JPH10133122A - Surgical microscope - Google Patents

Surgical microscope

Info

Publication number
JPH10133122A
JPH10133122A JP8301085A JP30108596A JPH10133122A JP H10133122 A JPH10133122 A JP H10133122A JP 8301085 A JP8301085 A JP 8301085A JP 30108596 A JP30108596 A JP 30108596A JP H10133122 A JPH10133122 A JP H10133122A
Authority
JP
Japan
Prior art keywords
optical system
light beam
illumination
eye
prism
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8301085A
Other languages
Japanese (ja)
Inventor
Ken Tomioka
研 富岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP8301085A priority Critical patent/JPH10133122A/en
Publication of JPH10133122A publication Critical patent/JPH10133122A/en
Pending legal-status Critical Current

Links

Landscapes

  • Microscoopes, Condenser (AREA)

Abstract

PROBLEM TO BE SOLVED: To easily perform the changeover use and combination use of a coaxial illumination method and a 6 deg. illumination method. SOLUTION: This microscope is provided with an observing optical system 2 for observing an eye to be tested, a light beam guiding optical system 3 introducing almost all of the illuminating light beam from an illuminating optical system 1 to the eye to be tested E1 along the optical axis of the observing optical system, a total reflection prism introducing almost all of the illuminating light beam of the illuminating optical system to the eye E1 from an angle different from that of the illuminating light beam introduced by the light beam guiding optical system and a half prism P2 introducing a part of the illuminating light beam of the illuminating optical system to the light beam guiding optical system by transmitting it through the prism and introducing the remaining illuminating beam to the eye E1 from an angle different from that of the illuminating light beam introduced by the light beam guiding optical system. This microscope has a moving substrate 4 mounting the total reflection prism and the half prism in a prescribed direction and is provided with a moving means for locating either the total reflection prism or the half prism between the illuminating optical system and the light beam guiding optical system by moving the moving substrate in a prescribed direction.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、照明光学系から照
射した照明光束に対する被検眼からの反射光束を観察す
るための手術用顕微鏡に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a surgical microscope for observing a reflected light beam from an eye to be examined with respect to an illumination light beam emitted from an illumination optical system.

【0002】[0002]

【従来の技術】現在、被検眼を手術する際に、この被検
眼像を所定の倍率に拡大して観察するための手術用顕微
鏡が広く用いられている。この手術用顕微鏡には、被検
眼像を所定の倍率に拡大するための変倍部を有する観察
光学系が設けられており、手術医は、この観察光学系を
通して被検眼の拡大像を見ながら手術を施している。
2. Description of the Related Art At present, when operating an eye to be inspected, a surgical microscope for enlarging and observing an image of the eye to be inspected at a predetermined magnification is widely used. The surgical microscope is provided with an observation optical system having a magnification unit for enlarging the image of the eye to be inspected to a predetermined magnification, and the surgeon views the magnified image of the eye through the observation optical system while observing the enlarged image. Undergoing surgery.

【0003】このような手術用顕微鏡を用いる眼科手術
の一つとして、白内障手術が知られている。この白内障
手術とは、通常、被検眼の水晶体の内部組織を取り出
し、その代わりに眼内レンズ(IOL)を挿入するもの
である。この水晶体の内部組織の取り出しは、水晶体内
に吸入器を挿入し、この吸入器によって水晶体の内部組
織を吸い出すことによって行われるが、この内部組織の
吸い出しが不完全で水晶体内に組織が残留すると、この
残留組織が原因となって白内障が再発してしまうおそれ
がある。したがって、水晶体の内部組織を吸い出す作業
は、水晶体内に残留組織を残さないよう、残留組織の有
無を明確に観察しつつ行う必要がある。
[0003] Cataract surgery is known as one of ophthalmic surgeries using such an operating microscope. This cataract surgery usually involves removing the internal tissue of the lens of the eye to be examined and inserting an intraocular lens (IOL) instead. Removal of the internal tissue of the lens is performed by inserting an inhaler into the lens and sucking out the internal tissue of the lens with this inhaler.If the internal tissue is incompletely sucked and the tissue remains in the lens, The cataract may recur due to the residual tissue. Therefore, the operation of sucking out the internal tissue of the lens needs to be performed while clearly observing the presence or absence of the residual tissue so as not to leave the residual tissue in the lens.

【0004】ここで、水晶体内の残留組織の有無を明確
に観察するためには、残留組織を高コントラストで観察
するための徹照像、いわゆるレッドレフレックスが有効
である。このレッドレフレックスは、被検眼の眼底で照
明光束を反射させることにより発生させることができ
る。そして、このレッドレフレックスをより明るく、よ
り均一に発生させるための方法として、観察光学系の光
軸に照明光束をオ−バ−ラップさせる、いわゆる完全同
軸照明法が知られている。
Here, in order to clearly observe the presence or absence of residual tissue in the lens, a transillumination image for observing the residual tissue with high contrast, that is, a so-called red reflex is effective. The red reflex can be generated by reflecting the illumination light beam at the fundus of the eye to be examined. As a method for generating the red reflex brighter and more uniformly, there is known a so-called perfect coaxial illumination method in which an illumination light beam is overlapped with an optical axis of an observation optical system.

【0005】この完全同軸照明法を用いた手術用顕微鏡
を図5に示す。この図5において、E1は被検眼、E2
は手術医眼である。この完全同軸照明法を用いた従来の
手術用顕微鏡は、被検眼に照明光束を照射する照明光学
系1と、被検眼を観察する観察光学系2と、照明光学系
1の照明光束の略全部を観察光学系2の光軸に沿って被
検眼E1に導く光束案内光学系3とを備えている。
FIG. 5 shows an operating microscope using the complete coaxial illumination method. In FIG. 5, E1 is the eye to be examined and E2 is
Is the surgeon's eye. The conventional surgical microscope using the complete coaxial illumination method includes an illumination optical system 1 for irradiating an eye to be inspected with an illumination light beam, an observation optical system 2 for observing the eye to be inspected, and substantially all of the illumination light beam of the illumination optical system 1. And a light beam guiding optical system 3 for guiding the light to the eye E1 along the optical axis of the observation optical system 2.

