JPH10135040A - Thin-film magnetic element and its method of manufacturing the same - Google Patents

Thin-film magnetic element and its method of manufacturing the same

Info

Publication number
JPH10135040A
JPH10135040A JP28629996A JP28629996A JPH10135040A JP H10135040 A JPH10135040 A JP H10135040A JP 28629996 A JP28629996 A JP 28629996A JP 28629996 A JP28629996 A JP 28629996A JP H10135040 A JPH10135040 A JP H10135040A
Authority
JP
Japan
Prior art keywords
layer
magnetic
conductive metal
insulating
insulating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28629996A
Other languages
Japanese (ja)
Other versions
JP3580054B2 (en
Inventor
Yuichi Urano
裕一 浦野
Kazuo Matsuzaki
一夫 松崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP28629996A priority Critical patent/JP3580054B2/en
Publication of JPH10135040A publication Critical patent/JPH10135040A/en
Application granted granted Critical
Publication of JP3580054B2 publication Critical patent/JP3580054B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/04Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing coils
    • H01F41/041Printed circuit coils
    • H01F41/046Printed circuit coils structurally combined with ferromagnetic material

Abstract

PROBLEM TO BE SOLVED: To provide a thin-film magnetic element capable of keeping large Q value, regardless of the magnitude of high frequency current. SOLUTION: An insulating substrate 20 is formed by a semiconductor substrate 1 and an insulating film bed 2. A thin-film magnetic element 6 used as thin-film transformer and thin-film inductor is formed on the insulating film bed 2. The thin-film magnetic element 6 is formed by a first coil conductor 5a and a second coil conductor 5b consisting of a strip copper film and so on, the magnetic layer, the first soft magnetic layer 3a and the second soft magnetic layer 3b, arranged above and under the coil conductor 5a and 5b interposing them, an inter-layer insulating film 4 STORAGE (polyimide layer) filling up between the soft magnetic layer 3a and 3b, and the coil conductor 5a and 5b, and the metal pad 7 and 8 (external terminals) to which the both end of coil conductors 5a and 5b are connected together.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、薄膜磁気素子に
関し、より詳しくは、絶縁性基板上に薄膜形成技術よっ
て形成され、DC/DCコンバータなどの小容量(数ワ
ット程度)の電源部品として用いられる薄膜磁気素子お
よびその製造方法に関する。
The present invention relates to a thin-film magnetic element, and more particularly, to a thin-film magnetic element formed on an insulating substrate by a thin-film forming technique and used as a small-capacity (about several watts) power supply component such as a DC / DC converter. And a method of manufacturing the same.

【0002】[0002]

【従来の技術】前記の薄膜磁気素子は、小容量(数ワッ
ト程度)の電源部品として用いられるため、使用される
スイッチング周波数が0.5〜5MHzで占有面積が4
〜25m2 程度という制約があり、しかもこの範囲で、
Q値(=ωL/R:(=2πf)は使用角周波数,fは
使用周波数)の大きいものが望まれる。
2. Description of the Related Art Since the above-mentioned thin-film magnetic element is used as a small-capacity (about several watts) power supply component, the switching frequency used is 0.5 to 5 MHz and the occupied area is 4 MHz.
There is a restriction of about 25 m 2 , and within this range,
It is desired that the Q value (= ωL / R: (= 2πf) be a used angular frequency and f be a used frequency) is large.

【0003】図11は従来の薄膜磁気素子の要部構成図
で、同図(a)は断面図、同図(b)は平面図である。
尚、同図(a)は同図(b)のA−A線断面図を示す。
図11において、1は半導体基板、2は半導体基板1を
熱酸化して形成された酸化膜と該酸化膜上にスパッタに
より形成された窒化膜とからなる下地絶縁膜2である。
これらが絶縁性基板20を構成する。6は薄膜トランス
および薄膜インダクタとして使用される薄膜磁気素子で
あって、下地絶縁膜2上に形成されている。薄膜磁気素
子6は帯状のアルミニウム膜又は銅膜からなるコイル導
体5とコイル導体5を互いに絶縁し、且つコイル導体5
とコイル導体5を挟んで形成される軟磁性層3a、3b
とを絶縁する層間絶縁膜4と、この層間絶縁膜4を介し
てコイル導体5を上下両側から挟んで形成されている軟
磁性層3a、3bとからなる。7,8はコイル導体5の
両端部に形成されたパッドである。
FIGS. 11A and 11B are main part configuration diagrams of a conventional thin film magnetic element. FIG. 11A is a sectional view, and FIG. 11B is a plan view.
FIG. 2A is a sectional view taken along line AA of FIG.
In FIG. 11, reference numeral 1 denotes a semiconductor substrate, and reference numeral 2 denotes a base insulating film 2 composed of an oxide film formed by thermally oxidizing the semiconductor substrate 1 and a nitride film formed on the oxide film by sputtering.
These constitute the insulating substrate 20. Reference numeral 6 denotes a thin-film magnetic element used as a thin-film transformer and a thin-film inductor, which is formed on the base insulating film 2. The thin-film magnetic element 6 insulates the coil conductors 5 made of a strip-shaped aluminum film or a copper film from each other.
And soft magnetic layers 3a and 3b formed with coil conductor 5 interposed therebetween
And soft magnetic layers 3a and 3b formed by sandwiching the coil conductor 5 from above and below both sides with the interlayer insulating film 4 interposed therebetween. Reference numerals 7 and 8 denote pads formed on both ends of the coil conductor 5.

【0004】[0004]

【発明が解決しようとする課題】前記した従来のスパイ
ラル状の薄膜のコイル導体では、高周波電力が印加され
た場合、表皮効果によりコイル導体に流れる電流はコイ
ル導体の表面積で制限される。そのためコイル導体の表
面積をある程度大きくするために、コイル導体を厚くし
ていた。そうすると、コイル導体を挟んでいる軟磁性層
の間隔が広くなり、コイル電流で生じた磁界により、軟
磁性層を横切る磁束密度が低下して、インダクタンスL
が減少し、Q値が小さくなる。
In the conventional spiral thin film coil conductor described above, when high frequency power is applied, the current flowing through the coil conductor is limited by the surface area of the coil conductor due to the skin effect. Therefore, in order to increase the surface area of the coil conductor to some extent, the coil conductor is made thick. Then, the interval between the soft magnetic layers sandwiching the coil conductor is widened, and the magnetic field generated by the coil current lowers the magnetic flux density across the soft magnetic layer, thereby reducing the inductance L.
Decrease, and the Q value decreases.

【0005】また従来のスパイラル状の薄膜のコイル導
体では、半導体基板の表面上に渦巻き状にコイル導体が
形成されているため、磁心としての磁性体としての軟磁
性層をコイル導体の両側(図では上下)に配置する構造
を取っていた。そのため、磁力線の最も集中するコイル
中心と、磁界が漏れやすいコイル導体の外周部には磁心
を配置しておらず、コイルの特性を十分には引き出して
いなかった。
In a conventional spiral thin film coil conductor, since a coil conductor is formed in a spiral shape on the surface of a semiconductor substrate, a soft magnetic layer as a magnetic material as a magnetic core is provided on both sides of the coil conductor (see FIG. In this case, it was arranged vertically. For this reason, no magnetic core is arranged at the center of the coil where the lines of magnetic force are most concentrated and at the outer periphery of the coil conductor where the magnetic field tends to leak, and the characteristics of the coil have not been sufficiently derived.

【0006】この発明の目的は、コイル導体に流れる高
周波電流を増加させてインダクタンスを増大させ、また
磁性体中の磁束密度を高めることでインダクタンスを増
大させることができる薄膜磁気素子およびその製造方法
を提供することにある。
An object of the present invention is to provide a thin-film magnetic element capable of increasing inductance by increasing a high-frequency current flowing through a coil conductor and increasing a magnetic flux density in a magnetic body, and a method of manufacturing the same. To provide.

