves of the first and second pressure generating means, and bypasses the main valves of the first and second pressure generating means. , The first and second pressure generating means can be small and lightweight solenoid valves. Therefore, the size and weight of the control device can be reduced.

【0008】[0008]

【発明の実施の形態】以下、本発明の実施例を図面に基
づいて説明する。本発明の一実施例による無段変速機制
御装置をベルト式無段変速機(以下、「ベルト式無段変
速機」をCVTという)に適用した動力伝達機構を図5
に示す。原動機3の出力軸81にトルクコンバータ40
が連結されている。このトルクコンバータ40はロック
アップクラッチ41を備えており、トルクコンバータ4
0の出力側は回転軸82と連結されている。回転軸82
は前後進切換機構4と連結されている。前後進切換機構
4はフロントクラッチ6およびリアクラッチ7を有して
いる。前後進切換機構4は駆動軸83と連結され、この
駆動軸83には第1プーリとしてのプライマリプーリ3
5が設けられている。プライマリプーリ35は、第1ピ
ストンとしてのプライマリプーリシリンダ室35aに作
用する油圧によって駆動軸83の軸方向に移動可能であ
る。プライマリプーリ35は伝動ベルト15によって第
2プーリとしてのセカンダリプーリ34と伝動可能に連
結されている。セカンダリプーリ34は、第2ピストン
としてのセカンダリプーリシリンダ室34aに作用する
油圧によって従動軸84の軸方向に移動可能である。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 5 shows a power transmission mechanism in which the continuously variable transmission control device according to one embodiment of the present invention is applied to a belt-type continuously variable transmission (hereinafter, “belt-type continuously variable transmission” is referred to as CVT).
Shown in The torque converter 40 is connected to the output shaft 81 of the motor 3.
Are connected. The torque converter 40 includes a lock-up clutch 41 and the torque converter 4
The output side of 0 is connected to the rotating shaft 82. Rotating shaft 82
Is connected to the forward / reverse switching mechanism 4. The forward / reverse switching mechanism 4 has a front clutch 6 and a rear clutch 7. The forward / reverse switching mechanism 4 is connected to a drive shaft 83, and the drive shaft 83 has a primary pulley 3 as a first pulley.
5 are provided. The primary pulley 35 is movable in the axial direction of the drive shaft 83 by hydraulic pressure acting on a primary pulley cylinder chamber 35a as a first piston. The primary pulley 35 is communicatively connected to the secondary pulley 34 as a second pulley by the transmission belt 15. The secondary pulley 34 is movable in the axial direction of the driven shaft 84 by hydraulic pressure acting on a secondary pulley cylinder chamber 34a as a second piston.

【0009】これらプライマリプーリ35、伝動ベルト
15およびセカンダリプーリ34によりCVTが構成さ
れる。なお、このCVTは車両用として用いられ、原動
機3の動力は従動軸84を介してディファレンシャル機
構85に伝達され、図示しない左右の車輪に伝達され
る。次に、このCVTの油圧制御装置について説明す
る。油圧制御装置は、図1に示すように、シフトレバー
1、マニュアル弁2、ニュートラル制御弁5、油圧ポン
プ8、減圧弁9、第1および第2圧力発生手段としての
電磁制御弁11および12、バイパス弁としてのフェイ
ルセーフ弁13、シャトル弁14、ライン圧制御弁1
7、第1圧力発生手段としてのプライマリ圧制御弁1
9、第2圧力発生手段としてのセカンダリ圧制御28、
電磁弁32、オイルクーラ33、ロックアップ切換弁3
8等で構成されている。
The primary pulley 35, the transmission belt 15, and the secondary pulley 34 constitute a CVT. The CVT is used for a vehicle, and the power of the prime mover 3 is transmitted to a differential mechanism 85 via a driven shaft 84 and transmitted to left and right wheels (not shown). Next, the CVT hydraulic control device will be described. As shown in FIG. 1, the hydraulic control device includes a shift lever 1, a manual valve 2, a neutral control valve 5, a hydraulic pump 8, a pressure reducing valve 9, electromagnetic control valves 11 and 12 as first and second pressure generating means, Fail safe valve 13 as shuttle valve, shuttle valve 14, line pressure control valve 1
7. Primary pressure control valve 1 as first pressure generating means
9, secondary pressure control 28 as second pressure generating means,
Solenoid valve 32, oil cooler 33, lock-up switching valve 3
8 and the like.

