JPH10141012A - Refuse incineration generating plant having independent heater - Google Patents

Refuse incineration generating plant having independent heater

Info

Publication number
JPH10141012A
JPH10141012A JP30172096A JP30172096A JPH10141012A JP H10141012 A JPH10141012 A JP H10141012A JP 30172096 A JP30172096 A JP 30172096A JP 30172096 A JP30172096 A JP 30172096A JP H10141012 A JPH10141012 A JP H10141012A
Authority
JP
Japan
Prior art keywords
steam
hot water
independent heater
flasher
steam turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP30172096A
Other languages
Japanese (ja)
Inventor
Nobuyoshi Okada
宣好 岡田
Kiyotaka Fujii
清高 藤井
Masashi Takahashi
正志 高橋
Mitsuko Yamagishi
晃子 山岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP30172096A priority Critical patent/JPH10141012A/en
Publication of JPH10141012A publication Critical patent/JPH10141012A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/12Heat utilisation in combustion or incineration of waste

Abstract

PROBLEM TO BE SOLVED: To effectively utilize fuel and to achieve the increase of efficiency, in a refuse generating plant having an independent heater using external fuel serving as a heat source. SOLUTION: An independent heater 04 using external fuel serving as a heat source is provided. The independent heater 04 comprises a superheating part 05 to superheat steam to superheat steam fed to a steam turbine 06 from a waste heat boiler 02; and a hot water absorbing part 07 by which a whole amount or a part of condensate of a steam turbine 02 is caused to produce hot water through heat-exchange with exhaust gas discharged from the superheating part 05. Further, the independent heater is provided with a flasher 13 to introduce hot water flowing out from the hot water absorbing part 07. Steam generated at the flasher 13 is mixed in the steam turbine 06 and drain of the flasher 13 is guided as feed water to the waste heat boiler 02.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ごみ焼却炉、同ご
み焼却炉の廃熱を回収する廃熱ボイラ、同廃熱ボイラか
らの蒸気で作動される蒸気タービン及び外部燃料を熱源
とする独立加熱器を有するごみ焼却発電プラントに関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a waste incinerator, a waste heat boiler for recovering waste heat of the waste incinerator, a steam turbine operated by steam from the waste heat boiler, and an independent heat source using an external fuel as a heat source. The present invention relates to a refuse incineration power plant having a heater.

【0002】[0002]

【従来の技術】従来のごみ焼却発電プラントでは、廃熱
ボイラからの蒸気を都市ガス等の外部燃料を熱源とする
独立加熱器で過熱する場合、その独立加熱器の排ガスは
そのまま大気へ放出していた。図5に従来の技術を使用
したごみ焼却発電プラントの系統図を示す。図5におい
て、ごみ焼却炉01から出た排ガスは廃熱ボイラ02に
よって熱回収され、発生した蒸気は主蒸気ライン03を
介して独立加熱器04の過熱部05に導かれ、蒸気の温
度を上昇させて蒸気タービン06に導かれる。一方、給
水は給水ポンプ12を介して廃熱ボイラ02に給水され
る。
2. Description of the Related Art In a conventional refuse incineration power plant, when steam from a waste heat boiler is superheated by an independent heater using an external fuel such as city gas as a heat source, the exhaust gas from the independent heater is directly discharged to the atmosphere. I was FIG. 5 shows a system diagram of a refuse incineration power plant using the conventional technology. In FIG. 5, the exhaust gas discharged from the refuse incinerator 01 is heat-recovered by the waste heat boiler 02, and the generated steam is led to the superheater 05 of the independent heater 04 via the main steam line 03, and the temperature of the steam is raised. This is led to the steam turbine 06. On the other hand, water is supplied to the waste heat boiler 02 via the water supply pump 12.

【0003】なお、図6は独立加熱器04内部の流体温
度状態を示したもので、過熱部05での燃焼ガス温度は
1 からG2 まで低下することにより、蒸気ラインの温
度はS1 からS2 まで上昇する。しかしながら、排ガス
温度G2 は蒸気温度S2 よりも下がることはなく、その
まま大気へ放出されていた。
[0003] Incidentally, FIG. 6 shows a separate heater 04 inside the fluid temperature conditions, the combustion gas temperature with superheated portion 05 by reducing the G 1 to G 2, the temperature of the vapor lines S 1 It rises from to S 2. However, the exhaust gas temperature G 2 did not fall below the steam temperature S 2 and was released to the atmosphere as it was.