【0007】[0007]

【課題を解決するための手段】この発明は、前記の目的
を達成するために、絶縁性基板上に、コイル導体として
の機能を有する帯状の導電性金属層と、該導電性金属層
の上下の層間絶縁膜を介して該導電性金属層を挟んむよ
うに形成された磁心としての機能を有する磁性層とを有
する薄膜磁気素子であって、前記導電性金属層を絶縁膜
を挟んで積層する構成とする。
According to the present invention, in order to achieve the above object, a strip-shaped conductive metal layer having a function as a coil conductor is provided on an insulating substrate. A magnetic layer having a function as a magnetic core formed so as to sandwich the conductive metal layer with an interlayer insulating film interposed therebetween, wherein the conductive metal layer is laminated with an insulating film interposed therebetween. And

【0008】この積層された導電性金属層間を電気的に
接続すると効果的である。また絶縁性基板上に、コイル
導体としての機能を有する帯状の導電性金属層と、該導
電性金属層の上下の層間絶縁膜を介して該導電性金属層
を挟んむように形成された磁心としての機能を有する磁
性層とを有する薄膜磁気素子であって、前記導電性金属
層の表面を凹凸(トレンチ構造)とする構成とするとよ
い。
It is effective to electrically connect the stacked conductive metal layers. Further, on an insulating substrate, a strip-shaped conductive metal layer having a function as a coil conductor, and a magnetic core formed so as to sandwich the conductive metal layer via an interlayer insulating film above and below the conductive metal layer A thin-film magnetic element having a magnetic layer having a function may have a configuration in which the surface of the conductive metal layer has irregularities (trench structure).

【0009】またこの薄膜磁性素子の製造方法として
は、絶縁性基板上に第1磁性層を積層した後、第1磁性
層を選択的に除去する工程と、第1磁性層上に第1絶縁
層と第1金属微粒子層と第2絶縁層とを積層した後、第
1金属微粒子層が露出するまで第2絶縁層を選択的に除
去する工程と、第2絶縁層が除去された箇所に第2絶縁
層の厚さと同一の厚さに第1導電性金属層を形成する工
程と、第2絶縁層の表面と第1導電性金属層の表面とに
第3絶縁層と第2金属微粒子層と第4絶縁層を積層した
後、第2金属微粒子層が露出するまで第4絶縁層を選択
的に除去する工程と、第4絶縁層が除去された箇所に第
4絶縁層の厚さと同一の厚さに第2導電性金属膜を形成
する工程と、第2導電性金属層上と第4絶縁層上とに第
5絶縁層と第2磁性層とを積層した後、第2磁性層を選
択的に除去する工程と、を含む工程とする。
Further, as a method of manufacturing the thin-film magnetic element, a step of laminating a first magnetic layer on an insulating substrate and then selectively removing the first magnetic layer, and a step of forming a first insulating layer on the first magnetic layer. After laminating the layer, the first metal fine particle layer and the second insulating layer, selectively removing the second insulating layer until the first metal fine particle layer is exposed; Forming the first conductive metal layer to the same thickness as the second insulating layer; and forming the third insulating layer and the second metal fine particles on the surface of the second insulating layer and the surface of the first conductive metal layer. Selectively removing the fourth insulating layer until the second metal fine particle layer is exposed after laminating the layer and the fourth insulating layer; and determining the thickness of the fourth insulating layer at the position where the fourth insulating layer is removed. Forming a second conductive metal film having the same thickness, forming a fifth insulating layer and a second magnetic layer on the second conductive metal layer and the fourth insulating layer; After stacking the door, the steps comprising a step of selectively removing the second magnetic layer.

【0010】前記工程において、第3絶縁層層と第2金
属微粒子層と第4絶縁層とを積層した後、第2金属微粒
子層が露出するまで第4絶縁層を選択的に除去する工程
の後に、第1導電性金属層が露出するまで第1導電性金
属層上の面積より小さい面積で第4絶縁層を選択的に除
去する工程と、第4絶縁層が除去された箇所に第4絶縁
層の厚さと同一の厚さになるように第2導電性金属層を
形成する工程と、第2導電性金属層上と第4絶縁層上と
に第5絶縁層と第2磁性層とを積層した後、第2磁性層
を選択的に除去する工程と、を含む工程とするとよい。
In the above step, after the third insulating layer, the second metal fine particle layer and the fourth insulating layer are laminated, the fourth insulating layer is selectively removed until the second metal fine particle layer is exposed. A step of selectively removing the fourth insulating layer with an area smaller than the area on the first conductive metal layer until the first conductive metal layer is exposed; Forming a second conductive metal layer to have the same thickness as the insulating layer; and forming a fifth insulating layer and a second magnetic layer on the second conductive metal layer and the fourth insulating layer. And then selectively removing the second magnetic layer after lamination.

【0011】また絶縁性基板上に第1磁性層を積層した
後、第1磁性層を選択的に除去する工程と、第1磁性層
上に第1絶縁層と第1金属微粒子層と第2絶縁層とを積
層した後、第1金属微粒子層が露出するまで第2絶縁層
を選択的に除去する工程と、第2絶縁層が除去された箇
所に第2絶縁層の厚さと同一の厚さに第1導電性金属層
を形成する工程と、第2絶縁層上と第1導電性金属層上
とに第3絶縁層を積層した後、第1導電性金属層が露出
するまで第3絶縁層を選択的に除去する工程と、第3絶
縁層が除去された箇所に第3絶縁層の厚さと同一の厚さ
に第2導電性金属膜を形成する工程と、第2導電性金属
層上と第3絶縁層上とに第4絶縁層と第2磁性層とを積
層した後、第2磁性層を選択的に除去する工程と、を含
む工程とする。
And a step of selectively removing the first magnetic layer after laminating the first magnetic layer on the insulating substrate; and forming a first insulating layer, a first metal fine particle layer, and a second metal layer on the first magnetic layer. A step of selectively removing the second insulating layer until the first metal fine particle layer is exposed after laminating the insulating layer, and a step of removing the second insulating layer at a position where the second insulating layer is removed. Forming a first conductive metal layer, and laminating a third insulating layer on the second insulating layer and the first conductive metal layer, and then forming a third conductive layer until the first conductive metal layer is exposed. A step of selectively removing the insulating layer; a step of forming a second conductive metal film at the same thickness as that of the third insulating layer at a position where the third insulating layer is removed; Stacking the fourth insulating layer and the second magnetic layer on the layer and the third insulating layer, and then selectively removing the second magnetic layer.

【0012】また絶縁性基板上に、コイル導体としての
機能を有する帯状の導電性金属層と、該導電性金属層の
上下の層間絶縁膜を介して該導電性金属層を挟んむよう
に形成された磁心としての機能を有する磁性層とを有す
る薄膜磁気素子であって、帯状の導電性金属層を両側か
ら挟んでいる磁性層が部分的に互いに接続する構成とす
るとよい。
[0012] Further, the conductive metal layer is formed on the insulating substrate so as to sandwich the conductive metal layer via a strip-shaped conductive metal layer having a function as a coil conductor and an interlayer insulating film above and below the conductive metal layer. A thin-film magnetic element having a magnetic layer having a function as a magnetic core may be configured so that magnetic layers sandwiching a strip-shaped conductive metal layer from both sides are partially connected to each other.

【0013】この帯状の導電性金属層を両側から挟んで
いる磁性層が部分的に互いに近接すると効果的である。
さらに帯状の導電性金属層を両側から挟んでいる磁性層
が接続もしくは近接している箇所が該導電性金属層の中
心部および外周部であると好ましい。また絶縁性基板上
に第1磁性層を積層した後、第1磁性層を選択的に除去
する工程と、第1磁性層上に第1絶縁層と金属微粒子層
と第2絶縁層とを積層した後、金属微粒子層が露出する
まで第2絶縁層を選択的に除去する工程と、第2絶縁層
が除去された箇所に第2絶縁層の厚さと同一の厚さに導
電性金属層を形成する工程と、導電性金属層上と第2絶
縁層上とに第3絶縁層と第2磁性層とを積層し、部分的
に第1磁性層と第2磁性層とを第3磁性層で接続する工
程と、を含む工程としてもよい。
It is effective if the magnetic layers sandwiching the strip-shaped conductive metal layer from both sides partially approach each other.
Further, it is preferable that the portions where the magnetic layers sandwiching the band-shaped conductive metal layer are sandwiched from both sides are connected or close to each other are the central portion and the outer peripheral portion of the conductive metal layer. A step of selectively removing the first magnetic layer after laminating the first magnetic layer on the insulating substrate; and a step of laminating the first insulating layer, the metal fine particle layer, and the second insulating layer on the first magnetic layer. After that, a step of selectively removing the second insulating layer until the metal fine particle layer is exposed, and a step of forming a conductive metal layer at a position where the second insulating layer is removed to the same thickness as the second insulating layer. Forming a third insulating layer and a second magnetic layer on the conductive metal layer and the second insulating layer, and partially forming the first magnetic layer and the second magnetic layer on the third magnetic layer. And a step of connecting at a time.