【0010】マニュアル弁2はシフトレバー1とリンケ
ージ43を介して連結されており、運転者の操作に応じ
て切換作動される。具体的にはP、R、N、D、3、2
および1の7つのレンジに応じて図1に示すように3つ
の位置に各々(R)、(P、N)および(D、3、2、
1)に切換えされる。この切換え位置に応じて出力ポー
ト油路45および46には各々ポート油路44から高圧
が出力される。図2において○印は高圧が出力されるこ
とを示し、空白はドレン圧を示す。出力ポート油路45
および46はニュートラル制御弁5へ導かれ、各々フロ
ントクラッチ6およびリアクラッチ7へ導かれる。ニュ
ートラル制御弁5の開口面積は油路47を介して、電磁
弁32により可変制御される。この可変制御によるニュ
ートラルからDレンジへの切換によりフロントクラッチ
6への圧油の導入は徐々に行われ、レンジ切換時のショ
ックを低減することができる。また、ニュートラルから
Rレンジへの切換の場合、リアクラッチ7への圧油の導
入は徐々に行われ、レンジ切換時のショックを低減する
ことができる。
The manual valve 2 is connected to the shift lever 1 via a linkage 43, and is switched by a driver's operation. Specifically, P, R, N, D, 3, 2
1 and (R), (P, N) and (D, 3, 2,...) At three positions as shown in FIG.
It is switched to 1). High pressure is output from the port oil passage 44 to the output port oil passages 45 and 46 according to the switching position. In FIG. 2, a circle indicates that high pressure is output, and a blank indicates drain pressure. Output port oil passage 45
And 46 are led to the neutral control valve 5 and to the front clutch 6 and the rear clutch 7, respectively. The opening area of the neutral control valve 5 is variably controlled by an electromagnetic valve 32 via an oil passage 47. By switching from the neutral to the D range by the variable control, the introduction of the pressure oil to the front clutch 6 is gradually performed, and the shock at the time of the range switching can be reduced. In the case of switching from the neutral to the R range, the introduction of the pressure oil to the rear clutch 7 is performed gradually, so that the shock at the time of the range switching can be reduced.

【0011】油圧ポンプ8から吐出された作動油は、油
路63を通して、一方はライン圧制御弁17に導かれ油
路61に導入され、また他方は油路62を介してライン
圧制御弁17の図示左側異径部に導入される。油路61
の圧力とライン圧制御弁17の左側異径部内の圧力との
力の釣り合いにより、ライン圧制御弁17の位置が自己
フィードバック制御される。そして、油路63の圧油は
ドレンまたは潤滑路18に排出され、ライン圧としての
油路63の圧力は油路61の圧力に応動して制御され
る。
The hydraulic oil discharged from the hydraulic pump 8 passes through an oil passage 63, one of which is guided to a line pressure control valve 17 and is introduced into an oil passage 61, and the other through an oil passage 62. Is introduced to the left side of the drawing. Oil passage 61
The position of the line pressure control valve 17 is subjected to self-feedback control by balancing the force between the pressure of the line pressure control valve 17 and the pressure in the left-hand side different diameter portion of the line pressure control valve 17. Then, the pressure oil in the oil passage 63 is discharged to the drain or the lubrication passage 18, and the pressure of the oil passage 63 as the line pressure is controlled in response to the pressure of the oil passage 61.

