JPH10140215A - Method and apparatus for production of amorphous powder - Google Patents

Method and apparatus for production of amorphous powder

Info

Publication number
JPH10140215A
JPH10140215A JP29695296A JP29695296A JPH10140215A JP H10140215 A JPH10140215 A JP H10140215A JP 29695296 A JP29695296 A JP 29695296A JP 29695296 A JP29695296 A JP 29695296A JP H10140215 A JPH10140215 A JP H10140215A
Authority
JP
Japan
Prior art keywords
cooling
starting material
atmosphere
scattered
cooling body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29695296A
Other languages
Japanese (ja)
Inventor
Hiroshi Ito
普 伊藤
Shigehisa Fukuda
重久 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KOEI SEIKO KK
Original Assignee
KOEI SEIKO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KOEI SEIKO KK filed Critical KOEI SEIKO KK
Priority to JP29695296A priority Critical patent/JPH10140215A/en
Publication of JPH10140215A publication Critical patent/JPH10140215A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To prevent contamination of a starting material at the time of production of an amorphous powder and to enable arbitrary regulation of rapid cooling conditions and flat state by a relatively simple apparatus. SOLUTION: A large amount of impulse current is applied to a wire shaped metallic starting material disposed in an atmosphere of a cooling medium of nonoxidizing gas, such as gaseous nitrogen, argon, and hydrogen, to form a molten part, and the molten part is scattered, in a state of high-speed fine grains, in the atmosphere by the wire explosion occurring in the inner part of the starting material by the application of the large amount of impulse current and the high-speed fine grains are allowed to collide against a cooling body 41. The starting material is strung between electrodes 23 and can keep its purity without causing contamination by a melting atmosphere as in the case of melting in a state of contact with a contamination source such as a crucible. Moreover, this starting material is scattered, in a state of high-speed fine grains, in the cooling atmosphere by the wire explosion and further allowed to collide with the surface of a cooling body, by which cooling conditions for making amorphous can bee easily obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、例えば磁性材料用
として好適に使用できるアモルファス微粒子粉末の製造
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the production of amorphous fine powder which can be suitably used, for example, for magnetic materials.

【0002】[0002]

【従来の技術】このアモルファス粉末の製造について
は、従来の直径が数mmの金属溶湯流に高速流体を衝突
・噴霧して冷却するアトマイズ法に代えて、Int.
J.Rapid Solidification 4
(1989)181.に溶融合金をガス噴霧により高速
(300〜1000m/s)で飛行させ、それを高速で
回転している冷却体に衝突させ、扁平化したアモルファ
ス粉末を得る方法、あるいは、平成8年2月財団法人次
世代金属・複合材料研究開発協会(RIMCOF)が主
催したフォーラム「未来金属材料の展望」で発表された
「アモルファス・ナノ構造制御プロセス」に開示された
超急冷法などが知られている。これは、円筒容器内を高
速回転する水流にアトマイズした金属溶湯流を衝突させ
て、液滴状溶湯の粉末化と急冷を同時に行なうもので、
回転水流に投入された粉末表面の蒸気膜は瞬時に剥離す
るので超急冷が達成される。
2. Description of the Related Art In order to produce this amorphous powder, Int. Co., Ltd. replaces the conventional atomizing method in which a high-speed fluid impinges on and sprays a high-speed fluid onto a molten metal stream having a diameter of several mm.
J. Rapid Solidification 4
(1989) 181. Of molten alloy by gas spraying at high speed (300-1000 m / s) and colliding it with a cooling body rotating at high speed to obtain flattened amorphous powder, or February 1996 Foundation The super-quenching method disclosed in the “Amorphous / Nanostructure Control Process” presented at the forum “Prospects for Future Metallic Materials” hosted by the Next Generation Metals and Composites Research and Development Association (RIMCOF) is known. In this method, a molten metal stream that has been atomized collides with a water stream that rotates at a high speed in a cylindrical container, thereby simultaneously pulverizing and rapidly cooling the molten droplet.
Ultra-rapid cooling is achieved because the vapor film on the surface of the powder injected into the rotating water stream is instantaneously peeled off.

【0003】この従来提案されたアモルファス粉末の製
造法においては、何れも、出発原料となる金属をるつぼ
に溶解してアトマイズしたものを使用するため、るつぼ
から粉末混入の恐れがあり、金属合金の組成によっては
偏析があるので出発原料の組成に制限があるという欠点
がある。
In any of the conventionally proposed methods for producing an amorphous powder, a starting material is used by dissolving and atomizing a metal as a starting material. There is a disadvantage that the composition of the starting material is limited due to segregation depending on the composition.

【0004】[0004]

【発明が解決しようとする課題】この発明が解決しよう
とする課題は、アモルファス粉末の製造に際して、出発
原料が汚染されず、また、比較的簡単な装置によって、
急冷条件と偏平状態を任意に調整できるようにすること
である。
The problem to be solved by the present invention is that the starting material is not contaminated during the production of the amorphous powder, and the production of the amorphous powder is performed by a relatively simple apparatus.
It is to be able to arbitrarily adjust the quenching condition and the flat state.

【0005】[0005]

【課題を解決するための手段】この発明のアモルファス
粉末の製造方法は、冷却媒体の雰囲気中に配置された線
状の金属の出発原料に、衝撃大電流を通電して溶融部分
を形成するとともに、衝撃大電流の通電によって出発原
料内部に発生した線爆発により溶融部分を高速の微粒子
状で雰囲気中に飛散させ、その高速の微粒子を冷却体に
衝突させることを特徴とする。
According to the method for producing an amorphous powder of the present invention, a high impact current is applied to a starting material of a linear metal arranged in an atmosphere of a cooling medium to form a molten portion. In addition, the molten portion is scattered into the atmosphere in the form of high-speed fine particles due to a linear explosion generated inside the starting material by the application of a large impact current, and the high-speed fine particles collide with the cooling body.

【0006】出発原料としての線状材としては、数mm
径までのものが好適に使用でき、その断面形状は、とく
に制限されず、例えば、箔状のものであってもよい。さ
らに、その形態として細い管に粉末を充填したものも使
用できる。
[0006] A linear material as a starting material is several mm in length.
Those having a diameter of up to a diameter can be suitably used, and the cross-sectional shape thereof is not particularly limited. Further, as a form thereof, a thin tube filled with powder can be used.

【0007】飛散雰囲気としては、窒素、アルゴン、水
素ガスのような非酸化性ガスを用いることができるが、
その中でも、水素ガスは吸熱容量が大きく、冷却能が高
い点で望ましい。
As the scattering atmosphere, a non-oxidizing gas such as nitrogen, argon or hydrogen gas can be used.
Among them, hydrogen gas is desirable because it has a large heat absorption capacity and a high cooling capacity.

【0008】この発明の場合、出発原料は、電極の間に
架線されており、るつぼのような汚染源と接触状態で溶
融する場合のように、溶融雰囲気によって汚染されるこ
とがないので、その純度を保つことができ、また、線爆
発により高速の微粒子状で冷却雰囲気中に飛散し、さら
に、冷却体表面と衝突するので、アモルファス化のため
の急冷条件が簡単に得られる。そして、溶融粒子は冷却
体に付着せずに粉末回収部に回収される。
In the case of the present invention, since the starting material is wired between the electrodes and is not contaminated by the melting atmosphere as in the case where it is melted in contact with a contaminant source such as a crucible, its purity is high. In addition, high-speed fine particles are scattered in a cooling atmosphere in the form of high-speed particles due to a linear explosion, and further collide with the surface of the cooling body. Therefore, rapid cooling conditions for amorphization can be easily obtained. Then, the molten particles are recovered by the powder recovery unit without adhering to the cooling body.

【0009】[0009]

【発明の実施の形態】飛散した溶融金属の粒子を衝突さ
せるための冷却体としては、粒子の衝突方向に対する衝
突角は、その粒子の冷却面との剥離のことを考えると垂
直位置から±45°程度までの傾斜に調整できる。これ
によって得られた粒子の偏平度が制御できる。
BEST MODE FOR CARRYING OUT THE INVENTION As a cooling body for colliding scattered molten metal particles, the collision angle with respect to the particle collision direction is ± 45 degrees from the vertical position in consideration of the separation of the particles from the cooling surface. It can be adjusted to an angle of about °. Thereby, the flatness of the obtained particles can be controlled.

【0010】このように、冷却体は従来のように、必ず
しも、回転させる必要はなく、その分だけ、装置として
の構造は単純化されることになる。
As described above, it is not always necessary to rotate the cooling body as in the prior art, and the structure of the apparatus is simplified accordingly.

【0011】さらに、飛散した高速の溶融金属の微粒子
を冷却を完全に行なうためには、原料素材の冷却体の表
面までの距離は、衝撃大電流の大きさと冷却雰囲気にも
よるが、原料素材の断面を円形とした場合、その平均径
の30倍から60倍あるのが望ましい。
Further, in order to completely cool the scattered high-speed molten metal particles, the distance of the raw material to the surface of the cooling body depends on the magnitude of the large impact current and the cooling atmosphere. When the cross section is circular, it is desirably 30 to 60 times the average diameter.

【0012】この発明によって、長径のアスペクト比が
150〜200で、膜厚0.5〜2μmの薄型扁平状の
アモルファス粉末が得られる。
According to the present invention, a thin flat amorphous powder having a long diameter aspect ratio of 150 to 200 and a film thickness of 0.5 to 2 μm is obtained.

【0013】[0013]

【実施例】【Example】

実施例1 図1は、本発明のアモルファス粉末の製造方法を実施す
るための装置を示す。この装置は、水素の様な吸熱容量
の大きい雰囲気ガスを流入できるようにした密閉容器1
内に配置された線状原料素材の支持部2と、線状原料素
材への電力供給部3と、飛散した原料素材を冷却する冷
却体部4と、飛散した原料素材を粉末回収部5とを有す
る。雰囲気ガスは、水素、窒素、アルゴンなどのガスを
使用できるが、その中で、水素ガスは、その冷却効果が
大きいので都合がよい。
Embodiment 1 FIG. 1 shows an apparatus for carrying out the method for producing an amorphous powder of the present invention. This apparatus has a closed vessel 1 capable of flowing an atmosphere gas having a large heat absorption capacity such as hydrogen.
A support portion 2 for the linear raw material, a power supply unit 3 for supplying the linear raw material, a cooling unit 4 for cooling the scattered raw material, and a powder collecting unit 5 for collecting the scattered raw material. Having. As the atmosphere gas, a gas such as hydrogen, nitrogen, or argon can be used. Among them, hydrogen gas is convenient because its cooling effect is large.

【0014】線状原料素材の支持部2は、密閉容器の頂
部に位置する線材ホッパー21により供給された線材2
2を支持する電極23からなる。
The support portion 2 for the linear raw material is provided with a wire 2 supplied by a wire hopper 21 located at the top of the closed container.
2 comprising an electrode 23 supporting

【0015】電力供給部3は密閉容器外に位置する電極
間距離調整機構31と、この機構に支持された同軸出力
ケーブル32と、このケーブル32からの通電出力を受
ける電極23とからなる。
The power supply unit 3 comprises an inter-electrode distance adjusting mechanism 31 located outside the closed vessel, a coaxial output cable 32 supported by the mechanism, and an electrode 23 receiving an energized output from the cable 32.

【0016】冷却体部4は、線材22に付加される衝撃
大電流の通電によっては放電爆発によって生じた溶融粒
子および蒸気化した粒子の衝突角を調整した冷却体41
を有する。
The cooling body part 4 has a cooling body 41 in which the collision angle of the molten particles and the vaporized particles generated by the discharge explosion by the application of the high impact current applied to the wire 22 is adjusted.
Having.

【0017】さらに、粉末回収部5は、冷却体表面から
落下した冷却粉末が収集し易いように、漏斗状に傾斜し
た密閉容器の下方内面の最下端に設けられた回収容器5
1を有する。
Further, a powder collecting section 5 is provided at the lowermost end of the lower inner surface of the closed container inclined in a funnel shape so that the cooling powder dropped from the surface of the cooling body can be easily collected.
One.

【0018】図2は、原料素材の溶融部分を高速の微粒
子状で飛散させ、これを冷却体表面に衝突させる図1に
示す線状原料素材の支持部2と冷却体部4との詳細を示
す図であり、図3は、図2のA−A線からの断面を示す
図である。
FIG. 2 shows details of the support portion 2 and the cooling body portion 4 of the linear raw material shown in FIG. 1 in which the molten portion of the raw material is scattered in the form of high-speed fine particles and impinges on the surface of the cooling body. FIG. 3 is a diagram showing a cross section taken along line AA of FIG.

【0019】図2に示すように、冷却体41は、銅板の
ような熱伝導性の板材から形成し、その上下内面42、
43を、その水平面に対して45°以下に、すなわち、
電極23間に支持された線材22からの溶融飛散物24
の冷却体の内面42、43との衝突角が45°以下にな
るように形成されている。また、図3において、線材2
2と冷却体の衝突面である内面42、43との距離D
は、線材22の径dの30倍〜60倍となるように調整
している。なお、冷却体41として熱伝導率が大きく、
衝突する粉末の離型性をさらに良好にするためにはセラ
ミックスの中でも熱伝導率が大きく、金属とのぬれ性が
悪い窒化チタン皮膜を銅冷却体の表面に形成すると良
い。また、44は、冷却体41の冷却能を高めるため
に、冷却体41の外面に配置された冷却パイプを示す。
As shown in FIG. 2, the cooling body 41 is formed of a thermally conductive plate material such as a copper plate, and has upper and lower inner surfaces 42,
43 to 45 ° or less with respect to the horizontal plane, that is,
Melted and scattered matter 24 from the wire 22 supported between the electrodes 23
Is formed so that the collision angle with the inner surfaces 42 and 43 of the cooling body is 45 ° or less. Further, in FIG.
2 and the distance D between the inner surfaces 42 and 43 which are the collision surfaces of the cooling body
Is adjusted to be 30 to 60 times the diameter d of the wire 22. Note that the heat conductivity of the cooling body 41 is large,
In order to further improve the releasability of the colliding powder, it is preferable to form a titanium nitride film having high thermal conductivity and poor wettability with metal on the surface of the copper cooling body among ceramics. Reference numeral 44 denotes a cooling pipe arranged on the outer surface of the cooling body 41 in order to enhance the cooling performance of the cooling body 41.

【0020】この装置において、材質、寸法、それに、
製造する粉末粒子の大きさにより設定された放電爆発条
件下で線状の原料素材22を放電爆発させ、これによっ
て生じた溶融粒子および蒸気化した0.1〜100μm
程度の飛散粒子は、300〜1000m/secの高速
で飛行し、傾斜した衝突面をもつ冷却体41に斜めに衝
突し、急冷されて偏平化したアモルファス粉末となる。
更には、冷却体41との衝突角を調整することによっ
て、粒子の偏平度を任意に制御できる。
In this device, the material, dimensions, and
The linear raw material 22 is discharged and exploded under the discharge explosion conditions set by the size of the powder particles to be produced, and the resulting molten particles and vaporized 0.1 to 100 μm
The scattered particles of about a degree fly at a high speed of 300 to 1000 m / sec, collide obliquely with the cooling body 41 having the inclined collision surface, are rapidly cooled, and become flattened amorphous powder.
Further, by adjusting the collision angle with the cooling body 41, the flatness of the particles can be arbitrarily controlled.

【0021】この装置を用いて、以下の放電爆発条件下
で、Fe−3B−2Si−0.5C合金のアモルファス
粉末を得た。
Using this apparatus, an amorphous powder of an Fe-3B-2Si-0.5C alloy was obtained under the following discharge explosion conditions.

【0022】 線材 直径1.0mm、長さ90mm 雰囲気ガス アルゴン 電極間距離 80mm 線材と冷却体との距離 約20mm コンデンサ容量 100μF 充電電圧 10kV 衝突角 30° 回収された粉末は、粒子径が1μm以下のもの30%、
粒子径1μm以上5μm以下のもの70%の粒度構成を
有するもので、アスペクト比は、約180であった。こ
の粉末のX線解析図形から特性ピークは見られず、アモ
ルファス粉末であることが確認できた。
Wire diameter 1.0 mm, length 90 mm Atmosphere gas Argon Distance between electrodes 80 mm Distance between wire and cooling body Approx. 20 mm Capacitance 100 μF Charging voltage 10 kV Collision angle 30 ° The recovered powder has a particle diameter of 1 μm or less. 30% of things,
Particles having a particle diameter of 1 μm or more and 5 μm or less and having a particle size composition of 70%, and an aspect ratio of about 180 were obtained. No characteristic peak was observed from the X-ray analysis pattern of this powder, confirming that the powder was amorphous powder.

【0023】実施例2 実施例1と同じ装置を用いて、以下の放電爆発条件下
で、Fe−44Ni−8Mo−4B合金のアモルファス
粉末を得た。
Example 2 Using the same apparatus as in Example 1, an amorphous powder of an Fe-44Ni-8Mo-4B alloy was obtained under the following discharge explosion conditions.

【0024】 線材 直径0.9mm、長さ65mm 雰囲気ガス 窒素 電極間距離 55mm 線材と冷却体との距離 約15mm コンデンサ容量 80μF 充電電圧 6.5kV 衝突角 20° 回収された粉末は、粒子径が1μm以上のもの20%
で、アスペクト比は約200であり、この粉末は、X線
回析図形から特性ピークは見られず、アモルファスであ
ることが確認できた。
Wire diameter 0.9 mm, length 65 mm Atmosphere gas Nitrogen distance between electrodes 55 mm Distance between wire and cooling body Approximately 15 mm Capacitance 80 μF Charging voltage 6.5 kV Collision angle 20 ° The recovered powder has a particle diameter of 1 μm More than 20%
The powder had an aspect ratio of about 200. From the X-ray diffraction pattern, no characteristic peak was observed, and it was confirmed that the powder was amorphous.

【0025】実施例3 実施例1と同じ装置を用いて、以下の放電爆発条件下
で、Fe−21Co−3B−0.5Si合金のアモルフ
ァス粉末を得た。
Example 3 Using the same apparatus as in Example 1, an amorphous powder of an Fe-21Co-3B-0.5Si alloy was obtained under the following discharge explosion conditions.

【0026】 線材 直径0.9mm、長さ65mm 雰囲気ガス 窒素 線材と電極との距離 55mm 線材と冷却体との距離 約20mm コンデンサ容量 80μF 充電電圧 6kV 衝突角 40° 回収された粉末は粒子径1μm以下のもの50%、1μ
m以上5μm以下のもの50%で、アスペクト比は約1
50であった。またX線回折図形からアモルファスであ
ることが確認された。
Wire diameter 0.9 mm, length 65 mm Atmospheric gas Nitrogen Distance between wire and electrode 55 mm Distance between wire and cooling body Approx. 20 mm Capacitor capacity 80 μF Charging voltage 6 kV Collision angle 40 ° The recovered powder has a particle diameter of 1 μm or less. 50%, 1μ
50% of those with m of 5 m or less and an aspect ratio of about 1
It was 50. Further, it was confirmed from the X-ray diffraction pattern that the film was amorphous.

【0027】[0027]

【発明の効果】【The invention's effect】

(1) 出発原料を溶解するためのるつぼを用いないの
で、るつぼからの不純物の汚染の恐れがない。
(1) Since no crucible for dissolving the starting materials is used, there is no risk of contamination of impurities from the crucible.

【0028】(2) 粉末冶金プロセスの一つである押
出しプレス焼結による線材を用いることができるので、
出発原料としての合金組成を従来技術より広汎に選択で
きる。 (3) 放電エネルギーを制御することにより粒子の大
きさを適当に制御できる。
(2) Since a wire obtained by extrusion press sintering, which is one of the powder metallurgy processes, can be used,
The alloy composition as a starting material can be selected more widely than in the prior art. (3) The size of the particles can be appropriately controlled by controlling the discharge energy.

【0029】(4) 衝突冷却体と粒子との衝突角を可
変とすることにより、粒子の形状と偏平度を適当に制御
できる。
(4) The shape and flatness of the particles can be appropriately controlled by making the collision angle between the collision cooling body and the particles variable.

【0030】(5) アスペクト比が大きく、反磁場係
数が小さい磁性材料用として適したアモルファス粉末が
得られる。
(5) An amorphous powder suitable for a magnetic material having a large aspect ratio and a small demagnetizing coefficient is obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明のアモルファス粉末の製造方法を実施
するための装置を示す。
FIG. 1 shows an apparatus for carrying out the method for producing an amorphous powder of the present invention.

【図2】 図1に示す線状原料素材の支持部と冷却体部
との詳細を示す。
FIG. 2 shows details of a support portion and a cooling body portion of the linear raw material shown in FIG.

【図3】 図2のA−A線からの断面を示す。FIG. 3 shows a cross section taken along line AA of FIG. 2;

【符号の説明】 1 密閉容器 2 線状原料素材の支持部 21 線材ホッパー 22 線材 23 電極 24 溶融飛散物 3 電力供給部 31 電極間距離調整機構 32 同軸出力ケーブル 4 冷却体部 41 冷却体 42、43 冷却体の上下内面 44 冷却パイプ 5 粉末回収部 51 回収容器DESCRIPTION OF SYMBOLS 1 Closed container 2 Supporting part for linear raw material 21 Wire hopper 22 Wire 23 Electrode 24 Melted scattered substance 3 Power supply part 31 Distance control mechanism between electrodes 32 Coaxial output cable 4 Cooling part 41 Cooling body 42 43 Upper and lower inner surfaces of cooling body 44 Cooling pipe 5 Powder recovery unit 51 Collection container

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 線状出発原料に衝撃大電流を通電して溶
融部分を形成するとともに、線状出発原料内部に発生す
る爆発により、溶融部分を高速の微粒子状で飛散させ、
これを冷却体表面に衝突させることを特徴とするアモル
ファス粉末の製造方法。
1. A high-impact current is applied to the linear starting material to form a molten portion, and the molten portion is scattered in high-speed fine particles by an explosion generated inside the linear starting material.
A method for producing an amorphous powder, comprising colliding this with a cooling body surface.
【請求項2】 衝撃大電流の通電を冷却能の高い雰囲気
ガス中で行う請求項1に記載のアモルファス粉末の製造
方法。
2. The method for producing an amorphous powder according to claim 1, wherein the application of the high impact current is performed in an atmosphere gas having a high cooling capacity.
【請求項3】 密閉容器内に、線状原料素材の支持部
と、線状原料素材への電力供給部と、飛散した原料素材
を冷却する冷却体部と、飛散した原料素材を粉末回収部
とを配置したことを特徴とするアモルファス粉末の製造
装置。
3. A closed raw material supporting portion for a linear raw material, a power supply unit for the linear raw material, a cooling unit for cooling the scattered raw material, and a powder collecting unit for collecting the scattered raw material. And an apparatus for producing amorphous powder.
JP29695296A 1996-11-08 1996-11-08 Method and apparatus for production of amorphous powder Pending JPH10140215A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29695296A JPH10140215A (en) 1996-11-08 1996-11-08 Method and apparatus for production of amorphous powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29695296A JPH10140215A (en) 1996-11-08 1996-11-08 Method and apparatus for production of amorphous powder

Publications (1)

Publication Number Publication Date
JPH10140215A true JPH10140215A (en) 1998-05-26

Family

ID=17840317

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29695296A Pending JPH10140215A (en) 1996-11-08 1996-11-08 Method and apparatus for production of amorphous powder

Country Status (1)

Country Link
JP (1) JPH10140215A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010106352A (en) * 2008-10-31 2010-05-13 Nagaoka Univ Of Technology Method for producing nanosheet
JP2012144792A (en) * 2011-01-13 2012-08-02 Nagaoka Univ Of Technology Method and apparatus for producing alloy particle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010106352A (en) * 2008-10-31 2010-05-13 Nagaoka Univ Of Technology Method for producing nanosheet
JP2012144792A (en) * 2011-01-13 2012-08-02 Nagaoka Univ Of Technology Method and apparatus for producing alloy particle

Similar Documents

Publication Publication Date Title
JP2911908B2 (en) Powder sintering and molding method
Savage et al. Production of rapidly solidified metals and alloys
US7431750B2 (en) Nanostructured metal powder and method of fabricating the same
US4592781A (en) Method for making ultrafine metal powder
JP2930880B2 (en) Method and apparatus for producing differential pressure cast metallic glass
US4474604A (en) Method of producing high-grade metal or alloy powder
CN108796320A (en) A kind of Al alloy powder and preparation method thereof for 3D printing
CN108311707B (en) Preparation device and preparation method of superfine powder
US4687510A (en) Method for making ultrafine metal powder
JPH0593213A (en) Production of titanium and titanium alloy powder
MXPA04003959A (en) Method and apparatus for the production of metal powder.
JP4264873B2 (en) Method for producing fine metal powder by gas atomization method
JPH0234707A (en) Method for pulverizing a metal and apparatus for performing it
EP1497061B1 (en) Powder formation method
US4770718A (en) Method of preparing copper-dendritic composite alloys for mechanical reduction
US5032172A (en) Method and apparatus for making rapidly solidified particulate
CA1133671A (en) Method for making metallic glass powder and product
WO1988001919A1 (en) Apparatus for producing powder and process for its production
US20050019242A1 (en) Method for the manufacture of a metal oxide or nitride powder or a semiconductor oxide or nitride powder, an oxide or nitride powder made thereby, and solids and uses thereof
JPH10140215A (en) Method and apparatus for production of amorphous powder
Öztürk et al. Production of rapidly solidified metal powders by water cooled rotating disc atomisation
US4009233A (en) Method for producing alloy particles
JP2002324921A (en) Thermoelectric material and method of manufacturing the same
JPH01111805A (en) Rapid solidification of plasma spray magnetic alloy
RU2133173C1 (en) Process of production of powder with microcrystalline structure

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040817

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041015

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041208

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050415