【0006】照明光学系1は、光源L、光ファイバF、
コンデンサレンズR1及びリレ−レンズR2を有するも
ので、光源Lから発せられた照明光束は、光ファイバ
F、コンデンサレンズR1、リレ−レンズR2を介し光
束案内光学系3に入射する。観察光学系2は、第一の対
物レンズR3、変倍光学系K、第二の対物レンズR4、
正立プリズムP3、菱形プリズムP4及び接眼レンズR
5から構成されるもので、光束案内光学系3を介して導
かれた被検眼E1からの反射光束を第一の対物レンズR
3を介して入射され、この反射光束を変倍光学系K、第
二の対物レンズR4、正立プリズムP3、菱形プリズム
P4及び接眼レンズR5を介して手術医眼E2に結像さ
せる。なお観察光学系2における第一の対物レンズR3
を除く各光学素子は、被検眼E1を立体観察できるよう
左右一対として設けられているが、図5においてはその
片側のみを示してある。
The illumination optical system 1 includes a light source L, an optical fiber F,
It has a condenser lens R1 and a relay lens R2, and the illumination light beam emitted from the light source L enters the light flux guiding optical system 3 via the optical fiber F, the condenser lens R1 and the relay lens R2. The observation optical system 2 includes a first objective lens R3, a variable power optical system K, a second objective lens R4,
Erect prism P3, rhombic prism P4 and eyepiece R
5, a reflected light beam from the eye E1 guided through the light beam guiding optical system 3 is reflected by the first objective lens R
The reflected light flux forms an image on the surgeon's eye E2 via the variable power optical system K, the second objective lens R4, the erect prism P3, the rhombic prism P4, and the eyepiece R5. The first objective lens R3 in the observation optical system 2
Each optical element except for is provided as a pair of right and left so that the subject's eye E1 can be stereoscopically observed, but only one side is shown in FIG.

【0007】光束案内光学系3は、具体的には、第一の
対物レンズR3と被検眼E1との間における、第一の対
物レンズR3の光軸上に配置されたハーフミラーM1か
らなる。そして、照明光学系1から入射された照明光束
はハーフミラーM1を介して観察光学系2の光軸に沿っ
て被検眼E1に導かれると共に、該被検眼E1からの反
射光束を透過させて観察光学系2に導く。
[0007] The light beam guiding optical system 3 is specifically composed of a half mirror M1 disposed between the first objective lens R3 and the eye E1 on the optical axis of the first objective lens R3. Then, the illumination light beam incident from the illumination optical system 1 is guided to the eye E1 along the optical axis of the observation optical system 2 via the half mirror M1, and the reflected light beam from the eye E1 is transmitted for observation. The light is led to the optical system 2.

【0008】この完全同軸照明法においては、図6に示
すように、照明光束の領域X1と、一対の変倍光学系K
1、K2とがその一部を互いにオ−バ−ラップさせてい
るので、明るく均一なレッドレフレックスを得ることが
できる。
In this perfect coaxial illumination method, as shown in FIG. 6, an illumination light beam area X1 and a pair of variable power optical systems K
1, K2 partially overlap each other, so that a bright and uniform red reflex can be obtained.

【0009】また完全同軸照明法より徹照像はやや暗い
が、実用上差し支えない程度の徹照像を得ることができ
るものとして0度照明法を用いた手術用顕微鏡も提案さ
れている。この0度照明法とは、図7に示すように、完
全同軸照明法とは異なる光束案内光学系3を有するもの
で、具体的には、第一の対物レンズR3と変倍光学系K
との間における、第一の対物レンズR3の光軸上に配置
された全反射プリズムP0からなり、照明光学系1から
入射された照明光束は全反射プリズムP0を介して観察
光学系2の光軸に沿って被検眼E1に導かれる。この方
法によれば、図7に示すように、完全同軸照明法と同様
に、照明光束を反射光束に沿って導くことができるの
で、レッドレフレックスを得ることができる。
Although a transillumination image is slightly darker than the perfect coaxial illumination method, a surgical microscope using a 0-degree illumination method has been proposed as a transillumination image that can be obtained in a practically acceptable degree. As shown in FIG. 7, the 0-degree illumination method has a light beam guiding optical system 3 different from the complete coaxial illumination method. Specifically, the first objective lens R3 and the variable power optical system K are used.
And the total reflection prism P0 arranged on the optical axis of the first objective lens R3, and the illumination light flux incident from the illumination optical system 1 is transmitted through the total reflection prism P0 to the light of the observation optical system 2. The eye is guided to the eye E1 along the axis. According to this method, as shown in FIG. 7, as in the case of the perfect coaxial illumination method, the illumination light beam can be guided along the reflected light beam, so that a red reflex can be obtained.

【0010】しかし、このような完全同軸照明法や0度
照明法(この2つの照明法を、以下、単に「同軸照明
法」とする)を用いた手術用顕微鏡においては、明るい
レッドレフレックスを得られる反面、照明光束と反射光
束とをオ−バ−ラップさせるため、若しくは照明光束と
反射光束とを接近させるために、被検眼E1の影が発生
しない無影照明になってしまう。このため、被検眼E1
の立体感が著しく減少し、白内障手術における水晶体の
取り出し以外の作業、例えばIOLの挿入作業等が却っ
て施し難いという欠点もある。また、水晶体の切開時に
は、前述したレッドレフレックスは不要であるのに、完
全同軸照明法の場合にはハ−フミラ−M1が常に観察光
学系2の光軸上に配置されているため、観察像の明るさ
が減少してしまうという欠点もあった。
However, in an operating microscope using such a complete coaxial illumination method or a 0-degree illumination method (the two illumination methods are hereinafter simply referred to as “coaxial illumination method”), a bright red reflex is used. On the other hand, on the other hand, since the illumination light beam and the reflected light beam overlap each other or the illumination light beam and the reflected light beam approach each other, shadowless illumination in which the shadow of the eye E1 is not generated occurs. For this reason, the subject's eye E1
Has a disadvantage that the operation other than the removal of the lens in cataract surgery, such as the insertion of an IOL, is rather difficult to perform. Also, when the lens is dissected, the above-mentioned red reflex is not necessary, but in the case of the complete coaxial illumination method, the half mirror M1 is always arranged on the optical axis of the observation optical system 2, so that the observation is not performed. There is also a disadvantage that the brightness of the image is reduced.