【0012】制御されたライン圧の油路63から分岐さ
れた油路64は減圧弁9に導かれる。また、減圧弁9の
下流ポート油路50から分岐された油路49は、減圧弁
9の図示下方に導かれ、スプリング22と力が釣り合い
制御される。そして、油路50の圧力が一定値に制御さ
れる。また、ライン圧の油路63は油路65および66
に分岐され、各々セカンダリ圧制御弁28およびプライ
マリ圧制御弁19に導かれて、各々油路58、57およ
び80の圧力に応じて各々油路70および68の圧力が
制御される。そして、油路70から導かれた油路69と
油路68とは各々セカンダリ圧とプライマリ圧とに導か
れる。このセカンダリ圧およびプライマリ圧がCVTの
変速比とベルト張力とを決定している。セカンダリ圧お
よびプライマリ圧の圧力と運転状態との関係は、図3に
示すようにセカンダリ圧がプライマリ圧より高いとき、
CVTの変速比が1より小さい増速状態あるいはベルト
張力が低く低速状態となり、プライマリ圧がセカンダリ
圧より高いとき、CVTの変速比が1より大きい減速状
態あるいはベルト張力が高く高速状態となる。また、セ
カンダリ圧とプライマリ圧とが同一の値となるとき、C
VTの変速比は1となる。
An oil passage 64 branched from the oil passage 63 having the controlled line pressure is led to the pressure reducing valve 9. Further, an oil passage 49 branched from the downstream port oil passage 50 of the pressure reducing valve 9 is guided below the pressure reducing valve 9 in the figure, and the spring 22 and the force are balanced and controlled. Then, the pressure of the oil passage 50 is controlled to a constant value. Further, the oil passage 63 of the line pressure is connected to the oil passages 65 and 66.
The pressure is guided to the secondary pressure control valve 28 and the primary pressure control valve 19, and the pressure in the oil passages 70 and 68 is controlled in accordance with the pressure in the oil passages 58, 57 and 80, respectively. The oil passage 69 and the oil passage 68 led from the oil passage 70 are led to the secondary pressure and the primary pressure, respectively. The secondary pressure and the primary pressure determine the speed ratio of the CVT and the belt tension. The relationship between the pressure of the secondary pressure and the primary pressure and the operating state is such that when the secondary pressure is higher than the primary pressure as shown in FIG.
When the speed ratio of the CVT is higher than 1 or the belt tension is low and the speed is low, and the primary pressure is higher than the secondary pressure, the speed ratio of the CVT is lower than 1 or the belt tension is high and the speed is high. When the secondary pressure and the primary pressure have the same value, C
The speed ratio of the VT is 1.

【0013】油路50は電磁弁12へ導かれ、電磁弁1
2の制御出力ポート油路53はフェイルセーフ弁13へ
導かれる。また、油路53から分岐した油路56はフェ
イルセーフ弁13の図示右側へ導かれている。フェイル
セーフ弁13は図示左側にスプリング25と油路56と
の力の釣り合いで図示右端または左端に切換えられる。
油路53の圧力がある規定値を保っていれば、スプリン
グ25は油路53の圧力に押されて収縮しており、図1
のごとく油路57と油路53とが連通される。油路57
から分岐された油路58は絞り30を通してセカンダリ
圧制御弁28の図示右側へ導かれ、油路58の圧力に応
じてセカンダリ圧としての油路69の圧力が制御され
る。
The oil passage 50 is led to the solenoid valve 12, and the solenoid valve 1
The second control output port oil passage 53 is guided to the fail-safe valve 13. An oil passage 56 branched from the oil passage 53 is guided to the right side of the fail-safe valve 13 in the drawing. The fail-safe valve 13 is switched to the right end or the left end in the figure according to the balance between the force of the spring 25 and the oil path 56 on the left side in the figure.
If the pressure of the oil passage 53 is maintained at a predetermined value, the spring 25 is contracted by being pressed by the pressure of the oil passage 53.
Thus, the oil passage 57 and the oil passage 53 are communicated. Oilway 57
The oil passage 58 branched from the oil passage 58 is guided to the right side in the drawing of the secondary pressure control valve 28 through the throttle 30, and the pressure of the oil passage 69 as the secondary pressure is controlled according to the pressure of the oil passage 58.