【0004】[0004]

【発明が解決しようとする課題】前記したように、従
来、独立加熱器04から排出される燃焼ガスの温度は3
00℃〜350℃程度も有り、熱の有効利用が望まれて
いた。本発明は、外部燃料を熱源とする独立加熱器を有
するごみ焼却発電プラントにおいて、燃料を有効に利用
し高効率化を達成することを課題としている。
As described above, conventionally, the temperature of the combustion gas discharged from the independent heater 04 is 3
The temperature is about 00 ° C to 350 ° C, and effective use of heat has been desired. An object of the present invention is to achieve high efficiency by effectively using fuel in a refuse incineration power plant having an independent heater using an external fuel as a heat source.

【0005】[0005]

【課題を解決するための手段】前記課題を解決するため
に提供する本発明のごみ焼却発電プラントは、ごみ焼却
炉、同ごみ焼却炉の廃熱を回収する廃熱ボイラ、同廃熱
ボイラからの蒸気で作動される蒸気タービン、及び外部
燃料を熱源とする独立加熱器を有し、同独立加熱器は、
前記廃熱ボイラから前記蒸気タービンに供給される蒸気
を過熱する過熱部と、前記蒸気タービンの復水の全量又
は一部を前記過熱部を出た排ガスとの熱交換により熱水
とする熱水吸収部とを有している。
A refuse incineration power plant according to the present invention, which is provided to solve the above problems, comprises a refuse incinerator, a waste heat boiler for recovering waste heat of the refuse incinerator, and a waste heat boiler. A steam turbine operated with steam, and an independent heater using external fuel as a heat source, the independent heater includes:
Hot water that heats steam supplied from the waste heat boiler to the steam turbine by heat exchange between the superheated portion and the exhaust gas that has exited the superheated portion of the condensate from the steam turbine. And an absorbing portion.

【0006】本発明によるごみ焼却発電プラントは、更
に、前記熱水吸収部を出た熱水を導入するフラッシャー
を有し、同フラッシャーで発生した蒸気を前記蒸気ター
ビンに混入させ、同フラッシャーのドレンは前記廃熱ボ
イラの給水として導くように構成する。
The refuse incineration power plant according to the present invention further has a flasher for introducing hot water flowing out of the hot water absorbing section, and mixes steam generated by the flasher into the steam turbine, and drains the steam from the flash turbine. Is configured to be guided as water supply to the waste heat boiler.

【0007】このように構成された本発明のごみ焼却発
電プラントにおいては、独立加熱器で外部燃料を燃焼さ
せることによりその過熱部で廃熱ボイラからの蒸気を過
熱した後、過熱部を出た排ガスは蒸気タービンの復水の
少くとも一部をその熱水吸収部で加熱して熱水とする。
In the thus constructed refuse incineration power plant of the present invention, the steam from the waste heat boiler is superheated in the superheated section by burning the external fuel by the independent heater and then exits the superheated section. Exhaust gas is converted into hot water by heating at least a portion of the condensate of the steam turbine in its hot water absorbing section.

【0008】この熱水はフラッシャーに導入され、発生
した蒸気は蒸気タービンに混入、ドレンは廃熱ボイラの
給水として供給される。従って、従来は独立加熱器で廃
熱ボイラからの蒸気を過熱するだけで放出されていた3
00℃〜350℃の排ガスの熱が回収されごみ焼却発電
プラント内で有効に利用される。
[0008] The hot water is introduced into a flasher, the generated steam is mixed into a steam turbine, and the drain is supplied as water for a waste heat boiler. Therefore, conventionally, the steam from the waste heat boiler was released only by overheating with an independent heater.
The heat of the exhaust gas at 00 ° C to 350 ° C is recovered and effectively used in the refuse incineration power plant.