【0011】このため、近年においては、同軸照明法に
比べてレッドレフレッスクが暗くなる反面、観察対象物
の影を発生させて立体感を向上させることのできる6度
照明法を用いた手術用顕微鏡も提案されている。この6
度照明法とは、図9に示すように、同軸照明法とは異な
る光束案内光学系3を有するもので、具体的には、第一
の対物レンズR3と変倍光学系Kとの間における、反射
光束外に配置された全反射プリズムP1からなる。そし
て、照明光学系1から入射された照明光束は全反射プリ
ズムP1を介して被検眼E1に導かれる。この方法によ
れば、図10に示すように、照明光束を反射光束とは若
干異なる角度で被検眼E1に導くことができるので、被
検眼E1の影を発生させることができ、被検眼E1の立
体感を向上させることができる。
For this reason, in recent years, the red reflex has become darker than the coaxial illumination method, but on the other hand, a surgical operation using a 6-degree illumination method capable of generating a shadow of an object to be observed and improving a three-dimensional effect. Microscopes have also been proposed. This 6
As shown in FIG. 9, the diagonal illumination method has a light flux guiding optical system 3 different from the coaxial illumination method. Specifically, the illumination between the first objective lens R3 and the variable power optical system K is performed. , A total reflection prism P1 arranged outside the reflected light flux. Then, the illumination light beam incident from the illumination optical system 1 is guided to the eye E1 via the total reflection prism P1. According to this method, as shown in FIG. 10, since the illumination light beam can be guided to the eye E1 at an angle slightly different from the reflected light beam, the shadow of the eye E1 can be generated, and the shadow of the eye E1 can be generated. The three-dimensional effect can be improved.

【0012】[0012]

【発明が解決しようとする課題】しかしながら、このよ
うな従来の同軸照明法若しくは6度照明法を用いた手術
用顕微鏡においては、水晶体の内部組織を吸い出す際に
は同軸照明法、IOLの挿入作業の際には6度照明法と
いうように、一連の手術中において異なる照明法が必要
となるにも関わらず、照明法を切り替えることが非常に
困難であった。これは、従来の手術用顕微鏡において
は、いずれか一つの照明法を達成するための光束案内光
学系を単に固定的に設けていたので、照明法を切り替え
るためには、光束案内光学系全体を交換する必要があっ
たためである。
However, in such a conventional operating microscope using the coaxial illumination method or the 6-degree illumination method, when the internal tissue of the crystalline lens is sucked, the coaxial illumination method and the insertion work of the IOL are required. In such a case, it is very difficult to switch the illumination method although a different illumination method is required during a series of operations, such as a 6-degree illumination method. This is because, in the conventional surgical microscope, the light beam guiding optical system for achieving any one of the illumination methods is simply fixedly provided. This was because it had to be replaced.

【0013】また単に同軸照明法か6度照明法のいずれ
か一方のみを使用するのではなく、両方を同時に使用す
ることによって、レッドレフレッスクと観察対象物の影
とを同時に得たいとの要望もあったが、上記従来の手術
用顕微鏡においては1つの照明法を達成する光束案内光
学系を単に固定的に設けていたので、同軸照明法と6度
照明法とを同時に使用することは不可能であった。
[0013] In addition to using only one of the coaxial illumination method and the six-degree illumination method, it is desired to simultaneously obtain a red reflection and a shadow of an observation object by using both of them simultaneously. Although there was a request, in the above-mentioned conventional surgical microscope, since the light flux guiding optical system for achieving one illumination method was simply provided in a fixed manner, it is not possible to simultaneously use the coaxial illumination method and the 6-degree illumination method. It was impossible.

【0014】また近年、0度照明法と6度照明法とを組
み合わせた光束案内光学系も提案されているが(特開平
4ー246607)、0度照明法と6度照明法とを切り
替えるために、複数の偏向ミラー等を移動させる必要が
あり、機構や操作が複雑であるため、改善が要望されて
いた。
In recent years, a light flux guiding optical system combining a 0-degree illumination method and a 6-degree illumination method has also been proposed (Japanese Patent Laid-Open No. Hei 4-246607). In addition, it is necessary to move a plurality of deflecting mirrors and the like, and the mechanism and operation are complicated.

【0015】本発明は、このような従来の手術用顕微鏡
における問題点に鑑みてなされたもので、同軸照明法と
6度照明法とを切替え使用や組合せ使用を簡易かつ容易
に行うことのできる手術用顕微鏡を提供することを目的
とする。
The present invention has been made in view of such a problem in the conventional surgical microscope, and can easily and easily perform switching use and combination use between the coaxial illumination method and the 6-degree illumination method. An object of the present invention is to provide an operating microscope.

【0016】[0016]

【課題を解決するための手段】前記目的を達成するため
請求項1記載の本発明は、被検眼を観察する観察光学系
と、照明光学系からの照明光束の略全部を前記観察光学
系の光軸に沿って前記被検眼に導く光束案内光学系と、
前記照明光学系の照明光束の略全部を前記光束案内光学
系にて導かれた照明光束とは異なる角度から前記被検眼
に導く第一の偏向手段と、前記照明光学系の照明光束の
一部を透過して前記光束案内光学系に導き、残りの照明
光束を前記光束案内光学系にて導かれた照明光束とは異
なる角度から前記被検眼に導く第二の偏向手段とを備え
た手術用顕微鏡において、前記第一の偏向手段及び第二
の偏向手段を所定の方向に沿って取付けた移動基板を有
し、該移動基板を前記所定の方向に移動させることによ
って、前記第一の偏向手段若しくは前記第二の偏向手段
のいずれか一方を前記照明光学系と前記光束案内光学系
との間に位置させ、又は前記第一の偏向手段及び前記第
二の偏向手段を前記照明光学系と前記光束案内光学系と
の間から退避させる移動手段を備えたことを特徴として
構成されている。
According to a first aspect of the present invention, there is provided an observation optical system for observing an eye to be inspected, and substantially all of the illumination light beam from the illumination optical system. A light beam guiding optical system that guides the subject's eye along the optical axis;
First deflecting means for guiding substantially all of the illumination light flux of the illumination optical system to the subject's eye from an angle different from that of the illumination light flux guided by the light flux guiding optical system, and a part of the illumination light flux of the illumination optical system And a second deflecting means for guiding the remaining illumination light flux to the eye to be examined from an angle different from that of the illumination light flux guided by the light flux guidance optical system. In the microscope, the microscope has a moving substrate on which the first deflecting unit and the second deflecting unit are mounted along a predetermined direction, and the first deflecting unit is moved by moving the moving substrate in the predetermined direction. Or, any one of the second deflecting means is located between the illumination optical system and the light flux guiding optical system, or the first deflecting means and the second deflecting means the illumination optical system and the Retract from the space between the light beam guiding optical system It is configured as comprising the moving means.

【0017】また請求項2記載の本発明は、請求項1記
載の本発明において、前記第一の偏向手段及び前記第二
の偏向手段は、前記照明光学系の照明光束の略全部を通
過させる空間部を挟んで前記移動基板に取付けられてな
ることを特徴として構成されている。
According to a second aspect of the present invention, in the first aspect of the present invention, the first deflecting means and the second deflecting means pass substantially all of the illumination light beam of the illumination optical system. It is characterized by being attached to the moving substrate with a space portion interposed therebetween.

【0018】[0018]

【発明の実施の形態】以下、本発明の一実施形態につい
て図面を参照して詳細に説明する。図1は、本実施形態
の全体構成を示す配置図である。この図1において本顕
微鏡は、被検眼E1を手術医眼E2にて観察するもので
あって、照明光学系1、観察光学系2及び光束案内光学
系3に、さらに第一の偏向手段たる全反射プリズムP1
(図2参照)、第二の偏向手段たるハーフプリズムP2
及び移動手段たる移動基板4を設けて構成されている。
An embodiment of the present invention will be described below in detail with reference to the drawings. FIG. 1 is a layout diagram showing the overall configuration of the present embodiment. In FIG. 1, the microscope is for observing an eye E1 to be inspected by a surgeon's eye E2. The illumination optical system 1, the observation optical system 2, and the light beam guiding optical system 3 are further provided with a first deflecting means. Reflection prism P1
(See FIG. 2), a half prism P2 as a second deflecting means
And a moving substrate 4 as moving means.

【0019】照明光学系1は、被検眼E1に照明光束を
照射するもので、光源L、光ファイバF、コンデンサレ
ンズR1及びリレ−レンズR2から構成されている。そ
して、光源Lから発せられた照明光束は、光ファイバ
F、コンデンサレンズR1、リレ−レンズR2を介して
後述する光束案内光学系3に入射する。
The illumination optical system 1 illuminates the eye E1 with an illumination light beam, and includes a light source L, an optical fiber F, a condenser lens R1, and a relay lens R2. Then, the illuminating light beam emitted from the light source L enters the light beam guiding optical system 3 to be described later via the optical fiber F, the condenser lens R1, and the relay lens R2.

【0020】観察光学系2は、被検眼E1を観察するも
ので、第一の対物レンズR3、変倍光学系K、第二の対
物レンズR4、正立プリズムP3、菱形プリズムP4及
び接眼レンズR5から構成されている。そして、後述す
る光束案内光学系3を介して導かれた被検眼E1からの
反射光束を第一の対物レンズR3を介して入射され、こ
の反射光束を変倍光学系Kにて任意の倍率に変倍し、さ
らに第二の対物レンズR4、正立プリズムP3及び菱形
プリズムP4を介して接眼レンズR5に結像させる。な
お観察光学系2における第一の対物レンズR3以外の各
光学素子は、被検眼E1を立体観察できるよう左右一対
として設けられているが、図1においてはその片側のみ
を示してある。変倍光学系Kも、図2に示すように、左
右一対の変倍光学系K1、K2にて構成されている。
The observation optical system 2 observes the subject's eye E1, and includes a first objective lens R3, a variable power optical system K, a second objective lens R4, an erect prism P3, a rhombic prism P4, and an eyepiece R5. It is composed of Then, a reflected light beam from the eye E1 guided through the light beam guiding optical system 3, which will be described later, is incident via the first objective lens R3, and the reflected light beam is changed to an arbitrary magnification by the variable power optical system K. The magnification is changed, and an image is formed on the eyepiece R5 via the second objective lens R4, the erect prism P3, and the rhombic prism P4. The optical elements other than the first objective lens R3 in the observation optical system 2 are provided as a pair of right and left so that the subject's eye E1 can be stereoscopically observed. However, FIG. 1 shows only one side thereof. As shown in FIG. 2, the variable power optical system K also includes a pair of left and right variable power optical systems K1 and K2.

【0021】光束案内光学系3は、照明光学系1の照明
光束の略全部を観察光学系2の光軸に沿って被検眼E1
に導くもので、具体的には、従来の0度照明法を達成す
るための光束案内光学系3と同様に、第一の対物レンズ
R3と被検眼E1との間における、第一の対物レンズR
3の光軸上に配置された全反射プリズムP0から構成さ
れている。そして照明光学系1から入射された照明光束
は、その略全部を全反射プリズムP0を介して観察光学
系2の光軸に沿って被検眼E1に導かれる。
The light beam guiding optical system 3 transmits substantially the entire illumination light beam of the illumination optical system 1 along the optical axis of the observation optical system 2 to the eye E1.
Specifically, similarly to the light beam guiding optical system 3 for achieving the conventional 0-degree illumination method, the first objective lens between the first objective lens R3 and the eye E1 to be examined is provided. R
3 comprises a total reflection prism P0 disposed on the optical axis. Almost all of the illumination light flux incident from the illumination optical system 1 is guided to the eye E1 along the optical axis of the observation optical system 2 via the total reflection prism P0.

【0022】この全反射プリズムP0は、図2に示すよ
うに、上述のように第一の対物レンズR3と変倍光学系
Kとの間における第一の対物レンズR3の光軸上、つま
り一対の変倍光学系K1、K2の相互の中間位置に配置
されているので、該全反射プリズムP0によって第一の
変倍光学系K1、K2の反射光束が遮られない。したが
って、手術医眼E2が被検眼E1を観察した際に、該全
反射プリズムP0が手術医眼E2の視野に入ることがな
い。
As shown in FIG. 2, the total reflection prism P0 is located on the optical axis of the first objective lens R3 between the first objective lens R3 and the variable power optical system K, that is, as shown in FIG. Are arranged at intermediate positions between the variable magnification optical systems K1 and K2, so that the total reflection prism P0 does not block the reflected light beams of the first variable magnification optical systems K1 and K2. Therefore, when the surgeon's eye E2 observes the eye E1, the total reflection prism P0 does not enter the visual field of the surgeon's eye E2.

【0023】また第一の偏向手段たる全反射プリズムP
1は、反射光束外に配置されるものであって、照明光学
系1の照明光束の略全部を光束案内光学系3にて導かれ
た照明光束とは異なる角度から被検眼E1に導くもので
ある。第二の偏向手段たるハーフプリズムP2は、変倍
光学系Kの視野外に配置されるものであって、照明光学
系1の照明光束の一部を光束案内光学系3にて導かれた
照明光束とは異なる角度から被検眼E1に導くものであ
る。これら全反射プリズムP1及びハーフプリズムP2
の具体的な作用や配置については後述する。
A total reflection prism P as a first deflecting means
Numeral 1 is arranged outside the reflected light beam, and guides substantially all of the illumination light beam of the illumination optical system 1 to the eye E1 from an angle different from that of the illumination light beam guided by the light beam guiding optical system 3. is there. The half prism P2, which is the second deflecting means, is disposed outside the field of view of the variable power optical system K, and a part of the illumination light flux of the illumination optical system 1 is guided by the light flux guiding optical system 3. The light flux is guided to the eye E1 from an angle different from that of the light flux. These total reflection prism P1 and half prism P2
The specific operation and arrangement will be described later.

【0024】また移動手段たる移動基板4は、図2、3
に示すように、長方形状の板状部材であって、全反射プ
リズムP1若しくはハーフプリズムP2のいずれか一方
を照明光学系1と光束案内光学系3との間に位置させ、
又は全反射プリズムP1及びハーフプリズムP2を照明
光学系1と光束案内光学系3との間から退避させるもの
である。この移動基板4の上面には、図2、3に示すよ
うに、移動基板4の長手方向に沿って、全反射プリズム
P1とハーフプリズムP2とが取り付けられている。こ
の全反射プリズムP1とハーフプリズムP2とは、互い
に密着して配置されるのではなく、照明光学系1の照明
光束が通り抜け可能な幅の空間部5を挟んで配置されて
いる。このように上面に全反射プリズムP1とハーフプ
リズムP2とを取り付けられた移動基板4は、図2
(a)〜(c)に示すように、図示しない操作部及びス
テッピングモータに連係され、移動基板4の長手方向に
沿って往復移動可能とされている。
The moving substrate 4 as a moving means is shown in FIGS.
Is a rectangular plate-like member, one of the total reflection prism P1 and the half prism P2 is located between the illumination optical system 1 and the light flux guiding optical system 3,
Alternatively, the total reflection prism P1 and the half prism P2 are retracted from between the illumination optical system 1 and the light beam guiding optical system 3. As shown in FIGS. 2 and 3, a total reflection prism P1 and a half prism P2 are mounted on the upper surface of the moving substrate 4 along the longitudinal direction of the moving substrate 4. The total reflection prism P1 and the half prism P2 are not arranged in close contact with each other, but are arranged with a space portion 5 having a width through which the illumination light flux of the illumination optical system 1 can pass. The moving substrate 4 having the total reflection prism P1 and the half prism P2 attached to the upper surface in this manner is similar to that of FIG.
As shown in (a) to (c), the moving board 4 is reciprocally movable along the longitudinal direction of the moving substrate 4 in association with an operation unit (not shown) and a stepping motor.

【0025】次に、本顕微鏡を白内障手術に用いた場合
における、被検眼E1の観察動作について説明する。図
示しない操作部には、「同軸」、「6度」及び「併用」
の三つのスイッチが設けられており、被検眼E1の水晶
体の切開時にまず「6度」スイッチが押される。すると
ステッピングモータによって移動基板4が動かされ、図
2(a)に示す状態、すなわち全反射プリズムP1を照
明光学系1と光束案内光学系3たる全反射プリズムP0
との間に位置させた状態で移動基板4が停止する。すな
わち、全反射プリズムP1は、照明光学系1の光軸に配
置される。
Next, the observation operation of the eye E1 when the present microscope is used for cataract surgery will be described. "Coaxial", "6 degrees" and "Combined"
When the lens of the eye E1 is incised, the "6 degree" switch is first pressed. Then, the movable substrate 4 is moved by the stepping motor, and the state shown in FIG. 2A, that is, the total reflection prism P1 is changed to the total reflection prism P0 as the illumination optical system 1 and the light beam guiding optical system 3.
The movable substrate 4 stops in a state where it is positioned between the moving substrate 4 and the moving substrate 4. That is, the total reflection prism P <b> 1 is arranged on the optical axis of the illumination optical system 1.

【0026】この図2(a)に示す状態においては、照
明光学系1から入射された略全部の照明光束が、全反射
プリズムP1を介して、観察光学系2の光軸とは異なる
角度で被検眼E1に導かれて6度照明法が実現される。
一方、光束案内光学系3たる全反射プリズムP0には照
明光束が到達しないので、該光束案内光学系3による偏
向は行われない。
In the state shown in FIG. 2A, substantially all of the illumination light beams incident from the illumination optical system 1 pass through the total reflection prism P1 at an angle different from the optical axis of the observation optical system 2. The 6-degree illumination method is realized by being guided to the eye E1.
On the other hand, since the illumination light beam does not reach the total reflection prism P0 as the light beam guiding optical system 3, no deflection is performed by the light beam guiding optical system 3.

【0027】そして、水晶体の内部組織を取り出す際
に、「同軸」スイッチが押される。するとステッピング
モータにより移動基板4が移動され、図2(b)に示す
ように、全反射プリズムP1とハーフプリズムP2の両
方を照明光学系1と光束案内光学系3との間から退避さ
せた状態、すなわち空間部5を照明光学系1と光束案内
光学系3との間に位置させた状態で移動基板4が停止す
る。すなわち照明光学系1の光軸上にはP1、P2のい
ずれも配置されない。
When removing the internal tissue of the lens, the "coaxial" switch is pressed. Then, the movable substrate 4 is moved by the stepping motor, and both the total reflection prism P1 and the half prism P2 are retracted from between the illumination optical system 1 and the light beam guiding optical system 3, as shown in FIG. That is, the moving substrate 4 stops in a state where the space 5 is located between the illumination optical system 1 and the light beam guiding optical system 3. That is, neither P1 nor P2 is arranged on the optical axis of the illumination optical system 1.

【0028】この図2(b)に示す状態においては、照
明光学系1から入射された略全部の照明光束が、全反射
プリズムP1やハーフプリズムP2に偏向されることな
く光束案内光学系3たる全反射プリズムP0に達し、該
全反射プリズムP0によって観察光学系2の光軸に沿っ
た角度で被検眼E1に導かれて同軸照明法(0度照明
法)が実現される。
In the state shown in FIG. 2 (b), substantially all of the illumination light beam incident from the illumination optical system 1 is directed to the light flux guiding optical system 3 without being deflected by the total reflection prism P1 and the half prism P2. The light reaches the total reflection prism P0 and is guided to the eye E1 at an angle along the optical axis of the observation optical system 2 by the total reflection prism P0, thereby realizing a coaxial illumination method (0-degree illumination method).

【0029】さらに、水晶体にIOLを挿入する際や、
その他の任意の作業時に、「併用」スイッチが押され
る。するとステッピングモータにより移動基板4が動か
され、図2(c)に示す状態、すなわちハーフプリズム
P2を照明光学系1と全反射プリズムP0との間に位置
させた状態で移動基板4が停止する。すなわちハーフプ
リズムP2は、照明光学系1の光軸に配置される。
Further, when inserting the IOL into the lens,
At any other time, the "combination" switch is pressed. Then, the moving substrate 4 is moved by the stepping motor, and the moving substrate 4 stops in a state shown in FIG. 2C, that is, in a state where the half prism P2 is positioned between the illumination optical system 1 and the total reflection prism P0. That is, the half prism P2 is arranged on the optical axis of the illumination optical system 1.

【0030】この図2(c)に示す状態においては、照
明光学系1から入射された略半分の照明光束が、ハーフ
プリズムP2を介して、観察光学系2の光軸とは異なる
角度で被検眼E1に導かれて6度照明法が実現される。
また一方、全反射プリズムP0にはハーフプリズムP2
に偏向されることなく通過した残りの略半分の照明光束
が入射し、該全反射プリズムP0によって観察光学系2
の光軸に沿った角度で被検眼E1に導かれて同軸照明法
(0度照明法)も実現される。すなわちこの場合には、
同軸照明法と6度照明法とが同時に実現される。
In the state shown in FIG. 2C, approximately half of the illumination light beam incident from the illumination optical system 1 is received at an angle different from the optical axis of the observation optical system 2 via the half prism P2. The 6-degree illumination method is realized by being guided to the optometry E1.
On the other hand, the total reflection prism P0 has a half prism P2.
The remaining approximately half of the illuminating light flux that has passed without being deflected is incident on the observation optical system 2 by the total reflection prism P0.
Is guided to the eye E1 at an angle along the optical axis, and the coaxial illumination method (0-degree illumination method) is also realized. That is, in this case,
The coaxial illumination method and the six-degree illumination method are simultaneously realized.

【0031】次に本発明の第二の実施形態について、図
4を参照して説明する。特に説明なき部分は上記の実施
形態(以下、「第一の実施形態」とする)と同様であ
る。この第二の実施形態において、光束案内光学系3
は、全反射プリズムP0でなく、ハーフミラーM2にて
構成されており、また第一の偏向手段たる全反射プリズ
ムP1と第二の偏向手段たるハーフプリズムP2とは、
それぞれ全反射ミラーM3、ハーフミラーM4を用いて
構成されている。また本実施形態においては、図4に示
すように、これらハーフミラーM2、全反射ミラーM3
及びハーフミラーM4は、第一の実施形態とは異なり、
第一の対物レンズR3と変倍光学系Kとの間でなく、第
一の対物レンズR3と被検眼E1との間に配置されてい
る。これは、第一の偏向手段や第二の偏向手段をプリズ
ムにて構成した場合とは異なり、これら第一の偏向手段
や第二の偏向手段にて偏向された照明光束を第一の対物
レンズR3にて屈折させずとも被検眼E1に導くことが
可能だからである。
Next, a second embodiment of the present invention will be described with reference to FIG. The parts that are not particularly described are the same as those of the above-described embodiment (hereinafter, referred to as “first embodiment”). In the second embodiment, the light beam guiding optical system 3
Is constituted by a half mirror M2 instead of the total reflection prism P0, and the total reflection prism P1 as the first deflecting unit and the half prism P2 as the second deflecting unit are
Each is configured using a total reflection mirror M3 and a half mirror M4. In this embodiment, as shown in FIG. 4, the half mirror M2 and the total reflection mirror M3 are used.
And the half mirror M4 is different from the first embodiment,
It is arranged not between the first objective lens R3 and the variable power optical system K but between the first objective lens R3 and the eye E1. This is different from the case where the first deflecting means and the second deflecting means are constituted by prisms, and the illumination light beam deflected by the first deflecting means and the second deflecting means is converted into the first objective lens. This is because the light can be guided to the eye E1 without being refracted by R3.

【0032】さてこれまで本発明の第一及び第二の実施
形態について説明したが、本発明は上記に示した実施形
態に限定されず、その技術的思想の範囲内において種々
異なる形態にて実施されてよいものであり、以下、これ
ら異なる形態について説明する。移動基板4はステッピ
ングモータでなく、手術医が手動で移動させてもよい。
さらに移動基板4は、図2、3においては、第一の対物
レンズR3の光軸に対して直交するように配置されてい
るが、平行に配置して、全反射プリズムP1やハーフプ
リズムP2を上下動させてもよい。
Although the first and second embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, but may be implemented in various forms within the scope of the technical idea. These different modes will be described below. The moving board 4 may be moved manually by the surgeon instead of the stepping motor.
2 and 3, the moving substrate 4 is arranged so as to be orthogonal to the optical axis of the first objective lens R3, but is arranged in parallel so that the total reflection prism P1 and the half prism P2 are arranged. It may be moved up and down.

【0033】[0033]

【発明の効果】これまで説明したように請求項1記載の
本発明は、第一の偏向手段及び第二の偏向手段を所定の
方向に沿って取付けた移動基板を有し、該移動基板を所
定の方向に移動させることによって、第一の偏向手段若
しくは第二の偏向手段のいずれか一方を照明光学系と光
束案内光学系との間に位置させ、又は第一の偏向手段及
び第二の偏向手段を照明光学系と光束案内光学系との間
から退避させる移動手段を備えたことにより、第一若し
くは第二の偏向手段を移動させることによって同軸照明
法か6度照明法若しくは両法による照明を任意に選択す
ることができ、手術中でも照明法を切り替えできる。特
に、移動基板を所定の方向に移動させるだけで照明法を
切替えることができ、複数の操作を必要としないので、
切替えが非常に容易である。また複数の駆動手段を必要
としないので、構成も非常に簡易である。
As described above, according to the present invention, there is provided a moving substrate on which the first deflecting means and the second deflecting means are mounted along a predetermined direction. By moving in a predetermined direction, one of the first deflecting means or the second deflecting means is located between the illumination optical system and the light beam guiding optical system, or the first deflecting means and the second deflecting means By providing moving means for retracting the deflecting means from between the illumination optical system and the light beam guiding optical system, by moving the first or second deflecting means, the coaxial illumination method or the 6-degree illumination method or both methods can be used. Lighting can be arbitrarily selected, and the lighting method can be switched during surgery. In particular, the illumination method can be switched simply by moving the moving substrate in a predetermined direction, and since multiple operations are not required,
Switching is very easy. Further, since a plurality of driving means are not required, the configuration is very simple.

【0034】さらに請求項2記載の本発明によれば、第
一の偏向手段及び第二の偏向手段は、照明光学系の照明
光束の略全部を通過させる空間部を介して移動基板に取
付けられてなることにより、最もよく用いられる同軸照
明法を中心として、6度照明法や、同軸照明法と6度照
明法との同時照明に切替えることができ、最も効率のよ
い切替えを行うことができる。
According to the second aspect of the present invention, the first deflecting means and the second deflecting means are attached to the movable substrate via a space through which substantially all of the illumination light flux of the illumination optical system passes. With this arrangement, it is possible to switch to the 6-degree illumination method or the simultaneous illumination of the coaxial illumination method and the 6-degree illumination method, centering on the most commonly used coaxial illumination method, and to perform the most efficient switching. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態に係る手術用顕微鏡の全体
構成を示す配置図である。
FIG. 1 is a layout diagram showing an overall configuration of a surgical microscope according to an embodiment of the present invention.

【図2】移動基板4の移動に伴って変化する、光束案内
光学系3と第一及び第二の偏向手段との位置関係を示す
説明図であり、(a)は6度照明法を実現する状態、
(b)は0度照明法を実現する状態、(c)は0度照明
法及び6度照明法を同時に実現する状態をそれぞれ示
す。
FIGS. 2A and 2B are explanatory diagrams showing a positional relationship between the light beam guiding optical system 3 and first and second deflecting means, which changes with the movement of the movable substrate 4, and FIG. State,
(B) shows a state in which the 0-degree illumination method is realized, and (c) shows a state in which the 0-degree illumination method and the 6-degree illumination method are simultaneously realized.

【図3】図2(b)の状態における、要部の分解斜視図
である。
FIG. 3 is an exploded perspective view of a main part in the state of FIG. 2 (b).

【図4】本発明の二実施形態に係る手術用顕微鏡の全体
構成を示す配置図である。
FIG. 4 is a layout diagram showing an overall configuration of a surgical microscope according to two embodiments of the present invention.

【図5】従来の完全同軸照明法を達成する手術用顕微鏡
である。
FIG. 5 is a surgical microscope that achieves the conventional perfect coaxial illumination method.

【図6】図5の手術用顕微鏡における、照明光束と反射
光束との関係を示す説明図である。
6 is an explanatory diagram showing a relationship between an illumination light beam and a reflected light beam in the surgical microscope of FIG.

【図7】従来の0度照明法を達成する手術用顕微鏡であ
る。
FIG. 7 is a surgical microscope that achieves the conventional 0-degree illumination method.

【図8】図7の手術用顕微鏡における、照明光束と反射
光束との関係を示す説明図である。
FIG. 8 is an explanatory diagram showing a relationship between an illumination light beam and a reflected light beam in the surgical microscope of FIG. 7;

【図9】従来の6度照明法を達成する手術用顕微鏡であ
る。
FIG. 9 is a surgical microscope that achieves a conventional 6-degree illumination method.

【図10】図10の手術用顕微鏡における、照明光束と
反射光束との関係を示す説明図である。
FIG. 10 is an explanatory diagram showing a relationship between an illumination light beam and a reflected light beam in the surgical microscope of FIG. 10;

【符号の説明】[Explanation of symbols]

E1 被検眼 E2 手術医眼 L 光源 F 光ファイバ R3 第一対物レンズ M1、M2、M4 ハーフミラー M3 全反射ミラー P0、P1 全反射プリズム P2 ハーフプリズム 1 照明光学系 2 観察光学系 3 光束案内光学系 4 移動基板 5 空間部 E1 Eye to be examined E2 Surgeon's eye L Light source F Optical fiber R3 First objective lens M1, M2, M4 Half mirror M3 Total reflection mirror P0, P1 Total reflection prism P2 Half prism 1 Illumination optical system 2 Observation optical system 3 Light flux guiding optical system 4 Moving board 5 Space

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】被検眼を観察する観察光学系と、 照明光学系からの照明光束の略全部を前記観察光学系の
光軸に沿って前記被検眼に導く光束案内光学系と、 前記照明光学系の照明光束の略全部を前記光束案内光学
系にて導かれた照明光束とは異なる角度から前記被検眼
に導く第一の偏向手段と、 前記照明光学系の照明光束の一部を透過して前記光束案
内光学系に導き、残りの照明光束を前記光束案内光学系
にて導かれた照明光束とは異なる角度から前記被検眼に
導く第二の偏向手段と、を備えた手術用顕微鏡におい
て、 前記第一の偏向手段及び第二の偏向手段を所定の方向に
沿って取付けた移動基板を有し、該移動基板を前記所定
の方向に移動させることによって、前記第一の偏向手段
若しくは前記第二の偏向手段のいずれか一方を前記照明
光学系と前記光束案内光学系との間に位置させ、又は前
記第一の偏向手段及び前記第二の偏向手段を前記照明光
学系と前記光束案内光学系との間から退避させる移動手
段を備えたことを特徴とする手術用顕微鏡。
An observation optical system for observing an eye to be inspected; a light beam guiding optical system for guiding substantially all of an illumination light beam from an illumination optical system to the eye to be inspected along an optical axis of the observation optical system; First deflecting means for guiding substantially all of the illumination light flux of the system to the eye to be examined from an angle different from that of the illumination light flux guided by the light flux guiding optical system, and transmitting a part of the illumination light flux of the illumination optical system. A second deflecting means for guiding the remaining illumination light flux to the eye to be examined from an angle different from that of the illumination light flux guided by the light flux guidance optical system. A moving substrate having the first deflecting means and the second deflecting means attached along a predetermined direction, and moving the moving substrate in the predetermined direction to thereby provide the first deflecting means or the Illuminating either one of the second deflecting means with the illumination A moving unit that is located between an optical system and the light beam guiding optical system or that retracts the first deflecting unit and the second deflecting unit from between the illumination optical system and the light beam guiding optical system; An operating microscope, characterized in that:
【請求項2】前記第一の偏向手段及び前記第二の偏向手
段は、前記照明光学系の照明光束の略全部を通過させる
空間部を挟んで前記移動基板に取付けられてなることを
特徴とする請求項1記載の手術用顕微鏡。
2. The apparatus according to claim 1, wherein the first deflecting means and the second deflecting means are attached to the movable substrate with a space through which substantially all of the illumination light flux of the illumination optical system passes. The surgical microscope according to claim 1, wherein
JP8301085A 1996-10-25 1996-10-25 Surgical microscope Pending JPH10133122A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8301085A JPH10133122A (en) 1996-10-25 1996-10-25 Surgical microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8301085A JPH10133122A (en) 1996-10-25 1996-10-25 Surgical microscope

Publications (1)

Publication Number Publication Date
JPH10133122A true JPH10133122A (en) 1998-05-22

Family

ID=17892691

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8301085A Pending JPH10133122A (en) 1996-10-25 1996-10-25 Surgical microscope

Country Status (1)

Country Link
JP (1) JPH10133122A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6483642B1 (en) * 1998-05-13 2002-11-19 Leica Microsystems Ag Lighting device for a surgical microscope
EP1291696A1 (en) * 2001-09-07 2003-03-12 Leica Microsystems (Schweiz) AG Prism configuration for simultaneoaus 0 and oblique angle illumination in a stereo surgical microscope
EP1455215A2 (en) * 2003-03-06 2004-09-08 Leica Microsystems (Schweiz) AG Microscope illuminating apparatus
EP1293818A3 (en) * 2001-09-07 2005-01-05 Leica Microsystems (Schweiz) AG Microscope with a reflective lighting
JP2006218206A (en) * 2005-02-14 2006-08-24 Olympus Corp Microscope for operation
US8337047B1 (en) 2008-11-07 2012-12-25 Endure Medical, Inc. Retractable beam splitter for microscope
DE102012203266A1 (en) 2012-03-01 2013-09-05 Leica Microsystems (Schweiz) Ag Microscope with switchable documentation beam path
DE102013216476A1 (en) * 2013-08-20 2015-02-26 Carl Zeiss Meditec Ag Surgical microscope with optical interfaces
DE102014207130A1 (en) * 2014-02-19 2015-08-20 Carl Zeiss Meditec Ag surgical microscope
JPWO2018105411A1 (en) * 2016-12-06 2019-10-24 ソニー株式会社 Image processing apparatus and method, and surgical microscope system
CN115644795A (en) * 2022-12-12 2023-01-31 图湃(北京)医疗科技有限公司 Surgical microscope system and surgical microscope

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6483642B1 (en) * 1998-05-13 2002-11-19 Leica Microsystems Ag Lighting device for a surgical microscope
EP1291696A1 (en) * 2001-09-07 2003-03-12 Leica Microsystems (Schweiz) AG Prism configuration for simultaneoaus 0 and oblique angle illumination in a stereo surgical microscope
EP1293818A3 (en) * 2001-09-07 2005-01-05 Leica Microsystems (Schweiz) AG Microscope with a reflective lighting
US6914721B2 (en) * 2001-09-07 2005-07-05 Leica Microsystems (Schweiz) Ag Prism construction for simultaneous zero-degree and oblique illumination of a stereoscopic surgical microscope
US7102818B2 (en) 2001-09-07 2006-09-05 Leica Microsystems (Schweiz) Ag Microscope having a system for reflecting in illumination
EP1455215A2 (en) * 2003-03-06 2004-09-08 Leica Microsystems (Schweiz) AG Microscope illuminating apparatus
EP1455215A3 (en) * 2003-03-06 2005-01-19 Leica Microsystems (Schweiz) AG Microscope illuminating apparatus
DE10311000C5 (en) * 2003-03-06 2012-05-10 Leica Instruments (Singapore) Pte. Ltd. Illumination device for a microscope
JP2006218206A (en) * 2005-02-14 2006-08-24 Olympus Corp Microscope for operation
US8573808B2 (en) 2008-11-07 2013-11-05 Endure Medical, Inc. Retractable beam splitter for microscope
US8337047B1 (en) 2008-11-07 2012-12-25 Endure Medical, Inc. Retractable beam splitter for microscope
US9268125B2 (en) 2008-11-07 2016-02-23 Alcon Research, Ltd. Retractable beam splitter for microscope
WO2013028787A1 (en) * 2011-08-23 2013-02-28 Endure Medical, Inc. Retractable beam splitter for microscope
CN103874953A (en) * 2011-08-23 2014-06-18 茵德尔医疗有限公司 Retractable beam splitter for microscope
DE102012203266A1 (en) 2012-03-01 2013-09-05 Leica Microsystems (Schweiz) Ag Microscope with switchable documentation beam path
DE102013216476A1 (en) * 2013-08-20 2015-02-26 Carl Zeiss Meditec Ag Surgical microscope with optical interfaces
US10481376B2 (en) 2013-08-20 2019-11-19 Carl Zeiss Meditec Ag Surgical microscope having optical interfaces
DE102014207130A1 (en) * 2014-02-19 2015-08-20 Carl Zeiss Meditec Ag surgical microscope
US10274714B2 (en) 2014-02-19 2019-04-30 Carl Zeiss Meditec Ag Surgical microscope for generating an observation image of an object region
JPWO2018105411A1 (en) * 2016-12-06 2019-10-24 ソニー株式会社 Image processing apparatus and method, and surgical microscope system
CN115644795A (en) * 2022-12-12 2023-01-31 图湃(北京)医疗科技有限公司 Surgical microscope system and surgical microscope
CN115644795B (en) * 2022-12-12 2024-04-09 图湃(北京)医疗科技有限公司 Surgical microscope system and surgical microscope
WO2024125416A1 (en) * 2022-12-12 2024-06-20 图湃(北京)医疗科技有限公司 Surgical microscope system and surgical microscope

Similar Documents

Publication Publication Date Title
US11369517B2 (en) Device for machining an object by application of laser radiation
JP2516007Y2 (en) Surgical microscope
US5760952A (en) Illuminating device for a surgical microscope
JP3541051B2 (en) Illumination device for operating microscope and operating microscope
JP3597896B2 (en) Switchable illumination device for operating microscope
US4871245A (en) Surgical microscope
JP4439815B2 (en) Surgical microscope
US6238385B1 (en) Laser treatment apparatus
US4657357A (en) Illumination system for single objective lens binocular microscope
JPH10133122A (en) Surgical microscope
JP2004109840A (en) Stereomicroscope
JP2005270641A (en) Fundus camera
JP2966992B2 (en) Corneal endothelial cell observation and imaging device
US6072623A (en) Slit lamp microscope
US6705728B2 (en) Ophthalmologic apparatus
JP4267278B2 (en) Illumination device for simultaneous illumination from two different directions
JPH08257037A (en) Microscope for operation
JP3162115U (en) Illumination device for operation microscope and operation microscope
JP2004109488A (en) Stereoscopic microscope
US20040080816A1 (en) Operation microscope with an illuminating device
US20100321637A1 (en) Illumination device as well as observation device
JP2006220953A (en) Laser beam emitter and microscope equipment with laser beam emitter
JP2580500B2 (en) Corneal endothelial cell imaging system
JPH03185415A (en) Stereomicroscope
US20080123051A1 (en) Refractive treatment device with slit illumination