【0014】油路69は油路51と連通しており、セカ
ンダリ圧は油路51から分岐された油路52を介して電
磁弁11に導入されており、電磁弁11により出力ポー
ト油路54の圧力が制御される。出力ポート油路54は
フェイルセーフ弁13に導かれており、フェイルセーフ
弁13が図1の位置に位置すれば、油路54は油路80
を連通されるため電磁弁11の制御圧はプライマリ圧制
御弁19の図示右側に導入される。また、電磁弁12の
制御圧である油路57の圧力もプライマリ圧制御弁19
の図示右側の別室に導入されている。つまり、電磁弁1
1および12の制御圧力である油路80および油路57
の圧力によってプライマリ圧としての油路68の圧力が
制御されることになる。
The oil passage 69 communicates with the oil passage 51, and the secondary pressure is introduced into the solenoid valve 11 via the oil passage 52 branched from the oil passage 51, and the output port oil passage 54 is provided by the solenoid valve 11. Is controlled. The output port oil passage 54 is guided to the fail-safe valve 13, and when the fail-safe valve 13 is located at the position shown in FIG.
The control pressure of the solenoid valve 11 is introduced to the right side of the primary pressure control valve 19 in the drawing. In addition, the pressure of the oil passage 57, which is the control pressure of the solenoid valve 12, is also changed by the primary pressure control valve 19.
Is installed in a separate room on the right side of FIG. That is, the solenoid valve 1
Oil passages 80 and 57 which are control pressures of 1 and 12
The pressure of the oil passage 68 as the primary pressure is controlled by this pressure.

【0015】油路58から分岐された油路59と、油路
80から分岐された油路60とはシャトル弁14に導か
れる。シャトル弁14は油路59と油路60との高い方
の圧力を選択し、選択された圧力は油路61を介してラ
イン圧制御弁17の図示右側に導入され、ライン圧制御
が行われる。これにより、プライマリ圧およびセカンダ
リ圧制御弁19および28の諸元を選定することによっ
て、図3に示すようにプライマリ圧およびセカンダリ圧
の圧力より僅かに高いライン圧を設定することができ
る。
The oil passage 59 branched from the oil passage 58 and the oil passage 60 branched from the oil passage 80 are guided to the shuttle valve 14. The shuttle valve 14 selects the higher pressure of the oil passage 59 and the oil passage 60, and the selected pressure is introduced to the right side of the line pressure control valve 17 through the oil passage 61 in the drawing, and the line pressure is controlled. . Thus, by selecting the specifications of the primary pressure and secondary pressure control valves 19 and 28, a line pressure slightly higher than the primary pressure and the secondary pressure can be set as shown in FIG.

【0016】また、プライマリ圧制御弁19の図示右側
には電磁弁12で制御された油路57と、電磁弁12の
制御圧でコントロールされたセカンダリ圧制御弁28の
出力、すなわちセカンダリ圧を上流圧として電磁弁11
で制御された油路80とが導かれて、プライマリ圧とし
ての油路68の圧力を制御する。したがって、結果的に
プライマリ圧は、セカンダリ圧の値によって所定の関数
で変化する構成となっている。
On the right side of the primary pressure control valve 19 in the figure, an oil passage 57 controlled by the solenoid valve 12 and an output of the secondary pressure control valve 28 controlled by the control pressure of the solenoid valve 12, that is, the secondary pressure is supplied upstream. Solenoid valve 11 as pressure
The oil passage 80 controlled by the control unit is guided to control the pressure of the oil passage 68 as the primary pressure. Therefore, as a result, the primary pressure is configured to change by a predetermined function depending on the value of the secondary pressure.