【0009】また、本発明によるごみ焼却発電プラント
では、前記した構成に加え、独立加熱器の過熱部と熱水
吸収部との間に、前記フラッシャーで発生し前記蒸気タ
ービンに混入させる蒸気を加熱する再熱部を設けた構成
とするのが望ましい。このように構成することによっ
て、前記した過熱部と熱水吸収部とにおける熱回収に加
え、この再熱部において、フラッシャーから蒸気タービ
ンに導かれる蒸気による熱回収が行われ熱効率を一層高
めることができる。
Further, in the refuse incineration power plant according to the present invention, in addition to the above-described configuration, the steam generated by the flasher and mixed into the steam turbine is heated between the superheating section and the hot water absorption section of the independent heater. It is desirable to adopt a configuration in which a reheating section is provided. With this configuration, in addition to the above-described heat recovery in the superheated portion and the hot water absorption portion, in this reheat portion, heat recovery by steam guided from the flasher to the steam turbine is performed, and the heat efficiency can be further increased. it can.

【0010】[0010]

【発明の実施の形態】以下、本発明によるごみ焼却発電
プラントについて図1〜図4に示した実施の形態に基づ
いて具体的に説明する。なお、以下の実施の形態におい
て、図5,図6に示した従来の装置と同じ構成の部分に
は説明を簡単にするため同じ符号を付してあり、それら
についての重複する説明は省略する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a waste incineration power plant according to the present invention will be specifically described with reference to the embodiments shown in FIGS. In the following embodiments, the same components as those of the conventional apparatus shown in FIGS. 5 and 6 are denoted by the same reference numerals for simplification of description, and redundant description thereof will be omitted. .

【0011】(実施の第1形態)まず、図1,図2によ
り実施の第1形態によるごみ焼却発電プラントについて
説明する。図1において、外部燃料を熱源とする独立加
熱器04は過熱部05の後流に熱水吸収部07を有して
いる。08は復水設備、09は発電機であり、10は抽
気蒸気ライン、11は復水ポンプである。
(First Embodiment) First, a waste incineration power plant according to a first embodiment will be described with reference to FIGS. In FIG. 1, an independent heater 04 using an external fuel as a heat source has a hot water absorbing section 07 downstream of the superheat section 05. 08 is a condensing equipment, 09 is a generator, 10 is a bleed steam line, and 11 is a condensing pump.

【0012】13はフラッシャーで熱水吸収部07を出
た熱水から蒸気を発生する。その蒸気は蒸気ライン14
により蒸気タービン06へ混入され、また、ドレンはド
レンポンプ15でインジェクター16へ送られる。
Reference numeral 13 denotes a flasher which generates steam from the hot water that has exited the hot water absorbing unit 07. The steam is steam line 14
Is mixed into the steam turbine 06, and the drain is sent to the injector 16 by the drain pump 15.

【0013】このような構成を有する図1のごみ焼却発
電プラントにおいて、ごみ焼却炉01からの排出ガスは
廃熱ボイラ02にて熱回収された後、後流のシステムに
導かれる。一方、廃熱ボイラ02から発生した蒸気は蒸
気管03を介して独立加熱器04の過熱部05に導かれ
て過熱されたのち、蒸気タービン06を介して復水設備
08に導かれる。
In the refuse incineration power plant of FIG. 1 having such a configuration, the exhaust gas from the refuse incinerator 01 is recovered by the waste heat boiler 02 and then guided to the downstream system. On the other hand, the steam generated from the waste heat boiler 02 is guided to the superheating section 05 of the independent heater 04 via the steam pipe 03 and is superheated, and then guided to the condensate facility 08 via the steam turbine 06.

【0014】凝縮された復水は復水ポンプにて全量の復
水又は一部の復水を再度独立加熱器04の熱水吸収部0
7に導き加熱後、フラッシャー13にて蒸気とドレンに
分離する。このフラッシャー13で発生した蒸気は配管
14を介して蒸気タービン06に導かれ発電に寄与す
る。フラッシャー13のドレンはドレンポンプ15にて
加圧後、インジェクター16を通して復水系統に戻さ
れ、給水ポンプ12を含むその他の給水設備を介して廃
熱ボイラ02に給水される。
The condensed condensate is condensed by a condensate pump, and the condensate is partially or completely condensed again into the hot water absorbing portion 0 of the independent heater 04.
After heating to 7, the flasher 13 separates into steam and drain. The steam generated by the flasher 13 is guided to a steam turbine 06 via a pipe 14 and contributes to power generation. After the drain of the flasher 13 is pressurized by the drain pump 15, the drain is returned to the condensate system through the injector 16, and supplied to the waste heat boiler 02 via other water supply equipment including the water supply pump 12.

【0015】図2は、前記した独立加熱器04内の流体
温度について説明している。縦軸は温度を示し、横軸は
部位を示す。すなわち図2のA部は過熱部05における
流体の温度状態を示し、B部は熱水吸収部07における
流体の温度状態を示す。なお、G1 は過熱器05の入口
ガス温度を示す。
FIG. 2 explains the fluid temperature in the independent heater 04 described above. The vertical axis indicates temperature, and the horizontal axis indicates sites. That is, part A of FIG. 2 shows the temperature state of the fluid in the superheater 05, and part B shows the temperature state of the fluid in the hot water absorber 07. Incidentally, G 1 represents an inlet gas temperature of the superheater 05.

【0016】S1 は廃熱ボイラ02からの蒸気03温度
を示し、過熱部05で過熱された蒸気は温度S2 となっ
て蒸気タービン06に導かれる。一方、熱交換器で伝熱
する場合、構造的に伝熱限界が生じる(ピンチポイント
ΔS)為、ガス側の温度G2は蒸気温度S2 +ΔSで決
定される。
S 1 indicates the temperature of the steam 03 from the waste heat boiler 02, and the steam superheated in the superheating section 05 becomes the temperature S 2 and is guided to the steam turbine 06. On the other hand, when heat is transferred by the heat exchanger, a heat transfer limit occurs structurally (pinch point ΔS), and therefore, the gas side temperature G 2 is determined by the steam temperature S 2 + ΔS.

【0017】従って独立加熱器04内に過熱部05だけ
の熱交換器が設けられたものではこのガス温度G2 がそ
のまま大気へ放出される。そこで過熱部05の下流側に
節炭器と構造を同一とする熱水吸収部07を設けること
により排ガスは更にG3 まで熱回収されることになる。
[0017] Thus those heat exchangers only superheating portion 05 into separate heater 04 is provided is the gas temperature G 2 is directly discharged to the atmosphere. Therefore the exhaust gas by providing the hot water absorber 07 to equalize the economizer and structure downstream of the heating unit 05 will be further heat recovery to G 3.

【0018】一方、復水はインジェクター16にてフラ
ッシャードレンと混入した後のS3温度で熱水吸収部0
7に導かれ、S4 の熱水温度となる。また熱水吸収部0
7の伝熱面積を増加することにより、排ガス温度G3
3 +ΔSの温度まで低下させることは物理的に可能で
ある。
Meanwhile, condensate hot water absorber at S 3 temperature after mixed with a flasher drain at the injector 16 0
Led to 7, a hot water temperature of the S 4. In addition, hot water absorption part 0
By increasing the heat transfer area of 7, it is physically possible to lower the exhaust gas temperature G 3 to the temperature of S 3 + ΔS.

【0019】(実施の第2形態)次に、図3,図4によ
り実施の第2形態によるごみ焼却発電プラントについて
説明する。図3に示すごみ焼却発電プラントにおいて
は、独立加熱器04内の過熱部05と熱水吸収部07の
間に再熱部17を設けている。この再熱部17にはフラ
ッシャーで発生されて蒸気タービン06へ混入される蒸
気を加熱するように構成されている。その他の構成は図
1に示した発電プラントと同じである。
Second Embodiment Next, a waste incineration power plant according to a second embodiment will be described with reference to FIGS. In the refuse incineration power plant shown in FIG. 3, the reheating unit 17 is provided between the superheating unit 05 and the hot water absorption unit 07 in the independent heater 04. The reheating unit 17 is configured to heat steam generated by a flasher and mixed into the steam turbine 06. Other configurations are the same as those of the power plant shown in FIG.

