JPH10133044A - Plane light circuit - Google Patents

Plane light circuit

Info

Publication number
JPH10133044A
JPH10133044A JP30593896A JP30593896A JPH10133044A JP H10133044 A JPH10133044 A JP H10133044A JP 30593896 A JP30593896 A JP 30593896A JP 30593896 A JP30593896 A JP 30593896A JP H10133044 A JPH10133044 A JP H10133044A
Authority
JP
Japan
Prior art keywords
light
incident
optical
face
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30593896A
Other languages
Japanese (ja)
Inventor
Hiroshi Matsumoto
浩 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Communication Equipment Co Ltd
Original Assignee
Toyo Communication Equipment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Communication Equipment Co Ltd filed Critical Toyo Communication Equipment Co Ltd
Priority to JP30593896A priority Critical patent/JPH10133044A/en
Publication of JPH10133044A publication Critical patent/JPH10133044A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To limit the dimension of a substrate in a light advancing direction, to constitute the light incidence/exit face of a plane light circuit on one face and to miniaturize the plane light circuit by sticking a mirror to the opposite face to the incident face of the circuit. SOLUTION: Two optical waveguides 2, 2' and an waveguide independent 3dB coupler 3 are arranged on the center of an optical substrate 1, the waveguides 2, 2' are folded on the right side end face of the substrate 1 and an independently formed reflection mirror 4 is stuck to the end face of the substrate 1 which is on the opposite side of an incident port 1 so as to guide light to the left side end face which is the same side as the incident port. When the incident light A arrives at the coupler 3, the light is separated into to two light components A1, B2 by the characteristics of the coupler 3. The light components A1, B2 are respectively attenuated by 3dB from the light A. The light components A1, B2 are respectively advanced through the waveguides 2, 2', made incident upon the mirror 4 on the right ends 5, 5' of the plane light circuit and reflected by the mirror 4 and the reflected light components are respectively advanced through the waveguides 2, 2' and projected from respective exit ports O1, O2.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は波長無依存3dBカ
プラ、波長分離カプラ、波長分離フィルタを用いて光を
分岐させる平面光回路に関し、特に平面光回路の入射ポ
ートの反対の面にミラ−を付設した平面光回路に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a planar optical circuit for splitting light by using a wavelength-independent 3 dB coupler, a wavelength separation coupler, and a wavelength separation filter, and more particularly, to a mirror on a surface opposite to an entrance port of a planar optical circuit. The present invention relates to an attached planar optical circuit.

【0002】[0002]

【従来の技術】通信幹線に光ケーブルが導入されて以来
通信品質は向上し、通信容量が飛躍的に増大したことに
より、通信コストは大幅に低減された。通信の低コスト
化によりコンピュータのネットワーク化、電子メール、
画像通信等の高速で大容量の通信需要が年々贈大し、そ
の結果光伝送に用いられる光部品の需要も大幅に増加し
ている。上記光伝送に用いられる光デバイスの一例とし
て図3に示す平面光回路があり、同図は模式的平面図で
特に光導波路は理解を助けるため大幅に拡大して示して
いる。図3の平面光回路は石英等の光基板10上に形成
された光導波路11を用いて光を分岐するデバイスであ
り、光入射ポートI1より光を入射させ、光導波路11
に沿って光を進行させる。入射光Aは波長無依存3dB
カプラ12により出射光A1とB1とに分離され、更
に、光A1(B1)は3dBのY分岐回路13により出
射光A11(B11)とA12(B12)とに分離さ
れ、出射ポートO1、O2、O3及びO4から出射光が
得られる。また、入射ポートI2から光を入射させても
同様である。
2. Description of the Related Art Since the introduction of an optical cable as a communication trunk, the communication quality has been improved and the communication capacity has been dramatically increased, so that the communication cost has been greatly reduced. Networking of computers, e-mail,
The demand for high-speed and large-capacity communication such as image communication has been increasing year by year, and as a result, the demand for optical components used for optical transmission has increased significantly. As an example of the optical device used for the optical transmission, there is a planar optical circuit shown in FIG. 3, which is a schematic plan view in which an optical waveguide is particularly greatly enlarged for easy understanding. The planar optical circuit shown in FIG. 3 is a device that splits light using an optical waveguide 11 formed on an optical substrate 10 made of quartz or the like.
The light travels along. Incident light A is wavelength independent 3dB
The output light A1 and B1 are separated by the coupler 12, and the light A1 (B1) is further separated into the output light A11 (B11) and A12 (B12) by the 3-dB Y branch circuit 13, and the output ports O1, O2, Outgoing light is obtained from O3 and O4. The same applies to the case where light is incident from the incident port I2.

【0003】ここで上記波長無依存3dBカプラ12に
ついて説明する。周知のように、図3の12に示すよう
に光導波路11と11’を近接させて配置すると光結合
を生じて方向性結合器となり、このとき光導波路11と
11’との材質、構造等を同一にし、且つ結合部分の長
さを適切に選ぶとことにより入射光Aに対し出射光A
1、B1がその1/2即ち、3dBだけ減衰する波長無
依存3dBカプラ12とすることができる。また、図3
の3dBY分岐回路13は同じ材質、同じ構造の導波路
をY字状に構成しているため入射光A1(B1)は出射
光A11(B11)とA12(B12)とに等分に分離
され入射光A1に対しそれぞれ1/2即ち、3dBだけ
減衰している。
Here, the wavelength-independent 3 dB coupler 12 will be described. As is well known, when the optical waveguides 11 and 11 'are arranged close to each other as shown in FIG. 3, optical coupling occurs to form a directional coupler. At this time, the material, structure, etc. of the optical waveguides 11 and 11' are used. And by appropriately selecting the length of the coupling portion, the outgoing light A
The wavelength-independent 3 dB coupler 12 in which 1, B1 is attenuated by そ の, that is, 3 dB. FIG.
Since the 3dBY branch circuit 13 has the same material and the same structure of the waveguide in a Y-shape, the incident light A1 (B1) is equally divided into the outgoing light A11 (B11) and A12 (B12) and is incident. The light A1 is attenuated by 即 ち, that is, 3 dB, respectively.

【0004】ここで、平面光回路の製作方法の一例を図
4の左端に示す工程の順序(4−1から4−10)に従
って説明する。始めに、平面光回路の基板となる石英等
の基板上に、厚さ約25μmの下部クラッド成膜をSi
O2用いて形成する。その上に成分重量比が(99%S
iO2+1%TiO2)のコア成膜を厚さ約8μm形成
し、更に、その上にSi成膜を約2μm形成する。 S
i成膜上にフォトレジスト・パターニングを施してから
エッチングを行い不要部分を除去する。更に、形成され
たパターンに上にSiO2の上部クラッド成膜を約25
μm形成する。その後カッター等で切断し、光ケーブル
接続用端子を接着し、ケースに収容して平面光回路を構
成する。また、光デバイスの機能に応じて4−8に示す
溝入れを行い、4−9に示す10数μmの誘電体多層膜
のフィルタをその溝に挿入し、光ケーブル接続用端子を
接着し、ケースに収容して平面光回路を構成する場合も
ある。
Here, an example of a method of manufacturing a planar optical circuit will be described according to the sequence of steps (4-1 to 4-10) shown at the left end of FIG. First, a lower clad film having a thickness of about 25 μm is formed on a substrate such as quartz which is a substrate of a planar optical circuit by Si.
It is formed using O2. The component weight ratio (99% S
A core film of iO2 + 1% TiO2) is formed with a thickness of about 8 μm, and a Si film is formed thereon with a thickness of about 2 μm. S
After performing photoresist patterning on the i film formation, etching is performed to remove unnecessary portions. Further, an upper clad film of SiO2 is formed on the formed pattern for about 25 minutes.
μm is formed. Thereafter, the optical fiber is cut with a cutter or the like, and the optical cable connection terminals are adhered and housed in a case to form a planar optical circuit. In addition, a groove shown in 4-8 is formed according to the function of the optical device, a filter of a dielectric multilayer film having a thickness of several tens of μm shown in 4-9 is inserted into the groove, and an optical cable connection terminal is adhered. To form a planar optical circuit.

【0005】光導波路は上述のように周囲のクラッド部
と芯のコア部からなり、上記例ではクラッド部をSiO
2で形成し、コア部を(99%SiO2+1%TiO
2)で形成するため、周知のように屈折率の大きな線状
のコア部分に光波を閉じこめて伝搬させることになる。
この現象は光の全反射を考えれば容易に理解される。
As described above, the optical waveguide is composed of a surrounding clad part and a core core part.
2 and the core portion is made of (99% SiO2 + 1% TiO
Since it is formed in 2), the light wave is confined and propagated in a linear core portion having a large refractive index as is well known.
This phenomenon can be easily understood by considering the total reflection of light.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上記の
図3ように光を分岐させる方法では光の入出射面が対向
する2面に存在し、その結果図4の4−10に示すよう
にケーブルコネクターを平面光回路の両側に配設するこ
とが必要となるため平面光回路を用いた光デバイスを小
型にすることはできないという問題点があった。本発明
は上記に鑑みてなされたものであり、光の入出射面を1
面にすることで平面光回路の小型化が可能となり、より
コンパクトな平面光回路を用いた光デバイスを提供する
ことを目的とする。
However, in the method of splitting light as shown in FIG. 3, the light incident / exit surfaces exist on two opposing surfaces. As a result, as shown in FIG. There is a problem that the optical device using the planar optical circuit cannot be reduced in size because it is necessary to arrange connectors on both sides of the planar optical circuit. The present invention has been made in view of the above, and has a light entrance / exit surface of one.
It is an object of the present invention to provide an optical device using a more compact planar optical circuit by making the planar optical circuit smaller by using a plane.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に本発明の請求項1記載の発明は、光学基板上に誘電体
膜を多層に付着しエッチングして形成した光導波路、波
長無依存3dBカプラあるいは波長分離カプラを有する
平面光回路において、該平面光回路の入射面と反対の面
にミラーを付着せたことを特徴とする平面光回路であ
る。請求項2記載の発明は、光の入射ポ−トの直後の光
導波路に波長分離フィルタまたは波長無依存ハ−フミラ
−と設けたことを特徴とする請求項1の平面光回路であ
る。
SUMMARY OF THE INVENTION In order to achieve the above object, an invention according to claim 1 of the present invention is directed to an optical waveguide formed by depositing a dielectric film on an optical substrate in multiple layers and etching the same, In a planar optical circuit having a 3 dB coupler or a wavelength separation coupler, a mirror is attached to a surface of the planar optical circuit opposite to the incident surface. According to a second aspect of the present invention, there is provided the planar optical circuit according to the first aspect, wherein a wavelength separation filter or a wavelength-independent half mirror is provided in the optical waveguide immediately after the light incident port.

【0008】[0008]

【発明の実施の形態】以下本発明を図面に示した実施の
形態に基づいて詳細に説明する。図1は本発明に係る平
面光回路の一実施例の平面図であり、光導波路2の実際
の寸法は厚さ、幅ともほぼ8μmと極めて微小なもので
あるが理解を容易にするため拡大して図示している。図
1の光平面回路の形成は前記した従来の形成方法と同様
であり、石英等の光学基板1上に厚さほぼ25μmの下
部クラッド成膜をSiO2用いて形成し、その上に成分
重量比が(99%SiO2+1%TiO2)のコア成膜
を厚さほぼ8μmだけ形成する。更に、その上にSi成
膜をほぼ2μm形成し、該成膜上にフォトレジスト・パ
ターニングを施してからエッチングを行い不要部分を除
去する。更に、形成されたパターンに上にSiO2の上
部クラッド成膜を25μm形成してからカッター等で切
断して平面光回路を製作する。図1に示した平面光回路
は上記の工程を経て形成された2本の光導波路2、2’
と波長無依存3dBカプラ3とを光学基板1の中央に配
置すると共に導波路2、2’を光学基板1の図中右側端
面にて折り返して入射ポートと同じ図中左側の端面に光
を導くように、別途形成された反射ミラー4を光学基板
1の入射ポートと反対側の端面に接着構成したものであ
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail based on an embodiment shown in the drawings. FIG. 1 is a plan view of one embodiment of the planar optical circuit according to the present invention. The actual dimensions of the optical waveguide 2 are extremely small, both about 8 μm in thickness and width, but are enlarged for easy understanding. It is shown in FIG. The formation of the optical planar circuit of FIG. 1 is the same as the above-mentioned conventional formation method. A lower clad film having a thickness of approximately 25 μm is formed on an optical substrate 1 of quartz or the like using SiO 2, and the component weight ratio is formed thereon. Forms a core film of (99% SiO 2 + 1% TiO 2) with a thickness of approximately 8 μm. Further, an Si film is formed thereon to a thickness of approximately 2 μm, and a photoresist is patterned on the film, followed by etching to remove unnecessary portions. Further, an upper clad film of SiO2 is formed on the formed pattern in a thickness of 25 μm and then cut by a cutter or the like to manufacture a planar optical circuit. The planar optical circuit shown in FIG. 1 has two optical waveguides 2, 2 ′ formed through the above-described steps.
And a wavelength-independent 3 dB coupler 3 are arranged at the center of the optical substrate 1 and the waveguides 2 and 2 'are turned back at the right end surface of the optical substrate 1 in the drawing to guide light to the same left end surface as the incident port in the drawing. As described above, the reflection mirror 4 separately formed is bonded to the end face of the optical substrate 1 opposite to the incident port.

【0009】図1の平面光回路の動作について説明す
る。入射ポートI1、I2のいずれから光を入射させて
もよいがここでは入射ポートI1から入射させた場合に
ついて説明する。入射した光Aは光導波路2に従って進
み、波長無依存3dBカプラ3に到達するとカプラの特
性により2つの光A1とB2に分離する。このとき前述
したように光A1とB2とは光Aに対しそれぞれ3dB
減衰する。光A1、B1はそれぞれ光導波路2、2’を
進み、平面光回路の右端5、5で反射ミラーに入射し、
反射されてそれぞれ光導波路2、2’を進んで出射ポー
トO1、O2から出射される。また、入射ポートI2か
ら光を入射させても上記と同様に入射光を分離すること
ができる。また、入射ポートI1、I2の両方のポート
から入射光を導入して用いる場合もあり、前記の1×2
の光導波路に対し2×2の光導波路と称されている。こ
の構成により入出射光をすべて平面光回路の図中左側面
のみで取り扱うことが可能とんる。
The operation of the planar optical circuit shown in FIG. 1 will be described. Light may be incident from either of the incident ports I1 and I2, but the case where the light is incident from the incident port I1 will be described here. The incident light A travels along the optical waveguide 2 and, when reaching the wavelength-independent 3 dB coupler 3, is separated into two lights A1 and B2 by the characteristics of the coupler. At this time, as described above, the light A1 and the light A2 are each 3 dB relative to the light A.
Decay. The lights A1 and B1 travel through the optical waveguides 2 and 2 ', respectively, and enter the reflection mirrors at the right ends 5 and 5 of the planar optical circuit.
The light is reflected, travels through the optical waveguides 2 and 2 ′, and is emitted from the emission ports O1 and O2. Further, even when light is incident from the incident port I2, the incident light can be separated in the same manner as described above. In some cases, incident light is introduced from both of the input ports I1 and I2 and used.
Are referred to as 2 × 2 optical waveguides. With this configuration, all incoming and outgoing light can be handled only on the left side of the planar optical circuit in the figure.

【0010】図2は光を分離する平面光回路の他の実施
例であって、図1の平面光回路の光導波路に波長無依存
ハーフミラー6と該ハーフミラー6より反射した光を導
くための光導波路を付加したものである。ハーフミラー
6は光学基板上に誘電体膜を多層に積層し、入射光に対
する透過光と反射光との比をほぼ1:1に分離するため
の光学デバイスである。図2の動作を説明すると、入射
ポートI1、I2のいずれから光を入射させもよいが、
I1から光を入射させる場合を考える。入射ポートI1
から入射した光Aは波長無依存ハーフミラー6によって
光A1とB1とにほぼ等しく分離され、光B1は出射ポ
ートO2から出射される。一方光A1は光導波路2を進
んで波長無依存3dBカプラ3に至り、該カプラの特性
により入射光A1に対しそれぞれ3dB減衰して光A2
とC2とに分離される。分離された光A2、C2は平面
光回路の入射ポートと反対側に付着された反射ミラー4
でそれぞれ反射され、再び光導波路2を進んで出射ポー
トO1、O4に至り出射される。また、入射ポートI2
から光を入射させた場合も上記と同様であり、出射ポー
トO2の代わりに出射ポートO3から出射されることが
異なるだけである。これが所謂1×3の光導波路であ
る。また、入射ポートI1、I2の両方のポートから入
射光を導入する場合もあり、この場合が2×4の光導波
路である。このように構成することにより多数の入出射
光を一端面のみで処理できる平面光回路を実現すること
が可能となる。
FIG. 2 shows another embodiment of the planar optical circuit for separating light, which is for guiding the wavelength-independent half mirror 6 and the light reflected from the half mirror 6 to the optical waveguide of the planar optical circuit of FIG. Are added. The half mirror 6 is an optical device for laminating a dielectric film in multiple layers on an optical substrate and separating the ratio of transmitted light to reflected light to incident light to approximately 1: 1. In explaining the operation of FIG. 2, light may be incident from any of the incident ports I1 and I2.
Consider a case where light is incident from I1. Injection port I1
The light A incident from the light source is almost equally separated into the light A1 and the light B1 by the wavelength-independent half mirror 6, and the light B1 is emitted from the emission port O2. On the other hand, the light A1 travels through the optical waveguide 2 to reach the wavelength-independent 3 dB coupler 3, where the light A2 is attenuated by 3 dB with respect to the incident light A1 due to the characteristics of the coupler.
And C2. The separated lights A2 and C2 are reflected by a reflection mirror 4 attached on the opposite side of the plane optical circuit from the entrance port.
, And again travels through the optical waveguide 2 to reach the emission ports O1 and O4. Also, the input port I2
The same applies to the case where the light is made incident from the above, except that the light is emitted from the emission port O3 instead of the emission port O2. This is a so-called 1 × 3 optical waveguide. In some cases, incident light is introduced from both of the input ports I1 and I2. In this case, a 2 × 4 optical waveguide is used. With such a configuration, it is possible to realize a planar optical circuit that can process a large number of incoming and outgoing lights only at one end surface.

【0011】更に、図1において波長無依存3dBカプ
ラ3を3dBY分岐回路で置換すれば1×2の光導波路
が構成することができることは言うまでもない。
Further, it is needless to say that a 1 × 2 optical waveguide can be constituted by replacing the wavelength-independent 3 dB coupler 3 with a 3 dBY branch circuit in FIG.

【0012】[0012]

【発明の効果】本発明は、以上説明したようにミラー及
びハーフミラーを用いて構成したので、光の進行方向の
基板寸法を極限すると共に平面光回路の光の入出射面を
1面に構成することが可能となり、該回路に付着する光
ケーブル端子を一面にのみ形成すればよく、平面光回路
およびこれを用いた光デバイスを大幅に小型化すること
ができるという効果がある。
According to the present invention, as described above, since the mirror and the half mirror are used, the size of the substrate in the light traveling direction is limited and the light input / output surface of the planar optical circuit is formed as one surface. It is only necessary to form an optical cable terminal attached to the circuit on only one surface, so that the planar optical circuit and the optical device using the same can be greatly reduced in size.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る平面光回路の一実施形態を示す模
式的平面図である。
FIG. 1 is a schematic plan view showing one embodiment of a planar optical circuit according to the present invention.

【図2】本発明に係る平面光回路の他の実施形態を示す
模式的平面図である。
FIG. 2 is a schematic plan view showing another embodiment of the planar optical circuit according to the present invention.

【図3】従来の平面光回路を示す模式的平面図である。FIG. 3 is a schematic plan view showing a conventional planar optical circuit.

【図4】平面光回路を形成する工程を示す概略図であ
る。
FIG. 4 is a schematic view showing a step of forming a planar optical circuit.

【符号の説明】[Explanation of symbols]

1・・・光学基板 2・・・光導波路 3・・・波長無依存3dBカプラ 4・・・ミラ− 5・・・反射点 6・・・ハーフミラー I1、I2・・・入射ポート O1、O2、O3、O4・・・出射ポート A、A1、A2、B、B1、C1、C2・・・光 矢印・・光の進行方向 REFERENCE SIGNS LIST 1 optical substrate 2 optical waveguide 3 wavelength-independent 3 dB coupler 4 mirror 5 reflection point 6 half mirror I1, I2 incident port O1, O2 , O3, O4 ... Outgoing ports A, A1, A2, B, B1, C1, C2 ... Light Arrow ... Light traveling direction

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 光学基板上に誘電体膜を多層に付着しエ
ッチングして形成した光導波路、波長無依存3dBカプ
ラあるいは波長分離カプラを有する平面光回路におい
て、該平面光回路の入射面と反対の面にミラーを付着せ
たことを特徴とする平面光回路。
1. A planar optical circuit having an optical waveguide, a wavelength-independent 3 dB coupler or a wavelength separating coupler formed by attaching and etching a dielectric film in multiple layers on an optical substrate, opposite to the plane of incidence of the planar optical circuit. A planar optical circuit, characterized in that a mirror is attached to the surface of (1).
【請求項2】 光の入射ポ−トの直後の光導波路に波長
分離フィルタまたは波長無依存ハ−フミラ−と設けたこ
とを特徴とする請求項1の平面光回路。
2. A planar optical circuit according to claim 1, wherein a wavelength separation filter or a wavelength-independent half mirror is provided in the optical waveguide immediately after the light incident port.
JP30593896A 1996-10-31 1996-10-31 Plane light circuit Pending JPH10133044A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30593896A JPH10133044A (en) 1996-10-31 1996-10-31 Plane light circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30593896A JPH10133044A (en) 1996-10-31 1996-10-31 Plane light circuit

Publications (1)

Publication Number Publication Date
JPH10133044A true JPH10133044A (en) 1998-05-22

Family

ID=17951112

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30593896A Pending JPH10133044A (en) 1996-10-31 1996-10-31 Plane light circuit

Country Status (1)

Country Link
JP (1) JPH10133044A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1243951A1 (en) * 2001-03-20 2002-09-25 Agilent Technologies, Inc. (a Delaware corporation) An optical multiplexer/demultiplexer
JP2007256613A (en) * 2006-03-23 2007-10-04 Hitachi Cable Ltd Optical multiplexing/demultiplexing module
JP2008276001A (en) * 2007-05-01 2008-11-13 Nippon Telegr & Teleph Corp <Ntt> Optical branch circuit and optical branch module
JP2008310017A (en) * 2007-06-14 2008-12-25 Nippon Telegr & Teleph Corp <Ntt> Optical branching circuit and optical branching module

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1243951A1 (en) * 2001-03-20 2002-09-25 Agilent Technologies, Inc. (a Delaware corporation) An optical multiplexer/demultiplexer
JP2007256613A (en) * 2006-03-23 2007-10-04 Hitachi Cable Ltd Optical multiplexing/demultiplexing module
JP4504935B2 (en) * 2006-03-23 2010-07-14 日立電線株式会社 Optical multiplexing / demultiplexing module
JP2008276001A (en) * 2007-05-01 2008-11-13 Nippon Telegr & Teleph Corp <Ntt> Optical branch circuit and optical branch module
JP2008310017A (en) * 2007-06-14 2008-12-25 Nippon Telegr & Teleph Corp <Ntt> Optical branching circuit and optical branching module

Similar Documents

Publication Publication Date Title
KR101121459B1 (en) Method and apparatus for compactly coupling an optical fiber and a planar optical wave guide
US4756587A (en) Optical multi/demultiplexer
JP3784701B2 (en) Optical circuit member and optical transceiver
JP4652507B2 (en) Optical waveguide circuit and manufacturing method thereof
JP2002122750A (en) Structure for connecting optical waveguide
US10877208B2 (en) Photonic apparatus for controlling polarization
JP3434986B2 (en) Optical multiplexing / demultiplexing circuit
JPH08304664A (en) Wavelength demultiplexing element
US5978531A (en) Optical isolator and optical amplifier waveguide device
JPH09105824A (en) Waveguide type optical element
JP2004013155A (en) Single mode optical switch, thin film optical switch, optical switch, and method for manufacturing single mode optical switch
JPH10133044A (en) Plane light circuit
JPH0255304A (en) Optical integrated circuit
JP2957399B2 (en) Beam splitter and optical branch circuit
JPH095549A (en) Optical circuit and method for manufacturing the same
US20230142315A1 (en) Photonic chip with edge coupler and method of manufacture
JPH0627334A (en) Optical waveguide
US11409038B1 (en) Polarization rotator-splitters including oxide claddings
JP7295459B2 (en) optical multiplexing circuit
US20230280524A1 (en) Optical Waveguide Device and Method for Manufacturing the Same
EP0947861A1 (en) Hybrid waveguiding optical device
JP2003107260A (en) Array waveguide grid element
JP2000121867A (en) Semiconductor light receiving device, bi-directional optical semiconductor device and light multiplexing/ demultiplexing device
KR100270320B1 (en) Straight arrayed waveguide grating wavelength division optical waveguide devices using total internal reflection
KR20230138400A (en) Edge couplers with consecutively-arranged tapers