【0017】セカンダリ圧は油路69から分岐された油
路72を介して電磁弁32に導入され、その電磁弁32
の出力圧である油路74の圧力はロックアップ切換弁3
8と、油路47を介してニュートラル制御弁5の圧室と
に導かれている。その結果、電磁弁32はニュートラル
制御弁5とロックアップ切換弁38とを両方制御するこ
とができる。電磁弁32の出力圧と、ロックアップおよ
びニュートラル制御との関係は、図4に示すようにニュ
ートラル制御弁5で発進準備がされた後、フロントある
いはリアクラッチが係合して走行状態になり、ある車速
などの条件が満たされたことが確認され、ロックアップ
が制御される。
The secondary pressure is introduced into the solenoid valve 32 through an oil passage 72 branched from an oil passage 69, and the solenoid valve 32
The output pressure of the oil passage 74 is the lock-up switching valve 3
8 and a pressure chamber of the neutral control valve 5 via an oil passage 47. As a result, the solenoid valve 32 can control both the neutral control valve 5 and the lockup switching valve 38. The relationship between the output pressure of the solenoid valve 32 and the lock-up and neutral control is as shown in FIG. 4, after the neutral control valve 5 is ready to start, the front or rear clutch is engaged, and the vehicle is in a running state. It is confirmed that a condition such as a certain vehicle speed is satisfied, and lock-up is controlled.

【0018】電磁弁32の出力圧である油路74の圧力
は、ロックアップ切換弁38の図示左側へ油路75を介
して導入されている。一方、ロックアップ制御弁38の
図示右側へはセカンダリ圧としての油路69の圧力が導
入されている。電磁弁32がほぼ全開の状態では、油路
75の圧力はセカンダリ圧となっており、スプリング3
7のセット荷重によりロックアップ切換弁38は図1の
位置にある。このときセカンダリ圧は、油路73を介
し、ロックアップ切換弁38を通過して油路78を介
し、ロックアップクラッチ41の図示左側へ導入され、
トルクコンバータ40を通った後、油路79を介しロッ
クアップ切換弁38を通過して油路76を介し、オイル
クーラ33を通って冷却された後ドレンされる。
The pressure in the oil passage 74, which is the output pressure of the solenoid valve 32, is introduced via the oil passage 75 to the left side of the lock-up switching valve 38 in the drawing. On the other hand, the pressure of the oil passage 69 as a secondary pressure is introduced to the right side of the lock-up control valve 38 in the figure. When the solenoid valve 32 is almost fully opened, the pressure in the oil passage 75 is the secondary pressure,
The lock-up switching valve 38 is at the position shown in FIG. At this time, the secondary pressure passes through the oil passage 73, passes through the lock-up switching valve 38, passes through the oil passage 78, and is introduced to the left side of the lock-up clutch 41 in the drawing.
After passing through the torque converter 40, it passes through the lock-up switching valve 38 via the oil passage 79, is cooled via the oil cooler 33 via the oil passage 76, and is then drained.

【0019】電磁弁32の出力圧力である油路74の圧
力を低下させると、ロックアップ切換弁38の図示左側
の室の圧力が低下し、ロックアップ切換弁38は左方へ
移動する。このときセカンダリ圧は油路79へ導入され
るとともに、電磁弁32の出力圧はロックアップクラッ
チ41の図示左側へ導入される。このとき、ロックアッ
プクラッチ41は少し係合し、電磁弁32の出力圧をこ
の状態から徐々に変化させることで、図4に示すように
ロックアップスリップ状態が制御でき、電磁弁32の出
力圧を零とすることで完全にロックアップさせることが
できる。
When the pressure in the oil passage 74, which is the output pressure of the solenoid valve 32, is reduced, the pressure in the chamber on the left side of the lock-up switching valve 38 decreases, and the lock-up switching valve 38 moves to the left. At this time, the secondary pressure is introduced into the oil passage 79, and the output pressure of the solenoid valve 32 is introduced into the lock-up clutch 41 on the left side in the figure. At this time, the lock-up clutch 41 is slightly engaged, and by gradually changing the output pressure of the solenoid valve 32 from this state, the lock-up slip state can be controlled as shown in FIG. By setting to zero, it is possible to completely lock up.