【0020】図4は、図3に示したごみ焼却発電プラン
トの独立加熱器04内の流体温度の状態を示す図2に対
応する図面である。図4において、縦軸は温度を示し、
横軸は部位を示す。すなわちA部は過熱部05における
流体の温度状態を示し、C部は再熱部17における流体
の温度状態を示し、B部は熱水吸収部07における流体
の温度状態を示す。
FIG. 4 is a drawing corresponding to FIG. 2 showing the state of the fluid temperature in the independent heater 04 of the refuse incineration power plant shown in FIG. In FIG. 4, the vertical axis indicates temperature,
The horizontal axis indicates the site. That is, part A shows the temperature state of the fluid in the superheating unit 05, part C shows the temperature state of the fluid in the reheating unit 17, and part B shows the temperature state of the fluid in the hot water absorbing unit 07.

【0021】図2と同様、G1 は過熱器05の入口ガス
温度を示す。S1 は廃熱ボイラ02からの蒸気03温度
を示し、過熱された蒸気は温度S2 となって蒸気タービ
ン06に導かれる。図4のごみ焼却発電プラントの外部
加熱器04では、過熱部05の下流側に再熱部17及び
節炭器と構造を同一とする熱水吸収部07を設けること
により排ガスは更に温度G4 を経由して熱水吸収部07
出口の温度G3 まで熱回収されることになる。
As in FIG. 2, G 1 indicates the gas temperature at the inlet of the superheater 05. S 1 denotes a steam 03 temperature from the waste heat boiler 02, superheated steam is led to the steam turbine 06 becomes the temperature S 2. In the external heater 04 of the refuse incineration power plant shown in FIG. 4, the exhaust gas is further heated to the temperature G 4 by providing a reheating unit 17 and a hot water absorption unit 07 having the same structure as that of the economizer in the downstream side of the superheating unit 05. Through hot water absorption part 07
It will be heat recovery to a temperature G 3 outlet.

【0022】一方、復水はインジェクター16にてフラ
ッシャー13からのフラッシャードレンと混入した後の
3 温度で熱水吸収部07に導かれ、S4 の熱水温度と
なる。一方、フラッシャー13で発生した蒸気は再熱部
17を介すことにより、飽和温度S4 から過熱温度S5
を得る。この蒸気を配管14を介して蒸気タービン06
に導くことにより再熱効果により高効率発電が可能とな
る。
On the other hand, the condensed water is introduced into the hot water absorbing section 07 at the temperature S 3 after being mixed with the flasher drain from the flasher 13 by the injector 16, and has the hot water temperature of S 4 . On the other hand, the steam generated in the flasher 13 passes through the reheating unit 17 and changes from the saturation temperature S 4 to the superheating temperature S 5.
Get. This steam is passed through a pipe 14 to a steam turbine 06.
, High-efficiency power generation becomes possible by the reheating effect.

【0023】[0023]

【発明の効果】本発明によるごみ焼却発電プラントで
は、外部燃料を熱源とする独立加熱器内に過熱部に加え
節炭器に類似する熱水吸収部を付加させて外部燃料燃焼
ガスの排熱を極限まで回収し、その熱水吸収部を出た熱
水をフラッシャーにて蒸気とドレンに分離し、その蒸気
を発電に利用することによりプラント効率を向上させる
ことが可能である。
In the refuse incineration power plant according to the present invention, in addition to the superheated section, a hot water absorption section similar to a economizer is added to the independent heater using the external fuel as a heat source, and the exhaust heat of the external fuel combustion gas is removed. It is possible to improve plant efficiency by recovering the water to the limit, separating hot water from the hot water absorption section into steam and drain with a flasher, and using the steam for power generation.

【0024】また、上記に加え、独立加熱器内に、フラ
ッシャーからの蒸気を加熱する再熱部を設けたもので
は、フラッシャーからの蒸気を再熱して発電に利用する
ことにより、プラント効率を更に向上させることが可能
である。
In addition, in addition to the above, in the case where a reheating section for heating the steam from the flasher is provided in the independent heater, the plant efficiency is further increased by reheating the steam from the flasher and using it for power generation. It is possible to improve.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の第1形態によるごみ焼却発電プ
ラントの系統図。
FIG. 1 is a system diagram of a refuse incineration power plant according to a first embodiment of the present invention.