【0014】前記第3磁性層が隙間(ギャップ)を設け
るとよい。また前記の絶縁層が少なくともポリイミド
膜、酸化膜もしくは窒化膜のいづれか一つで形成される
と効果的である。さらに前記金属微粒子層が白金(P
t)もしくはパラジウム(Pd)で形成されるとよい。
Preferably, the third magnetic layer has a gap. It is also effective if the insulating layer is formed of at least one of a polyimide film, an oxide film and a nitride film. Further, the metal fine particle layer is made of platinum (P
t) or palladium (Pd).

【0015】前記のように、コイル導体の表面積を増加
させることで、表皮効果による実効的な抵抗を減少させ
て、高周波電流を実効的に増加させ、それによって磁性
層内の磁束密度を増加させ、インダクタンスを増加させ
ることができる。またコイル導体の中心部と外周部に磁
心となる磁性層を形成することでやはり磁性層内の磁束
密度を増加させ、インダクタンスを増大できる。また、
この磁性層に隙間を設けることで、大きな高周波電流に
対しても、磁性層内の磁束が飽和するのを防止し、大き
なインダクタンスを確保できる。
As described above, by increasing the surface area of the coil conductor, the effective resistance due to the skin effect is reduced, and the high-frequency current is effectively increased, thereby increasing the magnetic flux density in the magnetic layer. , The inductance can be increased. Also, by forming a magnetic layer serving as a magnetic core at the center and the outer periphery of the coil conductor, the magnetic flux density in the magnetic layer can be increased and the inductance can be increased. Also,
By providing a gap in the magnetic layer, it is possible to prevent the magnetic flux in the magnetic layer from being saturated even with a large high-frequency current, and to secure a large inductance.

【0016】[0016]

【発明の実施の形態】図1はこの発明の第1実施例の要
部構成図で、同図(a)は断面図、同図(b)は平面図
である。尚、同図(a)は同図(b)のA−A線断面図
を示す。図1において、1は半導体基板(シリコン基板
など)、2は半導体基板1を熱酸化して形成された酸化
膜(シリコン酸化膜など)と該酸化膜上にスパッタによ
り形成された窒化膜(シリコン窒化膜など)とからなる
下地絶縁膜である。これらが絶縁性基板20を構成す
る。6は薄膜トランスおよび薄膜インダクタとして使用
される薄膜磁気素子であって、下地絶縁膜2上に形成さ
れている。薄膜磁気素子6は帯状の銅(Cu)膜や金
(Au)膜などからなる第1コイル導体5aおよび第2
コイル導体5bと、これらのコイル導体5a、5bを挟
むように上下に配置された磁性層としての第1軟磁性層
3aおよび第2軟磁性層3bと、該軟磁性層3a、3b
と前記コイル導体5a、5bとの間を埋める層間絶縁膜
4(ポリイミド層)と、前記コイル導体5a、5bの両
端が一緒に接続される金属性のパッド7、8(外部導出
端子)とから構成されている。この実施例ではコイル導
体の積層数が2層となっているがこれ以上でも勿論構わ
ない。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIGS. 1A and 1B are sectional views of a main part of a first embodiment of the present invention. FIG. 1A is a sectional view and FIG. 1B is a plan view. FIG. 2A is a sectional view taken along line AA of FIG. In FIG. 1, reference numeral 1 denotes a semiconductor substrate (eg, a silicon substrate), 2 denotes an oxide film (eg, a silicon oxide film) formed by thermally oxidizing the semiconductor substrate 1, and a nitride film (eg, a silicon film) formed on the oxide film by sputtering. (A nitride film or the like). These constitute the insulating substrate 20. Reference numeral 6 denotes a thin-film magnetic element used as a thin-film transformer and a thin-film inductor, which is formed on the base insulating film 2. The thin-film magnetic element 6 includes a first coil conductor 5a made of a strip-shaped copper (Cu) film or a gold (Au) film, and a second coil conductor 5a.
A coil conductor 5b, a first soft magnetic layer 3a and a second soft magnetic layer 3b as magnetic layers arranged vertically so as to sandwich the coil conductors 5a and 5b, and the soft magnetic layers 3a and 3b
And an interlayer insulating film 4 (polyimide layer) filling the space between the coil conductors 5a and 5b, and metallic pads 7 and 8 (external lead terminals) to which both ends of the coil conductors 5a and 5b are connected together. It is configured. In this embodiment, the number of laminated coil conductors is two. However, more than two layers may be used.

【0017】コイル導体を2層とすることで、1層に比
べてコイル導体の総表面積は増加する。そのため表皮効
果による実効的なコイル導体の抵抗を減少させることが
できて、高周波電流が増加し、それによって発生した軟
磁性層の磁束密度が増加して、インダクタンスを増加さ
せることができる。つまり、薄膜磁気素子のQ値を増大
させることができる。
When the coil conductor has two layers, the total surface area of the coil conductor is increased as compared with a single layer. Therefore, the effective resistance of the coil conductor due to the skin effect can be reduced, the high-frequency current increases, and the magnetic flux density of the soft magnetic layer generated thereby increases, and the inductance can be increased. That is, the Q value of the thin-film magnetic element can be increased.

【0018】図2はこの発明の第2実施例の要部構成図
で、同図(a)は断面図、同図(b)は平面図である。
尚、同図(a)は同図(b)のA−A線断面図を示す。
図1との違いは、第1コイル導体5aと第2コイル導体
5bとが接続導体9で部分的に接続されている点であ
り、接続導体9を含めたコイル導体5a、5bの表面積
を増大させ、接続導体9コイル導体5a、5bの抵抗を
減少させ、インダクタンスを増加させることができる。
FIGS. 2A and 2B are main part configuration diagrams of a second embodiment of the present invention. FIG. 2A is a sectional view, and FIG. 2B is a plan view.
FIG. 2A is a sectional view taken along line AA of FIG.
The difference from FIG. 1 is that the first coil conductor 5a and the second coil conductor 5b are partially connected by the connection conductor 9, and the surface area of the coil conductors 5a and 5b including the connection conductor 9 is increased. As a result, the resistance of the connection conductor 9 and the coil conductors 5a and 5b can be reduced, and the inductance can be increased.

【0019】図3はこの発明の第3実施例の要部構成図
で、同図(a)は断面図、同図(b)は平面図である。
尚、同図(a)は同図(b)のA−A線断面図を示す。
図1との違いは、1個のコイル導体5の表面を凹凸(表
面に溝を掘るトレンチ構造)としている点で、コイル導
体5の表面積を増加させることができる。効果は図1お
よび図2と同様である。
FIGS. 3A and 3B are diagrams showing a main part of a third embodiment of the present invention. FIG. 3A is a sectional view and FIG. 3B is a plan view.
FIG. 2A is a sectional view taken along line AA of FIG.
The difference from FIG. 1 is that the surface of one coil conductor 5 is made uneven (a trench structure in which a groove is dug in the surface), so that the surface area of the coil conductor 5 can be increased. The effect is the same as in FIGS.

【0020】図4はこの発明の第4実施例で、同図
(a)ないし同図(d)は図1に示す薄膜磁気素子の主
要製造工程での要部断面図を示す。図4において、半導
体基板1上に下地絶縁膜2と第1軟磁性層3aとを形成
した後、第1軟磁性層3aの不要な部分(コイル導体が
配置されない外周部など)をフォトエッチング技術によ
り除去する。この軟磁性層を例えばスパッタ法により形
成する(図(a))。
FIG. 4 shows a fourth embodiment of the present invention. FIGS. 4A to 4D are cross-sectional views showing the main parts of the thin film magnetic element shown in FIG. 1 in the main manufacturing steps. In FIG. 4, after a base insulating film 2 and a first soft magnetic layer 3a are formed on a semiconductor substrate 1, unnecessary portions of the first soft magnetic layer 3a (the outer peripheral portion where the coil conductor is not arranged) are photo-etched. To remove. This soft magnetic layer is formed by, for example, a sputtering method (FIG. 1A).

【0021】第1ポリイミド層4aと第1Pt層10a
(白金の微粒子がばらまかれた層で微粒子の大きさは数
Åである)と第2ポリイミド層4bを形成した後、フォ
トエッチング技術により第1Pt層10aが現れるまで
第2ポリイミド層4bをエッチングする(図(b))。
無電解メッキ法により第2ポリイミド層4aのエッチン
グされた凹部に図示されていない金属薄膜を固着(メッ
キ処理)し、その後、第1コイル導体5aを電解メッキ
で第2ポリイミド層4bと膜厚が同じになるまで形成
し、第3ポリイミド層4cと第2Pt層10b(第1P
t層と同じように形成する)と第4ポリイミド層4dを
形成した後、フォトエッチング技術により第2Pt層1
0bが現れるまで第4ポリイミド層4dをエッチングす
る(図(c))。
First polyimide layer 4a and first Pt layer 10a
After forming the second polyimide layer 4b (a layer in which fine particles of platinum are dispersed and the size of the fine particles is several Å), the second polyimide layer 4b is etched by a photoetching technique until the first Pt layer 10a appears. (Figure (b)).
A metal thin film (not shown) is fixed (plated) to the etched concave portion of the second polyimide layer 4a by an electroless plating method, and then the first coil conductor 5a is electrolytically plated to a thickness equal to that of the second polyimide layer 4b. The third polyimide layer 4c and the second Pt layer 10b (first P
After forming the fourth polyimide layer 4d, the second Pt layer 1 is formed by a photo-etching technique.
The fourth polyimide layer 4d is etched until 0b appears (FIG. 3C).

【0022】無電解メッキ法により第4ポリイミド層4
dのエッチングされた凹部に、金属薄膜を固着させ、そ
の後第2コイル導体5bを電解メッキ法により第4ポリ
イミド層4dと膜厚が同じになるまで(表面が面一にな
るまで)形成し、その上に第5ポリイミド層4eと第2
軟磁性層3bを積層した後、フォトエッチング技術によ
り不要な第2磁性層3b(少なくともパッド上の軟磁性
層)を除去する(図(d))。
The fourth polyimide layer 4 is formed by an electroless plating method.
A metal thin film is fixed to the etched concave portion of d, and then a second coil conductor 5b is formed by electrolytic plating until the film thickness becomes the same as that of the fourth polyimide layer 4d (until the surface is flush), The fifth polyimide layer 4e and the second
After laminating the soft magnetic layer 3b, the unnecessary second magnetic layer 3b (at least the soft magnetic layer on the pad) is removed by a photo-etching technique (FIG. 4D).

【0023】図示されていないが、その後、第1コイル
導体5aと第2コイル導体5bのそれぞれの両端を金属
性のパッド7、8(図1(b)参照)に接続する工程が
ある。また図示されていない金属薄膜およびコイル導体
5a、5bの材質は電解メッキ法が採用できるCuやA
uなどの金属であり、以下の説明でも同じである。図5
はこの発明の第5実施例で、同図(a)ないし同図
(d)は図2に示す薄膜磁気素子の主要製造工程での要
部断面図を示す。
Although not shown, there is a subsequent step of connecting both ends of the first coil conductor 5a and the second coil conductor 5b to the metal pads 7, 8 (see FIG. 1B). The material of the metal thin film and the coil conductors 5a and 5b (not shown) is Cu or A, which can employ an electrolytic plating method.
u and the like, and the same applies to the following description. FIG.
5A to 5D show a fifth embodiment of the present invention. FIGS. 6A to 6D are cross-sectional views of main parts in a main manufacturing process of the thin-film magnetic element shown in FIG.

【0024】図5において、半導体基板1上に下地絶縁
膜2と第1軟磁性層3aとを形成した後、第1軟磁性層
3aの不要な部分をフォトエッチング技術により除去す
る(図(a))。第1ポリイミド層4aと第1Pt層1
0aと第2ポリイミド層4bを形成した後、フォトエッ
チング技術により第1Pt層10aが現れるまで第2ポ
リイミド層4bをエッチングする(図(b))。
In FIG. 5, after a base insulating film 2 and a first soft magnetic layer 3a are formed on a semiconductor substrate 1, unnecessary portions of the first soft magnetic layer 3a are removed by a photo-etching technique (FIG. )). First polyimide layer 4a and first Pt layer 1
After the formation of the first polyimide layer 4a and the second polyimide layer 4b, the second polyimide layer 4b is etched by a photo etching technique until the first Pt layer 10a appears (FIG. 2B).

【0025】無電解メッキ法により第2ポリイミド層4
dのエッチングされた凹部に図示されていない金属薄膜
を固着させ、その後第1コイル導体5aを電解メッキで
第2ポリイミド層4bと膜厚が同じになるまで形成し、
第3ポリイミド層4cと第2Pt層10bと第4ポリイ
ミド層4dを形成した後、フォトエッチング技術により
第2Pt層10bが現れるまで第4ポリイミド層4dを
エッチングし、その後、第1コイル導体5a上の第3ポ
リイミド層4cに第1コイル導体5aより小さいサイズ
で、且つ第1コイル導体5aに達するまでの深さの接続
孔9bをフォトエッチング技術により形成する(図
(c))。
The second polyimide layer 4 is formed by an electroless plating method.
A metal thin film (not shown) is fixed to the etched concave portion of d, and then the first coil conductor 5a is formed by electrolytic plating until the film thickness becomes the same as the second polyimide layer 4b.
After forming the third polyimide layer 4c, the second Pt layer 10b, and the fourth polyimide layer 4d, the fourth polyimide layer 4d is etched by the photo-etching technique until the second Pt layer 10b appears, and then the first polyimide conductor 4a is formed on the first coil conductor 5a. A connection hole 9b having a size smaller than that of the first coil conductor 5a and a depth reaching the first coil conductor 5a is formed in the third polyimide layer 4c by a photo-etching technique (FIG. 3C).

【0026】無電解メッキ法と電解メッキ法の組み合わ
せで第3ポリイミド層4cに開けられた接続孔9bと第
4ポリイミド層4dのエッチングされた凹部とに、第2
コイル導体5bを第4ポリイミド層4dと膜厚が同じに
なるまで形成し、その上に第5ポリイミド層4eと第2
軟磁性層3bを形成した後、フォトエッチング技術によ
り不要な第2軟磁性層3bを除去する(図(d))。
The connection hole 9b formed in the third polyimide layer 4c by the combination of the electroless plating method and the electrolytic plating method and the etched concave portion of the fourth polyimide layer 4d
A coil conductor 5b is formed until the film thickness becomes the same as that of the fourth polyimide layer 4d, and the fifth polyimide layer 4e and the second
After forming the soft magnetic layer 3b, the unnecessary second soft magnetic layer 3b is removed by a photo-etching technique (FIG. 4D).

【0027】尚、第2コイル導体5bで埋められた接続
孔9b部は接続導体9となる。図6はこの発明の第6実
施例で、同図(a)ないし同図(d)は図3に示す素子
の主要製造工程での要部断面図を示す。図6において、
半導体基板1上に下地絶縁膜2と第1軟磁性層3aとを
形成した後、第1軟磁性層3aの不要な部分をフォトエ
ッチング技術により除去する(同図(a))。
The connection hole 9b filled with the second coil conductor 5b becomes the connection conductor 9. 6A and 6B show a sixth embodiment of the present invention. FIGS. 6A to 6D are cross-sectional views of a main part of the device shown in FIG. 3 in main manufacturing steps. In FIG.
After the base insulating film 2 and the first soft magnetic layer 3a are formed on the semiconductor substrate 1, unnecessary portions of the first soft magnetic layer 3a are removed by a photo-etching technique (FIG. 1A).

【0028】第1ポリイミド層4aとPt層10と第2
ポリイミド層4bとを形成した後、フォトエッチング技
術によりPt層10が現れるまで第2ポリイミド層4b
をエッチングする(同図(b))。無電解メッキ法によ
り第2ポリイミド層4bのエッチングされた凹部に図示
されていない金属薄膜を固着させ、その後第1コイル導
体5aを電解メッキで第2ポリイミド層4bと膜厚が同
じになるまで形成し、第3ポリイミド層4cを形成した
後、フォトエッチング技術により第1コイル導体5aが
現れるまで第3ポリイミド層を選択的にエッチングする
(図(c))。
The first polyimide layer 4a, the Pt layer 10, and the second
After the formation of the polyimide layer 4b, the second polyimide layer 4b is formed until the Pt layer 10 appears by a photo etching technique.
Is etched (FIG. 2B). A metal thin film (not shown) is fixed to the etched concave portion of the second polyimide layer 4b by electroless plating, and then the first coil conductor 5a is formed by electrolytic plating until the film thickness becomes the same as that of the second polyimide layer 4b. Then, after forming the third polyimide layer 4c, the third polyimide layer is selectively etched by the photo-etching technique until the first coil conductor 5a appears (FIG. (C)).

【0029】電解メッキ法により第3ポリイミド層4c
のエッチングされた凹部に第2コイル導体5bを第3ポ
リイミド層4cと膜厚が同じになるまで形成し、その上
に第4ポリイミド層4dと第2軟磁性層3bを形成させ
た後、フォトエッチング技術により不要な第2軟磁性層
3bを除去する(図(d))。図7はこの発明の第7実
施例の要部構成図で、同図(a)は断面図、同図(b)
は平面図である。尚、同図(a)は同図(b)のA−A
線断面図を示す。
The third polyimide layer 4c is formed by electrolytic plating.
After the second coil conductor 5b is formed in the etched concave portion until the film thickness becomes the same as that of the third polyimide layer 4c, the fourth polyimide layer 4d and the second soft magnetic layer 3b are formed thereon. Unnecessary second soft magnetic layer 3b is removed by an etching technique (FIG. 4D). FIGS. 7A and 7B are main part configuration diagrams of a seventh embodiment of the present invention. FIG. 7A is a sectional view, and FIG.
Is a plan view. It should be noted that FIG. 3A is a view taken along the line AA in FIG.
FIG.

【0030】図7において、コイル導体5の中心部と外
周部に磁心となる軟磁性層3を形成し、コイル導体5を
軟磁性層3で層間絶縁膜を介して取り囲むようにする。
この構成とすることで、コイル導体5の中心部と外周部
に配置された軟磁性層3により、軟磁性層3内の磁束密
度が増加し、インダクタンスを増大させることができ
る。
In FIG. 7, a soft magnetic layer 3 serving as a magnetic core is formed at the center and the outer periphery of the coil conductor 5, and the coil conductor 5 is surrounded by the soft magnetic layer 3 via an interlayer insulating film.
With this configuration, the magnetic flux density in the soft magnetic layer 3 is increased by the soft magnetic layer 3 disposed at the center and the outer periphery of the coil conductor 5, and the inductance can be increased.

【0031】図8はこの発明の第8実施例の要部構成図
で、同図(a)は断面図、同図(b)は平面図である。
尚、同図(a)は同図(b)のA−A線断面図を示す。
図7との違いは軟磁性層3が部分的に切り離され隙間を
有する点である。勿論この隙間は層間絶縁膜4で埋めら
れている。この隙間によって、コイル導体5を取り囲む
軟磁性層3内の磁束密度が飽和することを防止し、コイ
ル導体5に流れる電流が大きい場合でも大きなインダク
タンスを確保できる。
FIGS. 8A and 8B are diagrams showing the main parts of an eighth embodiment of the present invention. FIG. 8A is a sectional view and FIG. 8B is a plan view.
FIG. 2A is a sectional view taken along line AA of FIG.
The difference from FIG. 7 is that the soft magnetic layer 3 is partially separated and has a gap. Of course, this gap is filled with the interlayer insulating film 4. This gap prevents the magnetic flux density in the soft magnetic layer 3 surrounding the coil conductor 5 from saturating, and ensures a large inductance even when the current flowing through the coil conductor 5 is large.

【0032】図9はこの発明の第9実施例で、同図
(a)ないし同図(d)は図7に示す薄膜磁気素子の主
要製造工程での要部断面図を示す。図9において、半導
体基板1上に下地絶縁膜2と第1軟磁性層3aを形成し
た後、第1軟磁性層3bの不要な部分をフォトエッチン
グ技術により除去する(図(a))。
FIG. 9 shows a ninth embodiment of the present invention. FIGS. 9A to 9D are cross-sectional views showing the main parts of the thin film magnetic element shown in FIG. 7 in the main manufacturing steps. In FIG. 9, after forming a base insulating film 2 and a first soft magnetic layer 3a on a semiconductor substrate 1, unnecessary portions of the first soft magnetic layer 3b are removed by a photoetching technique (FIG. 9A).

【0033】第1ポリイミド層4aとPt層10と第2
ポリイミド4bとを形成した後、フォトエッチング技術
によりPt層10が現れるまで第2ポリイミド層4bを
エッチングする(図(b))。無電解メッキ法により第
2ポリイミド層4bのエッチングされた凹部に図示され
ていない金属薄膜を固着させ、その後、コイル導体5を
電解メッキで第2ポリイミド層4bと膜厚が同じになる
まで形成し、その上に第3ポリイミド層4cを形成した
後、フォトエッチング技術によりコイル導体4の中心部
と外周部の第3ポリイミド層4c、第2ポリイミド層4
bおよび第1ポリイミド層4aに接続開口部9bを第1
軟磁性層3aに達すようにエッチングで設ける(図
(c))。
The first polyimide layer 4a, the Pt layer 10, and the second
After the formation of the polyimide 4b, the second polyimide layer 4b is etched by the photo-etching technique until the Pt layer 10 appears (FIG. 2B). A metal thin film (not shown) is fixed to the etched concave portion of the second polyimide layer 4b by an electroless plating method, and then the coil conductor 5 is formed by electrolytic plating until the film thickness becomes the same as that of the second polyimide layer 4b. After the third polyimide layer 4c is formed thereon, the third polyimide layer 4c and the second polyimide layer 4 at the center and the outer periphery of the coil conductor 4 are formed by a photo-etching technique.
b and the first polyimide layer 4a with the connection opening 9b in the first
It is provided by etching so as to reach the soft magnetic layer 3a (FIG. 3 (c)).

【0034】第2軟磁性層3bを第3ポリイミド層4c
上に形成すると同時に、この第2軟磁性層3bで接続開
口部9bを埋めて、第1軟磁性層3aと接続した後、フ
ォトエッチング技術により不要な第2軟磁性膜3bを除
去する(図(d))。図10はこの発明の第10実施例
で、同図(a)ないし同図(d)は図8に示す薄膜磁気
素子の主要製造工程での要部断面図を示す。
The second soft magnetic layer 3b is replaced with a third polyimide layer 4c.
At the same time, the connection opening 9b is filled with the second soft magnetic layer 3b and connected to the first soft magnetic layer 3a, and then the unnecessary second soft magnetic film 3b is removed by a photo-etching technique (FIG. (D)). 10A and 10B show a tenth embodiment of the present invention. FIGS. 10A to 10D are cross-sectional views of main parts in the main manufacturing steps of the thin-film magnetic element shown in FIG.

【0035】図9との違いは、図9(c)の工程で、第
3ポリイミド層4dを形成した後、フォトエッチング技
術によりコイル導体5の中心部と外周部の第3ポリイミ
ド層4cおよび第2ポリイミド層4bに開口部9cを第
1ポリイミド層4aにするようにエッチングで設けた点
と、図9(d)の工程で、第2軟磁性層3bで開口部9
cを埋める点である。つまりこうすることで第1軟磁性
層3aと第2軟磁性層3bとは接続されずに隙間が形成
され、その隙間には第1ポリイミド層4aが形成されて
いる点である。勿論、前記開口部9cは第1ポリイミド
層4a内に入り込むように形成してもよい。
The difference from FIG. 9 is that after the third polyimide layer 4d is formed in the step of FIG. 9C, the third polyimide layer 4c at the center and the outer periphery of the coil conductor 5 and the third polyimide layer 4d are formed by photoetching technology. The second polyimide layer 4b is provided with an opening 9c by etching so as to form the first polyimide layer 4a, and in the step of FIG. 9D, the opening 9c is formed in the second soft magnetic layer 3b.
c. In other words, a gap is formed without connecting the first soft magnetic layer 3a and the second soft magnetic layer 3b, and the first polyimide layer 4a is formed in the gap. Of course, the opening 9c may be formed so as to enter into the first polyimide layer 4a.

【0036】尚、前記した第1実施例ないし第10実施
例の軟磁性層の形成方法は、CoFeBSiO, CoHfTaおよびCo
HfTaPd等をスパッタ法により形成する方法の他に、純誘
起化合物である有機磁石で形成してもよい。有機磁石は
溶媒からの再結晶により生成するため、前記の実施例で
示すような凹部のある場合にも容易に軟磁性層を形成す
ることができる。
The method of forming the soft magnetic layer according to the first to tenth embodiments is based on CoFeBSiO, CoHfTa and CoFeBSiO.
In addition to the method of forming HfTaPd or the like by a sputtering method, it may be formed by an organic magnet which is a pure inducing compound. Since the organic magnet is generated by recrystallization from a solvent, a soft magnetic layer can be easily formed even when there is a concave portion as shown in the above-described embodiment.

【0037】[0037]

【発明の効果】この発明によれば、コイル導体の表面積
を増やして、コイル導体の抵抗を減じ、高周波電流を増
加させることで、インダクタンスを増大させ、Q値を大
きくすることができる。またコイル導体を挟む軟磁性層
を部分的に接続することで、軟磁性層内の磁束密度を増
やし、コイル導体を流れる高周波電流が小さい範囲でも
大きなインダクタンスを確保できるようにできる。また
この軟磁性層を接続しないで隙間(ギャップ)を設ける
ことで、コイル導体を流れる高周波電流が大きな場合で
も、磁束密度が飽和しないで、大きなインダクタンスが
確保できる。
According to the present invention, the inductance can be increased and the Q value can be increased by increasing the surface area of the coil conductor, reducing the resistance of the coil conductor, and increasing the high-frequency current. Further, by partially connecting the soft magnetic layer sandwiching the coil conductor, the magnetic flux density in the soft magnetic layer can be increased, and a large inductance can be secured even in a range where the high-frequency current flowing through the coil conductor is small. By providing a gap without connecting the soft magnetic layer, even when the high-frequency current flowing through the coil conductor is large, the magnetic flux density does not saturate and a large inductance can be secured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の第1実施例の要部構成図で、(a)
は断面図、(b)は平面図
FIG. 1 is a configuration diagram of a main part of a first embodiment of the present invention, and FIG.
Is a sectional view, and (b) is a plan view.

【図2】この発明の第2実施例の要部構成図で、(a)
は断面図、(b)は平面図
FIGS. 2A and 2B are main part configuration diagrams of a second embodiment of the present invention, wherein FIG.
Is a sectional view, and (b) is a plan view.

【図3】この発明の第3実施例の要部構成図で、(a)
は断面図、(b)は平面図
FIGS. 3A and 3B are main part configuration diagrams of a third embodiment of the present invention, wherein FIG.
Is a sectional view, and (b) is a plan view.

【図4】この発明の第4実施例で、(a)ないし(d)
は図1に示す薄膜磁気素子の主要製造工程での要部断面
FIGS. 4A to 4D show a fourth embodiment of the present invention.
Is a fragmentary cross-sectional view of the main manufacturing process of the thin-film magnetic element shown in FIG.

【図5】この発明の第5実施例で、(a)ないし(d)
は図2に示す薄膜磁気素子の主要製造工程での要部断面
FIGS. 5A to 5D show a fifth embodiment of the present invention.
Is a cross-sectional view of a main part in a main manufacturing process of the thin-film magnetic element shown in FIG.

【図6】この発明の第6実施例で、(a)ないし(d)
は図3に示す薄膜磁気素子の主要製造工程での要部断面
FIGS. 6A to 6D show a sixth embodiment of the present invention.
Is a cross-sectional view of a principal part in a main manufacturing process of the thin-film magnetic element shown in FIG.

【図7】この発明の第7実施例の要部構成図で、(a)
は断面図、(b)は平面図
FIGS. 7A and 7B are main part configuration diagrams of a seventh embodiment of the present invention, wherein FIG.
Is a sectional view, and (b) is a plan view.

【図8】この発明の第8実施例の要部構成図で、(a)
は断面図、(b)は平面図
FIG. 8 is a diagram showing a main part of an eighth embodiment of the present invention;
Is a sectional view, and (b) is a plan view.

【図9】この発明の第9実施例で、(a)ないし(d)
は図7に示す薄膜磁気素子の主要製造工程での要部断面
FIGS. 9A to 9D show a ninth embodiment of the present invention.
Is a fragmentary cross-sectional view of the main manufacturing process of the thin-film magnetic element shown in FIG.

【図10】この発明の第10実施例で、(a)ないし
(d)は図8に示す薄膜磁気素子の主要製造工程での要
部断面図
10 (a) to 10 (d) are cross-sectional views of main parts in a main manufacturing process of the thin-film magnetic element shown in FIG. 8 in a tenth embodiment of the present invention.

【図11】従来の薄膜磁気素子の要部構成図で、(a)
は断面図、(b)は平面図
11A and 11B are configuration diagrams of a main part of a conventional thin film magnetic element, and FIG.
Is a sectional view, and (b) is a plan view.

【符号の説明】[Explanation of symbols]

1 半導体基板 2 下地絶縁膜 3 軟磁性層 3a 第1軟磁性層 3b 第2軟磁性層 4 層間絶縁膜 4a 第1ポリイミド層 4b 第2ポリイミド層 4c 第3ポリイミド層 4d 第4ポリイミド層 4e 第5ポリイミド層 5 コイル導体 5a 第1コイル導体 5b 第2コイル導体 6 薄膜磁気素子 7 パッド 8 パッド 9 接続導体 9a 接続孔 9b 接続開口部 9c 開口部 10 Pt層 10a 第1Pt層 10b 第2Pt層 20 絶縁性基板 Reference Signs List 1 semiconductor substrate 2 base insulating film 3 soft magnetic layer 3a first soft magnetic layer 3b second soft magnetic layer 4 interlayer insulating film 4a first polyimide layer 4b second polyimide layer 4c third polyimide layer 4d fourth polyimide layer 4e fifth Polyimide layer 5 coil conductor 5a first coil conductor 5b second coil conductor 6 thin film magnetic element 7 pad 8 pad 9 connection conductor 9a connection hole 9b connection opening 9c opening 10 Pt layer 10a first Pt layer 10b second Pt layer 20 insulation substrate

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】絶縁性基板上に、コイル導体としての機能
を有する帯状の導電性金属層と、該導電性金属層の上下
の層間絶縁膜を介して該導電性金属層を挟んむように形
成された磁心としての機能を有する磁性層とを有する薄
膜磁気素子であって、前記導電性金属層を絶縁膜を挟ん
で積層することを特徴とする薄膜磁気素子。
1. A belt-shaped conductive metal layer having a function as a coil conductor is formed on an insulating substrate so as to sandwich the conductive metal layer via an interlayer insulating film above and below the conductive metal layer. And a magnetic layer having a function as a magnetic core, wherein the conductive metal layer is laminated with an insulating film interposed therebetween.
【請求項2】積層された導電性金属層間を電気的に接続
することを特徴とする請求項1記載の薄膜磁気素子。
2. The thin-film magnetic element according to claim 1, wherein the stacked conductive metal layers are electrically connected.
【請求項3】絶縁性基板上に、コイル導体としての機能
を有する帯状の導電性金属層と、該導電性金属層の上下
の層間絶縁膜を介して該導電性金属層を挟んむように形
成された磁心としての機能を有する磁性層とを有する薄
膜磁気素子であって、前記導電性金属層の表面を凹凸
(トレンチ構造)とすることを特徴とする薄膜磁気素
子。
3. A strip-shaped conductive metal layer having a function as a coil conductor is formed on an insulating substrate so as to sandwich the conductive metal layer via an interlayer insulating film above and below the conductive metal layer. A magnetic layer having a function as a magnetic core, wherein the surface of the conductive metal layer has an unevenness (trench structure).
【請求項4】絶縁性基板上に第1磁性層を積層した後、
第1磁性層を選択的に除去する工程と、 第1磁性層上に第1絶縁層と第1金属微粒子層と第2絶
縁層とを積層した後、第1金属微粒子層が露出するまで
第2絶縁層を選択的に除去する工程と、 第2絶縁層が除去された箇所に第2絶縁層の厚さと同一
の厚さに第1導電性金属層を形成する工程と、 第2絶縁層の表面と第1導電性金属層の表面とに第3絶
縁層と第2金属微粒子層と第4絶縁層を積層した後、第
2金属微粒子層が露出するまで第4絶縁層を選択的に除
去する工程と、 第4絶縁層が除去された箇所に第4絶縁層の厚さと同一
の厚さに第2導電性金属膜を形成する工程と、 第2導電性金属層上と第4絶縁層上とに第5絶縁層と第
2磁性層とを積層した後、第2磁性層を選択的に除去す
る工程と、を含むことを特徴とする薄膜磁性素子の製造
方法。
4. After laminating a first magnetic layer on an insulating substrate,
Selectively removing the first magnetic layer; laminating the first insulating layer, the first metal fine particle layer, and the second insulating layer on the first magnetic layer, and removing the first magnetic fine particle layer until the first metal fine particle layer is exposed. A step of selectively removing the second insulating layer; a step of forming a first conductive metal layer at the same thickness as the second insulating layer at a position where the second insulating layer is removed; After the third insulating layer, the second metal fine particle layer, and the fourth insulating layer are laminated on the surface of the first conductive metal layer and the surface of the first conductive metal layer, the fourth insulating layer is selectively formed until the second metal fine particle layer is exposed. Removing the fourth insulating layer, forming a second conductive metal film at the same thickness as that of the fourth insulating layer at a position where the fourth insulating layer has been removed, Stacking a fifth insulating layer and a second magnetic layer on the layer, and then selectively removing the second magnetic layer. The method of production.
【請求項5】第3絶縁層層と第2金属微粒子層と第4絶
縁層とを積層した後、第2金属微粒子層が露出するまで
第4絶縁層を選択的に除去する工程の後に、第1導電性
金属層が露出するまで第1導電性金属層上の面積より小
さい面積で第4絶縁層を選択的に除去する工程と、 第4絶縁層が除去された箇所に第4絶縁層の厚さと同一
の厚さになるように第2導電性金属層を形成する工程
と、 第2導電性金属層上と第4絶縁層上とに第5絶縁層と第
2磁性層とを積層した後、第2磁性層を選択的に除去す
る工程と、を含むことを特徴とする請求項4記載の薄膜
磁性素子の製造方法。
5. After the step of laminating the third insulating layer, the second metal fine particle layer, and the fourth insulating layer, selectively removing the fourth insulating layer until the second metal fine particle layer is exposed, Selectively removing the fourth insulating layer with an area smaller than the area on the first conductive metal layer until the first conductive metal layer is exposed; and removing the fourth insulating layer at a location where the fourth insulating layer has been removed. Forming a second conductive metal layer to have the same thickness as that of the first conductive metal layer, and laminating a fifth insulating layer and a second magnetic layer on the second conductive metal layer and the fourth insulating layer 5. The method according to claim 4, further comprising the step of selectively removing the second magnetic layer after the step.
【請求項6】絶縁性基板上に第1磁性層を積層した後、
第1磁性層を選択的に除去する工程と、 第1磁性層上に第1絶縁層と第1金属微粒子層と第2絶
縁層とを積層した後、第1金属微粒子層が露出するまで
第2絶縁層を選択的に除去する工程と、 第2絶縁層が除去された箇所に第2絶縁層の厚さと同一
の厚さに第1導電性金属層を形成する工程と、 第2絶縁層上と第1導電性金属層上とに第3絶縁層を積
層した後、第1導電性金属層が露出するまで第3絶縁層
を選択的に除去する工程と、 第3絶縁層が除去された箇所に第3絶縁層の厚さと同一
の厚さに第2導電性金属膜を形成する工程と、 第2導電性金属層上と第3絶縁層上とに第4絶縁層と第
2磁性層とを積層した後、第2磁性層を選択的に除去す
る工程と、を含むことを特徴とする薄膜磁性素子の製造
方法。
6. After laminating a first magnetic layer on an insulating substrate,
Selectively removing the first magnetic layer; laminating the first insulating layer, the first metal fine particle layer, and the second insulating layer on the first magnetic layer, and removing the first magnetic fine particle layer until the first metal fine particle layer is exposed. A step of selectively removing the second insulating layer; a step of forming a first conductive metal layer at the same thickness as the second insulating layer at a position where the second insulating layer is removed; Selectively stacking the third insulating layer until the first conductive metal layer is exposed, after laminating the third insulating layer on the first and the first conductive metal layers, and removing the third insulating layer. Forming a second conductive metal film at the same thickness as that of the third insulating layer at the place where the second insulating layer and the fourth insulating layer are formed on the second conductive metal layer and the third insulating layer. A step of selectively removing the second magnetic layer after laminating the layers, and a method of manufacturing a thin-film magnetic element.
【請求項7】絶縁性基板上に、コイル導体としての機能
を有する帯状の導電性金属層と、該導電性金属層の上下
の層間絶縁膜を介して該導電性金属層を挟んむように形
成された磁心としての機能を有する磁性層とを有する薄
膜磁気素子であって、帯状の導電性金属層を両側から挟
んでいる磁性層が部分的に互いに接続していることを特
徴とする薄膜磁気素子。
7. A strip-shaped conductive metal layer having a function as a coil conductor is formed on an insulating substrate so as to sandwich the conductive metal layer via an interlayer insulating film above and below the conductive metal layer. A magnetic layer having a function as a magnetic core, wherein the magnetic layers sandwiching a strip-shaped conductive metal layer from both sides are partially connected to each other. .
【請求項8】帯状の導電性金属層を両側から挟んでいる
磁性層が部分的に互いに近接していることを特徴とする
請求項7記載の薄膜磁気素子。
8. The thin film magnetic element according to claim 7, wherein the magnetic layers sandwiching the strip-shaped conductive metal layer from both sides are partially close to each other.
【請求項9】帯状の導電性金属層を両側から挟んでいる
磁性層が接続もしくは近接している箇所が該導電性金属
層の中心部および外周部であることを特徴とする請求項
7又は8に記載の薄膜磁気素子。
9. The conductive layer according to claim 7, wherein the magnetic layers sandwiching the strip-shaped conductive metal layer from both sides are connected or close to each other at the center and the outer periphery of the conductive metal layer. 9. The thin-film magnetic element according to 8.
【請求項10】絶縁性基板上に第1磁性層を積層した
後、第1磁性層を選択的に除去する工程と、 第1磁性層上に第1絶縁層と金属微粒子層と第2絶縁層
とを積層した後、金属微粒子層が露出するまで第2絶縁
層を選択的に除去する工程と、 第2絶縁層が除去された箇所に第2絶縁層の厚さと同一
の厚さに導電性金属層を形成する工程と、 導電性金属層上と第2絶縁層上とに第3絶縁層と第2磁
性層とを積層し、部分的に第1磁性層と第2磁性層とを
第3磁性層で接続する工程と、を含むことを特徴とする
薄膜磁性素子の製造方法。
10. A step of selectively removing the first magnetic layer after laminating a first magnetic layer on an insulating substrate; and forming a first insulating layer, a metal fine particle layer and a second insulating layer on the first magnetic layer. Selectively removing the second insulating layer until the metal fine particle layer is exposed after stacking the layers, and conducting the conductive layer to the same thickness as the second insulating layer at the position where the second insulating layer is removed. Forming a conductive metal layer, laminating a third insulating layer and a second magnetic layer on the conductive metal layer and the second insulating layer, and partially forming the first magnetic layer and the second magnetic layer. And a step of connecting with a third magnetic layer.
【請求項11】第3磁性層が隙間を有することを特徴と
する請求項10記載の薄膜磁性素子の製造方法。
11. The method according to claim 10, wherein the third magnetic layer has a gap.
【請求項12】絶縁層が少なくともポリイミド膜、酸化
膜もしくは窒化膜のいづれか一つで形成されることを特
徴とする請求項4、5、6、9、10又は11の薄膜磁
性素子の製造方法。
12. The method according to claim 4, wherein the insulating layer is formed of at least one of a polyimide film, an oxide film and a nitride film. .
【請求項13】金属微粒子層が白金(Pt)もしくはパ
ラジウム(Pd)で形成されることを特徴とする請求項
4、5、6、9、10又は11の薄膜磁性素子の製造方
法。
13. The method according to claim 4, wherein the metal fine particle layer is formed of platinum (Pt) or palladium (Pd).
JP28629996A 1996-10-29 1996-10-29 Thin film magnetic element and method of manufacturing the same Expired - Lifetime JP3580054B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28629996A JP3580054B2 (en) 1996-10-29 1996-10-29 Thin film magnetic element and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28629996A JP3580054B2 (en) 1996-10-29 1996-10-29 Thin film magnetic element and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH10135040A true JPH10135040A (en) 1998-05-22
JP3580054B2 JP3580054B2 (en) 2004-10-20

Family

ID=17702587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28629996A Expired - Lifetime JP3580054B2 (en) 1996-10-29 1996-10-29 Thin film magnetic element and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3580054B2 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030057303A (en) * 2001-12-28 2003-07-04 챠터드 세미컨덕터 매뉴팩춰링 리미티드 Via/line inductor on semiconductor material
WO2005010899A1 (en) * 2003-07-28 2005-02-03 Tdk Corporation Coil part and manufacturing method thereof
JP2005294818A (en) * 2004-03-12 2005-10-20 Semiconductor Energy Lab Co Ltd Semiconductor device
JP2007089316A (en) * 2005-09-22 2007-04-05 Fuji Electric Device Technology Co Ltd Microminiature power conversion device and manufacturing method therefor
JP2007150024A (en) * 2005-11-29 2007-06-14 Seiko Epson Corp Electronic substrate, manufacturing method thereof and electronic equipment
JP2008034507A (en) * 2006-07-27 2008-02-14 Seiko Epson Corp Semiconductor device and its manufacturing process
JP2008103399A (en) * 2006-10-17 2008-05-01 Seiko Epson Corp Electronic substrate, its manufacturing method, and electronic apparatus
US8159043B2 (en) 2004-03-12 2012-04-17 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
CN102568797A (en) * 2012-02-17 2012-07-11 鸿康磁业电子(昆山)有限公司 Magnetic film inducer
US20130009508A1 (en) * 2010-01-06 2013-01-10 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Axial gap type brushless motor
TWI397087B (en) * 2007-11-05 2013-05-21 Airoha Tech Corp Inductance / transformer and its making method
JP2013535107A (en) * 2010-06-16 2013-09-09 ナショナル セミコンダクター コーポレーション Inductive structure
CN104008867A (en) * 2014-06-09 2014-08-27 信源电子制品(昆山)有限公司 Metal sheet coil and manufacturing method thereof, inductor, transformer and wireless charger
CN104376954A (en) * 2013-08-14 2015-02-25 三星电机株式会社 Coil unit for thin film inductor,thin film inductor and manufacturing method of thin film inductor
JP2016009862A (en) * 2014-06-24 2016-01-18 サムソン エレクトロ−メカニックス カンパニーリミテッド. Chip electronic component and manufacturing method of the same and mounting substrate of the same
WO2017052530A1 (en) * 2015-09-23 2017-03-30 Intel Corporation High current magnetic thin film inductors
CN109817611A (en) * 2017-11-22 2019-05-28 德州仪器公司 Semiconductor packages with integrating passive electrical component

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030057303A (en) * 2001-12-28 2003-07-04 챠터드 세미컨덕터 매뉴팩춰링 리미티드 Via/line inductor on semiconductor material
US7905008B2 (en) 2003-07-28 2011-03-15 Tdk Corporation Method of manufacturing a coil component
WO2005010899A1 (en) * 2003-07-28 2005-02-03 Tdk Corporation Coil part and manufacturing method thereof
US7145427B2 (en) 2003-07-28 2006-12-05 Tdk Corporation Coil component and method of manufacturing the same
JP2005294818A (en) * 2004-03-12 2005-10-20 Semiconductor Energy Lab Co Ltd Semiconductor device
US8546912B2 (en) 2004-03-12 2013-10-01 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US8159043B2 (en) 2004-03-12 2012-04-17 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP4661489B2 (en) * 2005-09-22 2011-03-30 富士電機システムズ株式会社 Ultra-compact power converter and manufacturing method thereof
JP2007089316A (en) * 2005-09-22 2007-04-05 Fuji Electric Device Technology Co Ltd Microminiature power conversion device and manufacturing method therefor
JP2007150024A (en) * 2005-11-29 2007-06-14 Seiko Epson Corp Electronic substrate, manufacturing method thereof and electronic equipment
JP2008034507A (en) * 2006-07-27 2008-02-14 Seiko Epson Corp Semiconductor device and its manufacturing process
JP2008103399A (en) * 2006-10-17 2008-05-01 Seiko Epson Corp Electronic substrate, its manufacturing method, and electronic apparatus
TWI397087B (en) * 2007-11-05 2013-05-21 Airoha Tech Corp Inductance / transformer and its making method
US20130009508A1 (en) * 2010-01-06 2013-01-10 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Axial gap type brushless motor
US9160219B2 (en) * 2010-01-06 2015-10-13 Kobe Steel, Ltd. Axial gap type brushless motor
JP2013535107A (en) * 2010-06-16 2013-09-09 ナショナル セミコンダクター コーポレーション Inductive structure
CN102568797A (en) * 2012-02-17 2012-07-11 鸿康磁业电子(昆山)有限公司 Magnetic film inducer
CN104376954A (en) * 2013-08-14 2015-02-25 三星电机株式会社 Coil unit for thin film inductor,thin film inductor and manufacturing method of thin film inductor
CN104008867A (en) * 2014-06-09 2014-08-27 信源电子制品(昆山)有限公司 Metal sheet coil and manufacturing method thereof, inductor, transformer and wireless charger
JP2016009862A (en) * 2014-06-24 2016-01-18 サムソン エレクトロ−メカニックス カンパニーリミテッド. Chip electronic component and manufacturing method of the same and mounting substrate of the same
CN105280336A (en) * 2014-06-24 2016-01-27 三星电机株式会社 Chip electronic component, manufacturing method thereof and board having the same mounted thereon
JP2016219828A (en) * 2014-06-24 2016-12-22 サムソン エレクトロ−メカニックス カンパニーリミテッド. Chip electronic component, manufacturing method thereof and mounting board therefor
WO2017052530A1 (en) * 2015-09-23 2017-03-30 Intel Corporation High current magnetic thin film inductors
CN109817611A (en) * 2017-11-22 2019-05-28 德州仪器公司 Semiconductor packages with integrating passive electrical component

Also Published As

Publication number Publication date
JP3580054B2 (en) 2004-10-20

Similar Documents

Publication Publication Date Title
JP3580054B2 (en) Thin film magnetic element and method of manufacturing the same
JP4695192B2 (en) Interposer
TWI443691B (en) Inductor device
US6335050B1 (en) Method of manufacturing a ferrite magnetic film structure having magnetic anisotropy
US6831543B2 (en) Surface mounting type planar magnetic device and production method thereof
JP3775499B2 (en) Semiconductor device, manufacturing method thereof, and DC-DC converter
KR20180031653A (en) Chip electronic component and manufacturing method thereof
JP6465467B2 (en) Thin film inductor
EP0702379A1 (en) Electronic and/or magnetic devices
JP2008171965A (en) Microminiature power converter
JPS63266809A (en) Integrated thin film capacitor
JP6731777B2 (en) Chip capacitor
JP3661380B2 (en) Planar inductor
JP2007266182A (en) Semiconductor device and manufacturing method thereof
JPH0754874B2 (en) Multilayer printed wiring board
TW200843063A (en) Structure of semiconductor chip and package structure having semiconductor chip embedded therein
JP3765366B2 (en) Planar magnetic element integrated semiconductor device
JP4947416B2 (en) Electronic device and manufacturing method thereof
JPH08288606A (en) Metallic core type printed board, its manufacture, and electric circuit board
JP2001203108A (en) Coil device
JP3544758B2 (en) Electronic and magnetic components
JPH0888318A (en) Thin-film capacitor and board with built-u//in thin-film capacitor
JPH05121242A (en) Divided lamination type coil
TWI231569B (en) Semiconductor device
JPH1083915A (en) Coil and its manufacture

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20031224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20031225

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040309

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040405

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040528

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040629

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040712

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080730

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080730

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090730

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090730

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100730

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100730

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100730

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110730

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110730

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110730

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110730

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120730

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120730

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130730

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term