【0020】以上のようにCVTの変速比、ベルト張
力、ロックアップスリップおよび発進クラッチの全てを
この油圧回路で制御可能である。ここで電磁弁12は、
セカンダリ圧を制御しており、これはベルト張力を制御
することに概ね相当する。したがって、電磁弁12が低
圧側で故障すると、CVTはアイドル等の極小さなトル
クしか伝達できなくなり、事実上走行不能に陥る。
As described above, all of the speed ratio of the CVT, belt tension, lock-up slip, and starting clutch can be controlled by this hydraulic circuit. Here, the solenoid valve 12
The secondary pressure is controlled, which roughly corresponds to controlling the belt tension. Therefore, if the solenoid valve 12 fails on the low pressure side, the CVT can transmit only a very small torque such as idling, and the vehicle virtually cannot run.

【0021】本実施例では、フェイルセーフ弁13の図
示右側の室に電磁弁12の出力圧が導入されている。電
磁弁12の出力圧が規定値を下回って故障した場合、フ
ェイルセーフ弁13は図示の位置から右方の位置へ切り
換わり、油路57および80には電磁弁12および11
を迂回した油路55および油路51の圧力が連通され
る。その結果、プライマリ圧およびセカンダリ圧は最大
値に制御されるので大きいトルクを伝達することができ
る。したがって、フェイル時、実走行上ほとんど支障の
ないベルト張力を確保することができ、最低限の走行機
能を確保することができる。
In this embodiment, the output pressure of the solenoid valve 12 is introduced into the right-hand chamber of the fail-safe valve 13 in the drawing. If the output pressure of the solenoid valve 12 falls below a specified value and the solenoid valve 12 fails, the fail-safe valve 13 switches from the illustrated position to the right position, and the solenoid valves 12 and 11 are connected to the oil passages 57 and 80.
Are communicated with each other in the oil passage 55 and the oil passage 51 which bypass the oil passage. As a result, the primary pressure and the secondary pressure are controlled to the maximum values, so that a large torque can be transmitted. Therefore, at the time of a failure, it is possible to secure the belt tension that does not substantially hinder the actual traveling, and it is possible to secure the minimum traveling function.

【0022】本発明は、無段変速機の変速比およびベル
ト張力を電子制御する制御装置において、メカニカルな
フェイルセーフ弁を設けたので、電子制御がフェイルし
たとき、簡素かつ低コストな構成で最低限の走行機能を
確保することができる。
According to the present invention, a mechanical fail-safe valve is provided in a control device for electronically controlling the gear ratio and belt tension of a continuously variable transmission. Therefore, when the electronic control fails, a simple and low-cost configuration is used. The limited running function can be secured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例による無段変速機の油圧制御
装置を示す模式的回路図である。
FIG. 1 is a schematic circuit diagram showing a hydraulic control device for a continuously variable transmission according to one embodiment of the present invention.

【図2】本発明の一実施例のマニュアル弁の出力系統図
である。
FIG. 2 is an output system diagram of a manual valve according to one embodiment of the present invention.

【図3】本発明の一実施例のライン圧、セカンダリ圧お
よびプライマリ圧の関連を示す圧力特性図である。
FIG. 3 is a pressure characteristic diagram showing a relationship among a line pressure, a secondary pressure, and a primary pressure according to one embodiment of the present invention.

【図4】本発明の一実施例の電磁弁の出力圧とロックア
ップおよびニュートラル制御の圧力特性図である。
FIG. 4 is a graph showing output characteristics of the solenoid valve according to the embodiment of the present invention and pressure characteristics of lock-up and neutral control.