【図2】図1のごみ焼却発電プラントで用いられている
独立加熱器内部の流体温度状態を示す説明図。
FIG. 2 is an explanatory diagram showing a fluid temperature state inside an independent heater used in the refuse incineration power plant of FIG.

【図3】本発明の実施の第2形態によるごみ焼却発電プ
ラントの系統図。
FIG. 3 is a system diagram of a refuse incineration power plant according to a second embodiment of the present invention.

【図4】図3のごみ焼却発電プラントで用いられている
独立加熱器内部の流体温度状態を示す説明図。
FIG. 4 is an explanatory diagram showing a fluid temperature state inside an independent heater used in the refuse incineration power plant of FIG. 3;

【図5】従来のごみ焼却発電プラントの系統図。FIG. 5 is a system diagram of a conventional refuse incineration power plant.

【図6】図5のごみ焼却発電プラントで用いられている
独立加熱器内部の流体温度状態を示す説明図。
FIG. 6 is an explanatory diagram showing a fluid temperature state inside an independent heater used in the refuse incineration power plant of FIG.

【符号の説明】[Explanation of symbols]

01 ごみ焼却炉 02 廃熱ボイラ 03 主蒸気ライン 04 独立加熱器 05 過熱部 06 蒸気タービン 07 熱水吸収部 08 復水設備 09 発電機 10 抽気蒸気ライン 11 復水ポンプ 12 給水ポンプ 13 フラッシャー 14 蒸気ライン 15 ドレンポンプ 16 インジェクター 17 再熱部 G1 独立加熱器ガス入口温度 G2 独立加熱器ガス出口温度 S1 過熱部蒸気入口温度 S2 過熱部蒸気出口温度 G3 熱水吸収部ガス出口温度 G4 再熱部出口ガス温度 ΔS ピンチポイント S3 熱水吸収部給水入口温度 S4 熱水吸収部熱水出口温度 S5 再熱部出口蒸気温度Reference Signs List 01 Waste incinerator 02 Waste heat boiler 03 Main steam line 04 Independent heater 05 Superheated part 06 Steam turbine 07 Hot water absorption part 08 Condensation equipment 09 Generator 10 Extracted steam line 11 Condensate pump 12 Feed water pump 13 Flasher 14 Steam line 15 Drain pump 16 Injector 17 Reheating section G 1 Independent heater gas inlet temperature G 2 Independent heater gas outlet temperature S 1 Superheated section steam inlet temperature S 2 Superheated section steam outlet temperature G 3 Hot water absorbing section gas outlet temperature G 4 Reheat section outlet gas temperature ΔS pinch point S 3 Hot water absorption section feedwater inlet temperature S 4 Hot water absorption section hot water exit temperature S 5 Reheat section exit steam temperature

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山岸 晃子 横浜市中区錦町12番地 三菱重工業株式会 社横浜製作所内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Akiko Yamagishi 12 Nishikicho, Naka-ku, Yokohama-shi Yokohama Heavy Industries, Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 ごみ焼却炉、同ごみ焼却炉の廃熱を回収
する廃熱ボイラ、同廃熱ボイラからの蒸気で作動される
蒸気タービン、及び外部燃料を熱源とする独立加熱器を
有し、同独立加熱器は、前記廃熱ボイラから前記蒸気タ
ービンに供給される蒸気を過熱する過熱部と、前記蒸気
タービンの復水の全量又は一部を前記過熱部を出た排ガ
スとの熱交換により熱水とする熱水吸収部とを有してお
り、かつ、前記熱水吸収部を出た熱水を導入するフラッ
シャーを有し、同フラッシャーで発生した蒸気を前記蒸
気タービンに混入させ、同フラッシャーのドレンは前記
廃熱ボイラの給水として導くよう構成したことを特徴と
する、独立加熱器を有するごみ焼却発電プラント。
A waste incinerator, a waste heat boiler for recovering waste heat of the waste incinerator, a steam turbine operated by steam from the waste heat boiler, and an independent heater using external fuel as a heat source The independent heater is configured to exchange heat between a superheater that superheats steam supplied from the waste heat boiler to the steam turbine and exhaust gas that has exited the superheater from the entire or a part of the condensate of the steam turbine. Having a hot water absorbing section to make hot water, and having a flasher for introducing hot water that has exited the hot water absorbing section, mixing the steam generated by the flasher into the steam turbine, A refuse incineration power plant having an independent heater, wherein the drain of the flasher is configured to be guided as feed water for the waste heat boiler.
【請求項2】 前記独立加熱器の過熱部と熱水吸収部と
の間に、前記フラッシャーで発生し前記蒸気タービンに
混入させる蒸気を加熱する再熱部を設けてなる請求項1
記載の独立加熱器を有するごみ焼却発電プラント。
2. A reheating section for heating steam generated by the flasher and mixed into the steam turbine, between the superheating section and the hot water absorbing section of the independent heater.
A refuse incineration power plant having the independent heater as described.
JP30172096A 1996-11-13 1996-11-13 Refuse incineration generating plant having independent heater Withdrawn JPH10141012A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30172096A JPH10141012A (en) 1996-11-13 1996-11-13 Refuse incineration generating plant having independent heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30172096A JPH10141012A (en) 1996-11-13 1996-11-13 Refuse incineration generating plant having independent heater

Publications (1)

Publication Number Publication Date
JPH10141012A true JPH10141012A (en) 1998-05-26

Family

ID=17900358

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30172096A Withdrawn JPH10141012A (en) 1996-11-13 1996-11-13 Refuse incineration generating plant having independent heater

Country Status (1)

Country Link
JP (1) JPH10141012A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007255349A (en) * 2006-03-24 2007-10-04 Jfe Engineering Kk Exhaust heat recovery power generation method and exhaust heat recovery power generation system
CN104864730A (en) * 2015-05-25 2015-08-26 成都中冶节能环保工程有限公司 Flow-limiting type waste heat power generating system based on submerged arc furnace

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007255349A (en) * 2006-03-24 2007-10-04 Jfe Engineering Kk Exhaust heat recovery power generation method and exhaust heat recovery power generation system
JP4736885B2 (en) * 2006-03-24 2011-07-27 Jfeエンジニアリング株式会社 Waste heat recovery power generation system
CN104864730A (en) * 2015-05-25 2015-08-26 成都中冶节能环保工程有限公司 Flow-limiting type waste heat power generating system based on submerged arc furnace

Similar Documents

Publication Publication Date Title
JP3119718B2 (en) Low voltage power generation method and device
US5357746A (en) System for recovering waste heat
EP0609037B1 (en) Combined combustion and steam turbine power plant
JP2540646B2 (en) Operating method of combined cycle power plant and combined cycle power plant
JP3783195B2 (en) Current generation in a combined power plant with gas and steam turbines.
RU2009333C1 (en) Combined steam-gas power plant and method of its operation
EP2103785A3 (en) Combined cycle plant
RU2153081C1 (en) Combined-cycle-plant and its operating process
TWI645104B (en) Fossil fuel power plant
JPH10501600A (en) Thermal power plant integrating solar energy
JP2757290B2 (en) Gas / steam turbine combined facility with coal gasification facility
JP3042394B2 (en) Power generation system utilizing waste incineration heat
JPH0642703A (en) Cement waste heat recovery power generating plant combined with gas turbine
CN110397481A (en) Promote the waste incineration and generating electricity device of main steam condition
JPH06229207A (en) Operating method of power generating equipment and power generating equipment operated on basis of said method
JPH10141012A (en) Refuse incineration generating plant having independent heater
US20180171827A1 (en) Method to integrate regenerative rankine cycle into combined cycle applications using an integrated heat recovery steam generator
KR20190051493A (en) Steam power generation system with two-stage boiler and boiler used therein
CN209485081U (en) A kind of waste heat recycling utilization system
JPS60138213A (en) Composite cycle waste heat recovery power generating plant
CN213872719U (en) Waste incineration power generation coupling system
JP2003521629A (en) Integrated gasification combined cycle power plant with kalina bottoming cycle
JP2017155613A (en) Trash power generating system
JPH11173108A (en) Cogeneration plant
JP3218175B2 (en) Exhaust gas treatment equipment

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20040203