【図5】本発明の一実施例の無段変速機の動力伝達機構
を示す模式的構成図である。
FIG. 5 is a schematic configuration diagram showing a power transmission mechanism of the continuously variable transmission according to one embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 シフトレバー 2 マニュアル弁 3 原動機 4 前後進切換機構 5 ニュートラル制御弁 6 フロントクラッチ 7 リアクラッチ 8 油圧ポンプ 9 減圧弁 11 電磁制御弁(第1圧力発生手段) 12 電磁制御弁(第2圧力発生手段) 13 フェイルセーフ弁(バイパス弁) 14 シャトル弁 15 伝達ベルト 17 ライン圧制御弁 19 プライマリ圧制御弁(第1圧力発生手段) 28 セカンダリ圧制御弁(第2圧力発生手段) 32 電磁弁 33 オイルクーラ 34 セカンダリプーリ(第2プーリ) 34a セカンダリプーリシリンダ室 35 プライマリプーリ(第1プーリ) 35a プライマリプーリシリンダ室 38 ロックアップ切換弁 81 出力軸 82 回転軸 83 駆動軸 84 従動軸 85 ディファレンシャル機構 REFERENCE SIGNS LIST 1 shift lever 2 manual valve 3 prime mover 4 forward / reverse switching mechanism 5 neutral control valve 6 front clutch 7 rear clutch 8 hydraulic pump 9 pressure reducing valve 11 electromagnetic control valve (first pressure generating means) 12 electromagnetic control valve (second pressure generating means) 13) fail-safe valve (bypass valve) 14 shuttle valve 15 transmission belt 17 line pressure control valve 19 primary pressure control valve (first pressure generating means) 28 secondary pressure control valve (second pressure generating means) 32 solenoid valve 33 oil cooler 34 Secondary Pulley (Second Pulley) 34a Secondary Pulley Cylinder Chamber 35 Primary Pulley (First Pulley) 35a Primary Pulley Cylinder Chamber 38 Lock-Up Switching Valve 81 Output Shaft 82 Rotating Shaft 83 Drive Shaft 84 Follower Shaft 85 Differential Mechanism

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 駆動軸に連結される第1プーリと、従動
軸に連結される第2プーリと、前記第1プーリと前記第
2プーリに巻き付けられて動力を伝達する伝達ベルト
と、前記第1および第2プーリの伝達ベルト挟み力を制
御する第1および第2ピストンとを備え、 前記伝達ベルトの前記第1および第2プーリ巻付径を変
化させて、前記駆動軸と前記従動軸との変速比と、前記
伝達ベルトの張力とを制御する無段変速機において、 前記駆動軸から入力されるトルクに応じて調節される第
1圧力を発生する第1圧力発生手段と、 前記変速比の目標値に応じて調節される第2圧力を発生
する第2圧力発生手段と、 前記第1および第2圧力発生手段を迂回し、前記第1お
よび第2ピストンに圧力を供給するバイパス弁とを有
し、 前記第2圧力が所定値より低くなったとき、前記バイパ
ス弁により前記第1および第2ピストンに圧力を供給す
ることを特徴とする無段変速機制御装置。
A first pulley connected to a drive shaft; a second pulley connected to a driven shaft; a transmission belt wound around the first pulley and the second pulley to transmit power; A first and a second piston for controlling a pinching force of the transmission belt between the first and second pulleys, and changing the winding diameters of the first and second pulleys of the transmission belt to form the drive shaft and the driven shaft; A continuously variable transmission that controls a speed ratio of the transmission belt and a tension of the transmission belt; a first pressure generating unit that generates a first pressure that is adjusted according to a torque input from the drive shaft; A second pressure generating means for generating a second pressure adjusted according to a target value of: a bypass valve which bypasses the first and second pressure generating means and supplies pressure to the first and second pistons; And the second pressure is predetermined When it becomes lower, the continuously variable transmission control device and supplying the pressure to said first and second pistons by the bypass valve.
【請求項2】 前記バイパス弁は、前記第1プーリの前
記伝達ベルト挟み力と前記第2プーリの前記伝達ベルト
挟み力とが同一となるように設定されていることを特徴
とする請求項1に記載の無段変速機制御装置。
2. The bypass valve according to claim 1, wherein the transmission belt clamping force of the first pulley and the transmission belt clamping force of the second pulley are set to be the same. 3. The continuously variable transmission control device according to claim 1.
【請求項3】 前記第1および第2圧力発生手段は、パ
イロット式圧力制御弁であって、 前記バイパス弁は、前記第1および第2圧力発生手段の
パイロット弁を迂回し、前記第1および第2圧力発生手
段のメイン弁に圧力を供給することを特徴とする請求項
1または2に記載の無段変速機制御装置。
3. The first and second pressure generating means are pilot-type pressure control valves, and the bypass valve bypasses a pilot valve of the first and second pressure generating means. 3. The continuously variable transmission control device according to claim 1, wherein a pressure is supplied to a main valve of the second pressure generating means.
JP30019996A 1996-11-12 1996-11-12 Continuously variable transmission control device Expired - Fee Related JP3849186B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30019996A JP3849186B2 (en) 1996-11-12 1996-11-12 Continuously variable transmission control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30019996A JP3849186B2 (en) 1996-11-12 1996-11-12 Continuously variable transmission control device

Publications (2)

Publication Number Publication Date
JPH10141458A true JPH10141458A (en) 1998-05-29
JP3849186B2 JP3849186B2 (en) 2006-11-22

Family

ID=17881933

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30019996A Expired - Fee Related JP3849186B2 (en) 1996-11-12 1996-11-12 Continuously variable transmission control device

Country Status (1)

Country Link
JP (1) JP3849186B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007255439A (en) * 2006-03-20 2007-10-04 Toyota Motor Corp Control device for powertrain
JP2016176522A (en) * 2015-03-19 2016-10-06 本田技研工業株式会社 Vehicular power transmission device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007255439A (en) * 2006-03-20 2007-10-04 Toyota Motor Corp Control device for powertrain
JP2016176522A (en) * 2015-03-19 2016-10-06 本田技研工業株式会社 Vehicular power transmission device

Also Published As

Publication number Publication date
JP3849186B2 (en) 2006-11-22

Similar Documents

Publication Publication Date Title
US6659901B2 (en) Infinite speed ratio continuously variable transmission
US4875892A (en) Steplessly variable transmission control for automotive vehicle
EP0982512B1 (en) Clutch hydraulic controller
JP3955330B2 (en) Hydraulic emergency control device with pre-switching valve for stepless gearing
JPWO2014147854A1 (en) Vehicle hydraulic control device
US6364802B1 (en) Hydraulic control system for a continuously variable transmission
KR100564195B1 (en) Shift hydraulic pressure control apparatus for belt type continuously variable transmission
JP3424423B2 (en) Transmission control device for continuously variable automatic transmission
JPS6252175B2 (en)
JP2007010090A (en) Hydraulic control device
US5086671A (en) Quick downshift control in hybrid continuously variable transmission
EP0943478B1 (en) System for controlling the traction power of a utility vehicle
JP3849186B2 (en) Continuously variable transmission control device
JPH0712201A (en) Speed change control device for continuously variable transmission for vehicle
JP4322007B2 (en) Shift control device for continuously variable transmission
JPS6246063A (en) Hydraulic control device for speed change gear
US5662550A (en) Hydraulic control system of a 4-speed automatic transmission for vehicles
JP2018112240A (en) Hydraulic control device of automatic transmission
JPH1054458A (en) Hydraulic controller for automatic transmission
JP2650292B2 (en) Hydraulic control device for vehicle power transmission
JP3498423B2 (en) Continuously variable transmission
JP2009250304A (en) Hydraulic control device
JP2950872B2 (en) Control device for continuously variable transmission
JP2848178B2 (en) Control device for belt type continuously variable transmission
JP2699331B2 (en) Hydraulic control device for belt-type continuously variable transmission for vehicles

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060808

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060821

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090908

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100908

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100908

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110908

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110908

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120908

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120908

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130908

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees