JP2000121867A - Semiconductor light receiving device, bi-directional optical semiconductor device and light multiplexing/ demultiplexing device - Google Patents

Semiconductor light receiving device, bi-directional optical semiconductor device and light multiplexing/ demultiplexing device

Info

Publication number
JP2000121867A
JP2000121867A JP29632998A JP29632998A JP2000121867A JP 2000121867 A JP2000121867 A JP 2000121867A JP 29632998 A JP29632998 A JP 29632998A JP 29632998 A JP29632998 A JP 29632998A JP 2000121867 A JP2000121867 A JP 2000121867A
Authority
JP
Japan
Prior art keywords
optical
substrate
light receiving
light
optical waveguide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29632998A
Other languages
Japanese (ja)
Inventor
Masahiro Mitsuta
昌弘 光田
Naoki Takenaka
直樹 竹中
Tomoaki Uno
智昭 宇野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP29632998A priority Critical patent/JP2000121867A/en
Publication of JP2000121867A publication Critical patent/JP2000121867A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Couplings Of Light Guides (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce a coupling loss of an optical device having the light multiplexing/demultiplexing part of a filter insertion type. SOLUTION: An optical fiber 12 being the transmission path of a signal light is embedded in the upper part of the substrate 11 made of glass roughly parallel with the surface of the substrate 11. A flat light receiving PD 13 is fixed on the upper part of the optical fiber 12 in the substrate 11 while the light receiving surface of the PD 13 is made opposed to the principal surface of the substrate 11. A flat parallelogram shaped filter 15 which intersects the optical fiber 12 at an angle that the filter reflects the signal light of the optical fiber 12 at the area of the under side of the PD 13 in the principal surface and the light receiving surface of the PD 13 is irradiated with the reflected light 14 is inserted into the upper part of the substrate 11.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、導波路に光学フィ
ルタが挿入された半導体受光装置、双方向光半導体装置
及び光合分波器に関する。
The present invention relates to a semiconductor light receiving device in which an optical filter is inserted into a waveguide, a bidirectional optical semiconductor device, and an optical multiplexer / demultiplexer.

【0002】[0002]

【従来の技術】光通信システムにおいては、送信側で所
望の電気信号を半導体レーザ素子により信号光に変換
し、変換した信号光を光ファイバを介して受信側に伝送
する。受信側では、受信した信号光をフォトダイオード
素子により元の電気信号に変換する。
2. Description of the Related Art In an optical communication system, a desired electric signal is converted into signal light by a semiconductor laser device on a transmitting side, and the converted signal light is transmitted to a receiving side via an optical fiber. On the receiving side, the received signal light is converted to the original electrical signal by the photodiode element.

【0003】ここで、伝送路である光ファイバを効率的
に用いるために、一本の光ファイバで信号光を双方向に
伝送したり、複数の電気信号をそれぞれ波長が異なる信
号光に変換し、これらを合波(波長多重)して一本の光
ファイバで伝送する技術が用いられている。このように
双方向伝送や波長多重伝送を行なうには、信号光の合波
及び分波が不可欠であり、ファイバ融着型カプラ、又は
誘電体多層膜フィルタをレンズにより光ファイバと結合
したカプラ等が用いられている。
Here, in order to efficiently use an optical fiber which is a transmission line, a single optical fiber transmits signal light bidirectionally, or converts a plurality of electric signals into signal lights having different wavelengths. A technique of multiplexing (wavelength multiplexing) these and transmitting them through one optical fiber is used. In order to perform bidirectional transmission or wavelength division multiplexing transmission in this way, multiplexing and demultiplexing of signal light is indispensable, such as a fiber fusion type coupler or a coupler in which a dielectric multilayer filter is coupled to an optical fiber by a lens. Is used.

【0004】現在の電話網では毎秒数十キロビット程度
のデータしか伝送できないため、一般の利用者がより高
速のデータ通信サービスを享受するには、光通信を通信
システム幹線系のみならず加入者系にも普及させること
が要望されている。そのためには、合分波機能をより小
型に且つより低コストに実現する技術が必要となる。
In the current telephone network, only data of several tens of kilobits per second can be transmitted. Therefore, in order for ordinary users to enjoy higher-speed data communication services, optical communication must be performed not only on the trunk system of the communication system but also on the subscriber system. It is also required to spread it. For that purpose, a technique for realizing a multiplexing / demultiplexing function at a smaller size and at a lower cost is required.

【0005】第1の従来例として、文献「Journa
l of Lightwave Technology
vol.12,No.9, 1994, pp.1597
−1606」に、導波路中に合分波機能を実現したPL
C(Planer Lightwave Circui
t)と呼ばれる素子が提案されている。
As a first conventional example, a document "Journa"
l of Lightwave Technology
vol. 12, No. 9, 1994, p. 1597
-1606 ", a PL that realizes a multiplexing / demultiplexing function in a waveguide.
C (Planer Lightwave Circuit)
An element called t) has been proposed.

【0006】また、第2の従来例として、光ファイバを
埋め込んだ基板を備え、該光ファイバ及び基板に設けら
れた誘電体多層膜フィルタを有する合分波素子が特願平
7−198538号広報に開示されている。この誘電体
多層膜フィルタは、基板の上部及び該基板に埋め込まれ
た光ファイバにおける基板面に対して斜めに設けられた
スリットに、信号光がフィルタ面で反射して基板面側に
取り出せるように挿入されている。なお、第1の従来例
においても、波長の分波機能を実現すると素子のサイズ
が大きくなるため、フィルタを導波路中に挿入する構造
も併用されている。
As a second conventional example, a multiplexing / demultiplexing device having a substrate in which an optical fiber is embedded and having a dielectric multilayer filter provided on the optical fiber and the substrate is disclosed in Japanese Patent Application No. 7-198538. Is disclosed. This dielectric multilayer filter has a slit provided obliquely with respect to the substrate surface in the upper part of the substrate and the optical fiber embedded in the substrate so that the signal light can be reflected on the filter surface and extracted to the substrate surface side. Has been inserted. Note that, also in the first conventional example, since realizing the wavelength demultiplexing function increases the size of the element, a structure in which a filter is inserted into the waveguide is also used.

【0007】このように、導波路中に光学フィルタを挿
入することによりY字型の分岐部を構成する場合には、
透過損失を小さくするために該フィルタの膜厚を小さく
する必要があり、また、反射光の結合損失を小さくする
ために挿入位置の位置精度が重要となる。
As described above, when a Y-shaped branch portion is formed by inserting an optical filter into a waveguide,
In order to reduce the transmission loss, it is necessary to reduce the thickness of the filter, and in order to reduce the coupling loss of the reflected light, the positional accuracy of the insertion position is important.

【0008】特に、光通信に用いるシングルモード用の
光ファイバや導波路のコア径は、それぞれ10ミクロン
程度と小さいため、信号光の反射位置をミクロン単位で
制御する必要がある。
In particular, since the core diameter of a single-mode optical fiber or waveguide used for optical communication is as small as about 10 microns, it is necessary to control the reflection position of signal light in microns.

【0009】図6は、第1の従来例において、受光感度
に対するフォトダイオード(PD)の固定位置の位置ず
れの許容範囲を計算で求めた結果を示している。ここ
で、PDの受光径を80μm、ファイバコアの中心部と
PDとの距離を140μm、入射角度を30°とした。
図6に示すように、基準位置(±0)から±25μmの
範囲においては高い受光感度を得られるが、±25μm
の範囲からずれた領域においては急激に感度が低下して
いることが分かる。ここでは、PD素子の位置ずれのみ
を示したが、スリットの位置又はスリット中のフィルタ
の位置等にずれが生じても、同様に感度の低下を引き起
こす。
FIG. 6 shows the result of calculation of the allowable range of the positional shift of the fixed position of the photodiode (PD) with respect to the light receiving sensitivity in the first conventional example. Here, the light receiving diameter of the PD was 80 μm, the distance between the center of the fiber core and the PD was 140 μm, and the incident angle was 30 °.
As shown in FIG. 6, high light receiving sensitivity can be obtained in a range of ± 25 μm from the reference position (± 0), but ± 25 μm
It can be seen that the sensitivity sharply decreases in the region deviated from the range. Here, only the displacement of the PD element is shown, but if the displacement of the slit or the position of the filter in the slit occurs, the sensitivity similarly decreases.

【0010】なお、光学フィルタは、通常、ガラス又は
ポリイミドよりなる基板の上に誘電体多層膜が蒸着され
てなり、基板の厚さが数ミクロンから数十ミクロン程度
であるため、フィルタの表裏面の識別が必須となる。一
般にフィルタの表裏面の識別は、基板表面に塗料やキズ
を付けたマーカーを設けることにより行なわれている。
[0010] The optical filter is usually formed by depositing a dielectric multilayer film on a substrate made of glass or polyimide, and the thickness of the substrate is several microns to several tens microns. Must be identified. Generally, identification of the front and back surfaces of a filter is performed by providing a marker with a paint or a scratch on the substrate surface.

【0011】[0011]

【発明が解決しようとする課題】しかしながら、前記従
来のフィルタ挿入型の光合分波装置は、フィルタの表面
と裏面との識別が容易でないため、表面と裏面とを違え
た場合にはフィルタにおける信号光の反射位置がずれる
ので、結合損失が生じるという問題がある。
However, in the above-mentioned conventional optical multiplexer / demultiplexer equipped with a filter, it is not easy to discriminate between the front surface and the back surface of the filter. Since the light reflection position is shifted, there is a problem that a coupling loss occurs.

【0012】また、フィルタごとにマーカーをつけると
いう作業が必要であり、さらには、光を透過するフィル
タの場合にはフィルタの両面からマーカーが見えてしま
い、自動識別には向かないという問題がある。
In addition, it is necessary to add a marker to each filter. Further, in the case of a filter transmitting light, the marker is visible from both sides of the filter, which is not suitable for automatic identification. .

【0013】本発明は、前記従来の問題を解決し、フィ
ルタ挿入型の合分波部を持つ光装置における結合損失を
低減できるようにすることを目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to solve the above-mentioned conventional problems and to reduce the coupling loss in an optical device having a filter insertion type multiplexing / demultiplexing unit.

【0014】[0014]

【課題を解決するための手段】前記の目的を達成するた
め、本発明は、光学フィルタを面内非対称な平面形状を
持つ構成とする。
To achieve the above object, the present invention provides an optical filter having an in-plane asymmetric planar shape.

【0015】具体的に、本発明に係る半導体受光装置
は、信号光を伝搬する光導波路が設けられた基板と、光
導波路に、信号光を光導波路から分岐させるように設け
られ、信号光から分岐光を生成する板状の光学部材と、
基板上に設けられ、分岐光を受ける半導体受光素子とを
備え、光学部材は、受光面に対称軸を持たない平面形状
を有している。
Specifically, a semiconductor light receiving device according to the present invention is provided with a substrate provided with an optical waveguide for transmitting signal light, and provided on the optical waveguide so as to branch the signal light from the optical waveguide. A plate-shaped optical member that generates branched light,
A semiconductor light receiving element provided on the substrate and receiving the branched light; and the optical member has a planar shape having no symmetric axis on a light receiving surface.

【0016】本発明の半導体受光装置によると、信号光
分岐用の光学部材を受光面に対称軸を持たない平面形状
としているため、光学部材における受光面の平面形状と
該受光面と反対側の面の平面形状とが互いに異なるの
で、受光面(表面)と該受光面と反対側の面(裏面)と
の識別が容易となる。
According to the semiconductor light receiving device of the present invention, since the optical member for splitting the signal light has a planar shape having no symmetric axis on the light receiving surface, the planar shape of the light receiving surface of the optical member and the opposite side of the light receiving surface are opposite to the light receiving surface. Since the plane shapes of the surfaces are different from each other, it is easy to distinguish between the light receiving surface (front surface) and the surface opposite to the light receiving surface (back surface).

【0017】本発明に係る双方向光半導体装置は、信号
光を伝搬する光導波路が設けられた基板と、光導波路
に、信号光を光導波路から分岐させるように設けられ、
信号光から分岐光を生成する板状の光学部材と、基板上
に設けられ、分岐光を受ける半導体受光素子と、光導波
路の端部と光学的に接続された半導体発光素子とを備
え、光学部材は、受光面に対称軸を持たない平面形状を
有している。
A bidirectional optical semiconductor device according to the present invention is provided with a substrate provided with an optical waveguide for transmitting signal light, and provided on the optical waveguide so as to branch the signal light from the optical waveguide.
An optical member comprising: a plate-shaped optical member that generates branched light from signal light; a semiconductor light receiving element provided on the substrate and receiving the branched light; and a semiconductor light emitting element optically connected to an end of the optical waveguide. The member has a planar shape that does not have a symmetry axis on the light receiving surface.

【0018】本発明の双方向光半導体装置によると、信
号光分岐用の光学部材を受光面に対称軸を持たない平面
形状としているため、光学部材における受光面の平面形
状と該受光面の反対側の面の平面形状とが互いに異なる
ので、該光学部材の表面と裏面との識別が容易となる。
According to the bidirectional optical semiconductor device of the present invention, since the optical member for splitting the signal light has a planar shape having no symmetric axis on the light receiving surface, the planar shape of the light receiving surface of the optical member is opposite to the planar shape of the light receiving surface. Since the plane shapes of the side surfaces are different from each other, it is easy to distinguish between the front surface and the back surface of the optical member.

【0019】本発明に係る光合分波装置は、信号光を伝
搬する光導波路が設けられた基板と、光導波路に、信号
光を光導波路から分岐させるように設けられた板状の光
学部材とを備え、光学部材は、受光面に対称軸を持たな
い平面形状を有している。
An optical multiplexer / demultiplexer according to the present invention comprises: a substrate provided with an optical waveguide for transmitting signal light; and a plate-shaped optical member provided on the optical waveguide so as to split the signal light from the optical waveguide. And the optical member has a planar shape having no axis of symmetry in the light receiving surface.

【0020】本発明の光合分波装置によると、信号光分
岐用の光学部材を受光面に対称軸を持たない平面形状と
しているため、光学部材における受光面の平面形状と該
受光面の反対側の面の平面形状とが互いに異なるので、
該光学部材の表面と裏面との識別が容易となる。
According to the optical multiplexer / demultiplexer of the present invention, since the optical member for splitting the signal light has a planar shape having no symmetric axis on the light receiving surface, the planar shape of the light receiving surface in the optical member and the opposite side of the light receiving surface. Since the plane shapes of the surfaces are different from each other,
It is easy to distinguish between the front surface and the back surface of the optical member.

【0021】本発明の半導体受光装置、双方向光半導体
装置又は光合分波装置において、光学部材の受光面が平
行四辺形状を有していることが好ましい。
In the semiconductor light receiving device, the bidirectional optical semiconductor device or the optical multiplexer / demultiplexer of the present invention, it is preferable that the light receiving surface of the optical member has a parallelogram shape.

【0022】本発明の半導体受光装置、双方向光半導体
装置及び光合分波装置において、光学部材の受光面が、
内角の角度が互いに異なる三角形状を有していることが
好ましい。
In the semiconductor light receiving device, the bidirectional optical semiconductor device and the optical multiplexer / demultiplexer of the present invention, the light receiving surface of the optical member is
It is preferable that the inner angles have different triangular shapes.

【0023】本発明の半導体受光装置、双方向光半導体
装置及び光合分波装置において、光導波路が基板に埋め
込まれた光ファイバよりなることが好ましい。
In the semiconductor light receiving device, the bidirectional optical semiconductor device and the optical multiplexer / demultiplexer of the present invention, it is preferable that the optical waveguide is made of an optical fiber embedded in a substrate.

【0024】本発明の半導体受光装置、双方向光半導体
装置又は光合分波装置において、基板が石英よりなり、
光導波路が基板に石英の屈折率差により形成されたPL
C回路よりなることが好ましい。
In the semiconductor light receiving device, the bidirectional optical semiconductor device or the optical multiplexer / demultiplexer of the present invention, the substrate is made of quartz,
PL where optical waveguide is formed on substrate by refractive index difference of quartz
It is preferable to use a C circuit.

【0025】本発明の半導体受光装置、双方向光半導体
装置又は光合分波装置において、基板が樹脂よりなり、
光導波路が基板に樹脂の屈折率差により形成された光回
路よりなることが好ましい。
In the semiconductor light receiving device, the bidirectional optical semiconductor device or the optical multiplexer / demultiplexer of the present invention, the substrate is made of resin,
It is preferable that the optical waveguide be formed of an optical circuit formed on the substrate by a difference in the refractive index of the resin.

【0026】[0026]

【発明の実施の形態】(第1の実施形態)本発明の第1
の実施形態について図面を参照しながら説明する。
(First Embodiment) A first embodiment of the present invention.
An embodiment will be described with reference to the drawings.

【0027】図1(a)及び(b)は本発明の第1の実
施形態に係る半導体受光装置であって、(a)は正面の
断面構成を示し、(b)は側面構成を示している。図1
(a)において、例えば、ガラスよりなる基板11の上
部には、信号光の伝送路である光ファイバ12が基板面
にほぼ平行に埋め込まれている。基板11における光フ
ァイバ12の上方には、半導体受光素子としての面受光
型のPD13が受光面を基板11の主面と対抗させては
んだ材により固着されている。基板11の上部には、主
面におけるPD13の下側の領域において光ファイバ1
2の信号光を反射させ、反射した信号光(分岐光)14
をPD13の受光部に照射させる角度で光ファイバ12
と交差する光学部材としてのフィルタ15が挿入されて
いる。
FIGS. 1A and 1B show a semiconductor light receiving device according to a first embodiment of the present invention, wherein FIG. 1A shows a cross-sectional configuration of the front, and FIG. I have. FIG.
1A, for example, an optical fiber 12 serving as a signal light transmission path is buried in an upper part of a substrate 11 made of glass substantially parallel to the substrate surface. Above the optical fiber 12 on the substrate 11, a surface light receiving type PD 13 as a semiconductor light receiving element is fixed with a solder material with the light receiving surface opposed to the main surface of the substrate 11. On the upper part of the substrate 11, an optical fiber 1 is provided in a region below the PD 13 on the main surface.
2 is reflected, and the reflected signal light (branch light) 14
The optical fiber 12 at an angle at which the light
A filter 15 is inserted as an optical member that intersects.

【0028】PD13は信号光の分岐光14を受け、受
けた分岐光14を電気信号に変換する。
The PD 13 receives the split light 14 of the signal light and converts the received split light 14 into an electric signal.

【0029】ここで、フィルタ15を図2に基づいて説
明する。図2(a)及び(b)は本実施形態に係る光学
フィルタであって、(a)は正面構成を示し、(b)は
側面構成を示している。図2(b)に示すように、フィ
ルタ15は、膜厚がそれぞれ10μm程度の、ポリイミ
ドよりなる基板15aと、該基板15a上に酸化シリコ
ン(SiO2 )及び酸化チタン(TiO2 )が積層され
てなり、受光面となる誘電体多層膜15bとから構成さ
れている。従って、基板15aの膜厚がフィルタ15の
ほぼ半分を占めるため、フィルタの表裏面を違えると、
入射信号光の反射位置がほぼ10μmも異なり、図1に
示すPD13の受光部に対して分岐光14が10μmも
ずれてしまう。そこで、フィルタ15の受光面の面形状
(フィルタ形状)を図2(a)に示すように、平行四辺
形状とすることにより、図面上で平行四辺形の内角のう
ち、鋭角が右上及び左下となる場合に、手前がフィルタ
の表(おもて)面となるようにする。このようにするこ
とにより、内角の鋭角が、右上に位置するときは常に表
面であり、右下に位置するときは常に裏面(受光面と反
対側の面)であることが確実に識別できるようになる。
Here, the filter 15 will be described with reference to FIG. 2A and 2B show an optical filter according to the present embodiment, wherein FIG. 2A shows a front configuration, and FIG. 2B shows a side configuration. As shown in FIG. 2B, the filter 15 has a substrate 15a made of polyimide and having a film thickness of about 10 μm, and silicon oxide (SiO 2 ) and titanium oxide (TiO 2 ) are laminated on the substrate 15a. And a dielectric multilayer film 15b serving as a light receiving surface. Therefore, since the film thickness of the substrate 15a occupies almost half of the filter 15, if the front and back surfaces of the filter are different,
The reflection position of the incident signal light differs by about 10 μm, and the branched light 14 is shifted by 10 μm with respect to the light receiving portion of the PD 13 shown in FIG. Therefore, by forming the surface shape (filter shape) of the light receiving surface of the filter 15 into a parallelogram as shown in FIG. 2A, the acute angles of the inner angles of the parallelogram in the drawing are defined as the upper right and lower left. In such a case, the front side of the filter should be the front side. By doing so, it is possible to reliably identify that the acute angle of the inner angle is always the front surface when located at the upper right and is always the back surface (surface opposite to the light receiving surface) when located at the lower right. become.

【0030】従って、受光面内にどのような直線を引い
ても線対称とはならない形状の場合に、その直線を軸に
して回転した形状が元の形状と一致しないため、識別用
のマーカーを設けなくても、フィルタ形状のみで表面と
裏面とを識別できる。これにより、フィルタ15の基板
11及び光ファイバ12への挿入時にフィルタ15の表
裏面を違えることにより生じる位置ずれを防止できるの
で、PD13の受光部における受光光の結合損失を低減
できる。
Therefore, in the case of a shape that does not become line-symmetric even if any straight line is drawn in the light receiving surface, the shape rotated around the straight line does not match the original shape, and therefore, the identification marker is used. Even if it is not provided, the front surface and the back surface can be distinguished only by the filter shape. Thereby, when the filter 15 is inserted into the substrate 11 and the optical fiber 12, the displacement caused by changing the front and back surfaces of the filter 15 can be prevented, so that the coupling loss of the received light in the light receiving unit of the PD 13 can be reduced.

【0031】その上、マーカーを設ける工程を省略でき
ると共に、自動識別も容易となる。なお、従来の方形状
のフィルタは、縦方向及び横方向の2方向のダイシング
のみで形成可能であったが、平行四辺形状の場合も同様
に2方向のダイシングのみで形成できることは明らかで
ある。
In addition, the step of providing a marker can be omitted, and automatic identification becomes easy. Although a conventional rectangular filter can be formed only by dicing in two directions, that is, a vertical direction and a horizontal direction, it is apparent that a filter having a parallelogram shape can also be formed only by dicing in two directions.

【0032】また、本実施形態においては、フィルタ面
に向かって平行四辺形の鋭角が右上となる側が表面とな
るようにしたが、逆に鋭角が右下となる側を表面として
もよい。
In the present embodiment, the side where the acute angle of the parallelogram toward the filter surface is on the upper right is the surface, but the side where the acute angle is on the lower right may be the surface.

【0033】また、図3(a)及び(b)の本実施形態
の一変形例に係る光学フィルタに示すように、フィルタ
形状は、内角の角度が互いに異なる三角形状を有してい
てもよい。ここで、図3(a)及び(b)において、図
2に示す構成部材と同一の構成部材には同一の符号を付
すことにより説明を省略する。このように、フィルタ1
5が、内角の角度が互いに異なる三角形状を有していて
も、面内に対称軸を持たないため、例えば、図3(a)
に示すように、内角が最大となる隅部が右下に位置する
ときの面を受光面とすれば、フィルタ15の表裏面を確
実に識別できる。
Further, as shown in an optical filter according to a modified example of the present embodiment in FIGS. 3A and 3B, the filter shape may have a triangular shape having different internal angles. . Here, in FIGS. 3A and 3B, the same components as those shown in FIG. 2 are denoted by the same reference numerals, and description thereof is omitted. Thus, filter 1
Even if 5 has a triangular shape in which the angles of the internal angles are different from each other, since it has no in-plane symmetry axis, for example, FIG.
As shown in (2), if the surface at the time when the corner having the maximum inner angle is located at the lower right is the light receiving surface, the front and back surfaces of the filter 15 can be reliably identified.

【0034】さらに、三角形状の場合は、1枚当たりの
面積が小さくなるため、コストを低減でき、また、内角
には必ず鋭角があるため、基板11又は光ファイバ12
に設けられる極めて幅が狭いスリットに挿入しやすくな
る。
Furthermore, in the case of a triangular shape, the area per sheet becomes small, so that the cost can be reduced. Further, since the inner angle always has an acute angle, the substrate 11 or the optical fiber
It becomes easy to insert into the very narrow slit provided in.

【0035】また、基板11に石英を用い、光導波路に
石英の屈折率差を用いたPLC回路を構成してもよい。
また、基板11にポリイミドよりなる基板を用い、光導
波路にポリイミドの屈折率差を用いた光回路を構成して
もよい。
Alternatively, a PLC circuit using quartz for the substrate 11 and using a difference in the refractive index of quartz for the optical waveguide may be formed.
Also, an optical circuit using a substrate made of polyimide for the substrate 11 and using a difference in the refractive index of polyimide for the optical waveguide may be configured.

【0036】(第2の実施形態)以下、本発明の第2の
実施形態について図面を参照しながら説明する。
(Second Embodiment) Hereinafter, a second embodiment of the present invention will be described with reference to the drawings.

【0037】図4(a)及び(b)は本発明の第2の実
施形態に係る双方向光半導体装置であって、(a)は正
面の断面構成を示し、(b)は側面構成を示している。
図4において、図1に示す構成部材と同一の構成部材に
は同一の符号を付すことにより説明を省略する。図4
(a)に示すように、例えば、シリコンよりなり、段差
部を有する第1の基板21における該段差部の下段には
受光素子部1が形成され、該段差部の上段には発光素子
部2が形成されている。
FIGS. 4A and 4B show a bidirectional optical semiconductor device according to a second embodiment of the present invention, wherein FIG. 4A shows a cross-sectional configuration of the front, and FIG. Is shown.
In FIG. 4, the same components as those shown in FIG. FIG.
As shown in (a), for example, the light receiving element 1 is formed below the step in the first substrate 21 made of silicon and having the step, and the light emitting element 2 is formed above the step. Are formed.

【0038】受光素子部1は、第1の実施形態と同様の
受光装置であって、ガラスよりなる第2の基板22の上
部に埋め込まれた光導波路としての光ファイバ12と、
第2の基板22上における光ファイバ12の上方に固着
された面受光型のPD13と、第2の基板22の上部
に、基板面のPD13の下側の領域において光ファイバ
12の信号光を反射させ、反射した分岐光をPD13の
受光部に照射させる角度で光ファイバ12と交差するフ
ィルタ15Aとが形成されている。ここで、フィルタ1
5Aは、発光素子部2から出射される信号光を遮らない
ように半透過性としている。また、図4(b)に示すよ
うに、フィルタ15Aの平面形状は平行四辺形状であ
り、該フィルタ15Aの表裏面の識別を容易に行なえ
る。
The light receiving element 1 is a light receiving device similar to that of the first embodiment, and includes an optical fiber 12 as an optical waveguide embedded on a second substrate 22 made of glass.
The surface light receiving type PD 13 fixed above the optical fiber 12 on the second substrate 22, and the signal light of the optical fiber 12 is reflected above the second substrate 22 in a region below the PD 13 on the substrate surface. A filter 15A is formed that intersects the optical fiber 12 at an angle at which the reflected branch light is emitted to the light receiving portion of the PD 13. Here, filter 1
5A is semi-transparent so as not to block the signal light emitted from the light emitting element unit 2. Further, as shown in FIG. 4B, the planar shape of the filter 15A is a parallelogram, and the front and back surfaces of the filter 15A can be easily identified.

【0039】発光素子部2は、第1の基板21における
段差部の上段に、例えば、はんだ材により固着され、且
つ、光ファイバ12におけるフィルタ15Aに対してP
D13と反対側の端部に、半導体レーザ素子23が光学
的に結合されて構成されている。
The light emitting element section 2 is fixed to the upper part of the stepped portion of the first substrate 21 by, for example, a solder material, and is connected to the filter 15A of the optical fiber 12 with respect to the filter 15A.
A semiconductor laser element 23 is optically coupled to an end opposite to D13.

【0040】本実施形態によると、双方向光半導体装置
であっても、光ファイバ12の信号光を分岐するフィル
タ15Aは、表裏面の識別が容易なフィルタ形状を有し
ているため、受光素子部1の組立工程において表裏面を
誤ることがなく、また、自動組立も容易となる。従っ
て、フィルタ15Aの挿入時に表裏面を違えることによ
り生じる位置ずれを防止できるので、受光素子部1にお
ける受光光の結合損失を低減できる。
According to the present embodiment, even in a bidirectional optical semiconductor device, the filter 15A for branching the signal light of the optical fiber 12 has a filter shape that allows easy identification of the front and back surfaces. In the assembling process of the part 1, the front and back surfaces are not mistaken, and the automatic assembling is facilitated. Therefore, a displacement caused by changing the front and back surfaces when the filter 15A is inserted can be prevented, so that the coupling loss of the received light in the light receiving element unit 1 can be reduced.

【0041】なお、フィルタ15Aの面形状は、フィル
タ形成面内に対称軸を持たない形状であれば、平行四辺
形状に限らないことはいうまでもない。
It is needless to say that the surface shape of the filter 15A is not limited to a parallelogram shape as long as it does not have a symmetry axis in the filter formation surface.

【0042】また、第2の基板22に石英を用い、光導
波路に石英の屈折率差を用いたPLC回路を構成しても
よい。また、第2の基板22にポリイミドよりなる基板
を用い、光導波路にポリイミドの屈折率差を用いた光回
路を構成してもよい。
Further, a PLC circuit using quartz for the second substrate 22 and using a refractive index difference of quartz for the optical waveguide may be formed. Further, an optical circuit using a substrate made of polyimide for the second substrate 22 and using a difference in the refractive index of polyimide for the optical waveguide may be configured.

【0043】(第3の実施形態)以下、本発明の第3の
実施形態について図面を参照しながら説明する。
(Third Embodiment) Hereinafter, a third embodiment of the present invention will be described with reference to the drawings.

【0044】図5は本発明の第3の実施形態に係る光合
分波装置の平面構成を示している。図5に示すように、
石英よりなる基板31上には、石英の屈折率差を用いた
光導波路32が形成されており、基板31上における光
導波路32の分岐部32aには光導波路32を横断する
ようにフィルタ15Bが設けられている。
FIG. 5 shows a plan configuration of an optical multiplexer / demultiplexer according to a third embodiment of the present invention. As shown in FIG.
An optical waveguide 32 using a difference in the refractive index of quartz is formed on a substrate 31 made of quartz, and a filter 15B is provided at a branch portion 32a of the optical waveguide 32 on the substrate 31 so as to cross the optical waveguide 32. Is provided.

【0045】ところで、第1及び第2の実施形態に係る
PDを有する半導体装置の場合は、PDの受光面に信号
光が到達しさえすれば信号光の感度を得られるため、位
置ずれの許容量は比較的大きいが、本実施形態のよう
に、分岐光を他の光導波路に結合するPLC等の場合の
許容量は非常に小さい。従って、フィルタ15Bの表裏
面の識別は、光導波路32の結合効率にさらに大きな影
響を与えることになる。
In the case of the semiconductor device having the PD according to the first and second embodiments, the sensitivity of the signal light can be obtained as long as the signal light reaches the light receiving surface of the PD. Although the capacity is relatively large, the allowable amount in the case of a PLC or the like that couples branched light to another optical waveguide as in the present embodiment is very small. Therefore, identification of the front and back surfaces of the filter 15B has a greater effect on the coupling efficiency of the optical waveguide 32.

【0046】このような場合にも、フィルタ15Bの面
形状を、フィルタ形成面内に対称軸を持たない形状、例
えば、平行四辺形状や内角の角度が互いに異なる三角形
状であれば、フィルタ15Bの基板31への挿入時に表
裏面を違えることにより生じる位置ずれを確実に防止で
きる。その結果、分岐部32aにおける結合損失を低減
できる。
Even in such a case, if the surface shape of the filter 15B is a shape having no axis of symmetry in the filter forming surface, for example, a parallelogram shape or a triangular shape having different angles of the inner angles, the filter 15B is formed. It is possible to reliably prevent misalignment caused by changing the front and back surfaces when inserting into the substrate 31. As a result, the coupling loss in the branch part 32a can be reduced.

【0047】なお、基板31に石英を用いたが、ポリイ
ミドを用いてもよく、光導波路32は、ポリイミドの屈
折率差を用いて形成してもよい。
Although quartz is used for the substrate 31, polyimide may be used, and the optical waveguide 32 may be formed using the difference in the refractive index of polyimide.

【0048】[0048]

【発明の効果】本発明の半導体受光装置、双方向光半導
体装置又は光合分波装置によると、光学部材の受光面
(表面)及び該受光面と反対側の面(裏面)の平面形状
とが互いに異なるため、光学部材の表面と裏面との識別
が容易となるので、装置の組立時に光学部材の表裏面を
違えることがなくなり、表裏面を違えることにより生じ
る分岐光の位置ずれを防止できる。その結果、合分波に
よる信号光の挿入損及び分岐損を低減でき、装置におけ
る所望の電気的光学的特性を得られるようになる。
According to the semiconductor light receiving device, the bidirectional optical semiconductor device or the optical multiplexer / demultiplexer of the present invention, the planar shape of the light receiving surface (front surface) of the optical member and the surface (rear surface) opposite to the light receiving surface are different. Since the optical members are different from each other, it is easy to distinguish the front surface and the back surface of the optical member. Therefore, the front and back surfaces of the optical member do not differ during the assembly of the device, and the displacement of the branched light caused by the different front and back surfaces can be prevented. As a result, insertion loss and branch loss of signal light due to multiplexing / demultiplexing can be reduced, and desired electrical and optical characteristics in the device can be obtained.

【0049】本発明の半導体受光装置、双方向光半導体
装置又は光合分波装置において、光学部材の受光面が平
行四辺形状を有していると、光学部材の表裏面の識別が
容易となる上に、従来の方形状の光学部材と同様に、横
方向及び斜め方向の2方向のダイシングで形成できるの
で、新たな工程を増加させない。
In the semiconductor light receiving device, bidirectional optical semiconductor device or optical multiplexer / demultiplexer of the present invention, if the light receiving surface of the optical member has a parallelogram shape, the front and back surfaces of the optical member can be easily identified. In addition, similar to the conventional rectangular optical member, it can be formed by dicing in two directions, that is, the horizontal direction and the oblique direction.

【0050】本発明の半導体受光装置、双方向光半導体
装置及び光合分波装置において、光学部材の受光面が、
内角の角度が互いに異なる三角形状を有していると、光
学部材の表裏面の識別が容易となる上に、従来の方形状
の光学部材よりも小型にでき且つ基板に挿入し易い。
In the semiconductor light receiving device, bidirectional optical semiconductor device and optical multiplexer / demultiplexer of the present invention, the light receiving surface of the optical member is
If the inner angle has a triangular shape different from each other, the front and back surfaces of the optical member can be easily identified, and the optical member can be made smaller than the conventional rectangular optical member and can be easily inserted into the substrate.

【0051】本発明の半導体受光装置、双方向光半導体
装置及び光合分波装置において、光導波路が基板に埋め
込まれた光ファイバよりなると、光導波路を容易に且つ
確実に形成できる。
In the semiconductor light receiving device, the bidirectional optical semiconductor device and the optical multiplexer / demultiplexer of the present invention, when the optical waveguide is formed of an optical fiber embedded in a substrate, the optical waveguide can be formed easily and reliably.

【0052】本発明の半導体受光装置、双方向光半導体
装置又は光合分波装置において、基板が石英よりなり、
光導波路が基板に石英の屈折率差により形成されたPL
C回路よりなると、装置の小型化を図ることができる。
In the semiconductor light receiving device, the bidirectional optical semiconductor device or the optical multiplexer / demultiplexer of the present invention, the substrate is made of quartz,
PL where optical waveguide is formed on substrate by refractive index difference of quartz
With the C circuit, the size of the device can be reduced.

【0053】本発明の半導体受光装置、双方向光半導体
装置又は光合分波装置において、基板が樹脂よりなり、
光導波路が基板に樹脂の屈折率差により形成された光回
路よりなると、装置の小型化を図れると共にコストを低
減できる。
In the semiconductor light receiving device, the bidirectional optical semiconductor device or the optical multiplexer / demultiplexer of the present invention, the substrate is made of resin,
If the optical waveguide is formed of an optical circuit formed on the substrate by the difference in the refractive index of the resin, the size of the device can be reduced and the cost can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施形態に係る半導体受光装置
を示し、(a)は正面の断面図であり、(b)は側面図
である。
FIGS. 1A and 1B show a semiconductor light receiving device according to a first embodiment of the present invention, wherein FIG. 1A is a front sectional view and FIG. 1B is a side view.

【図2】本発明の第1の実施形態に係る半導体受光装置
の光学フィルタを示し、(a)は正面図であり、(b)
は側面図である。
FIGS. 2A and 2B show an optical filter of the semiconductor light receiving device according to the first embodiment of the present invention, wherein FIG. 2A is a front view and FIG.
Is a side view.

【図3】本発明の第1の実施形態の一変形例に係る半導
体受光装置の光学フィルタを示し、(a)は正面図であ
り、(b)は側面図である。
3A and 3B show an optical filter of a semiconductor light receiving device according to a modification of the first embodiment of the present invention, wherein FIG. 3A is a front view and FIG. 3B is a side view.

【図4】本発明の第2の実施形態に係る双方向光半導体
装置を示し、(a)は正面の断面図であり、(b)は側
面図である。
4A and 4B show a bidirectional optical semiconductor device according to a second embodiment of the present invention, wherein FIG. 4A is a front cross-sectional view and FIG. 4B is a side view.

【図5】本発明の第3の実施形態に係る光合分波装置を
示す平面図である。
FIG. 5 is a plan view showing an optical multiplexer / demultiplexer according to a third embodiment of the present invention.

【図6】第1の従来例に係る受光感度に対するフォトダ
イオードの固定位置の位置ずれの許容範囲を示すグラフ
である。
FIG. 6 is a graph showing an allowable range of a positional shift of a fixed position of a photodiode with respect to a light receiving sensitivity according to a first conventional example.

【符号の説明】[Explanation of symbols]

1 受光素子部 2 発光素子部 11 基板 12 光ファイバ 13 PD(半導体受光素子) 14 信号光(分岐光) 15 光学フィルタ(光学部材) 15A 光学フィルタ 15B 光学フィルタ 15a 基板 15b 誘電体多層膜 21 第1の基板 22 第2の基板 23 半導体レーザ素子 31 基板 32 光導波路 REFERENCE SIGNS LIST 1 light receiving element section 2 light emitting element section 11 substrate 12 optical fiber 13 PD (semiconductor light receiving element) 14 signal light (branched light) 15 optical filter (optical member) 15A optical filter 15B optical filter 15a substrate 15b dielectric multilayer film 21 first Substrate 22 Second substrate 23 Semiconductor laser device 31 Substrate 32 Optical waveguide

───────────────────────────────────────────────────── フロントページの続き (72)発明者 宇野 智昭 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 Fターム(参考) 2H037 BA02 DA06 2H047 LA14 TA32  ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Tomoaki Uno 1006 Kazuma Kadoma, Kazuma, Osaka Matsushita Electric Industrial Co., Ltd. F-term (reference) 2H037 BA02 DA06 2H047 LA14 TA32

Claims (18)

【特許請求の範囲】[Claims] 【請求項1】 信号光を伝搬する光導波路が設けられた
基板と、 前記光導波路に、前記信号光を前記光導波路から分岐さ
せるように設けられ、前記信号光から分岐光を生成する
板状の光学部材と、 前記基板上に設けられ、前記分岐光を受ける半導体受光
素子とを備え、 前記光学部材は、受光面に対称軸を持たない平面形状を
有していることを特徴とする半導体受光装置。
A substrate provided with an optical waveguide for propagating signal light; and a plate-shaped member provided on the optical waveguide so as to split the signal light from the optical waveguide and generating a split light from the signal light. A semiconductor light-receiving element provided on the substrate and receiving the branched light, wherein the optical member has a planar shape having no symmetric axis on a light-receiving surface. Light receiving device.
【請求項2】 前記光学部材の受光面は、平行四辺形状
を有していることを特徴とする請求項1に記載の半導体
受光装置。
2. The semiconductor light receiving device according to claim 1, wherein the light receiving surface of the optical member has a parallelogram shape.
【請求項3】 前記光学部材の受光面は、内角の角度が
互いに異なる三角形状を有していることを特徴とする請
求項1に記載の半導体受光装置。
3. The semiconductor light receiving device according to claim 1, wherein the light receiving surface of the optical member has a triangular shape in which the angles of the internal angles are different from each other.
【請求項4】 前記光導波路は、前記基板に埋め込まれ
た光ファイバよりなることを特徴とする請求項1に記載
の半導体受光装置。
4. The semiconductor light receiving device according to claim 1, wherein said optical waveguide comprises an optical fiber embedded in said substrate.
【請求項5】 前記基板は石英よりなり、 前記光導波路は、前記基板に前記石英の屈折率差により
形成されたPLC回路よりなることを特徴とする請求項
1に記載の半導体受光装置。
5. The semiconductor light receiving device according to claim 1, wherein said substrate is made of quartz, and said optical waveguide is made of a PLC circuit formed on said substrate by a difference in refractive index of said quartz.
【請求項6】 前記基板は樹脂よりなり、 前記光導波路は、前記基板に前記樹脂の屈折率差により
形成された光回路よりなることを特徴とする請求項1に
記載の半導体受光装置。
6. The semiconductor light receiving device according to claim 1, wherein the substrate is made of a resin, and the optical waveguide is made of an optical circuit formed on the substrate by a difference in the refractive index of the resin.
【請求項7】 信号光を伝搬する光導波路が設けられた
基板と、 前記光導波路に、前記信号光を前記光導波路から分岐さ
せるように設けられ、 前記信号光から分岐光を生成する板状の光学部材と、 前記基板上に設けられ、前記分岐光を受ける半導体受光
素子と、 前記光導波路の端部と光学的に接続された半導体発光素
子とを備え、 前記光学部材は、受光面に対称軸を持たない平面形状を
有していることを特徴とする双方向光半導体装置。
7. A substrate provided with an optical waveguide for propagating signal light, and a plate-shaped member provided on the optical waveguide so as to split the signal light from the optical waveguide, and generating a split light from the signal light. An optical member, comprising: a semiconductor light receiving element provided on the substrate and receiving the branched light; and a semiconductor light emitting element optically connected to an end of the optical waveguide, wherein the optical member is provided on a light receiving surface. A bidirectional optical semiconductor device having a planar shape having no axis of symmetry.
【請求項8】 前記光学部材の受光面は、平行四辺形状
を有していることを特徴とする請求項7に記載の双方向
光半導体装置。
8. The optical semiconductor device according to claim 7, wherein the light receiving surface of the optical member has a parallelogram shape.
【請求項9】 前記光学部材の受光面は、内角の角度が
互いに異なる三角形状を有していることを特徴とする請
求項7に記載の双方向光半導体装置。
9. The bidirectional optical semiconductor device according to claim 7, wherein the light receiving surface of the optical member has a triangular shape in which the angles of the internal angles are different from each other.
【請求項10】 前記光導波路は、前記基板に埋め込ま
れた光ファイバよりなることを特徴とする請求項7に記
載の双方向光半導体装置。
10. The bidirectional optical semiconductor device according to claim 7, wherein said optical waveguide comprises an optical fiber embedded in said substrate.
【請求項11】 前記基板は石英よりなり、 前記光導波路は、前記基板に前記石英の屈折率差により
形成されたPLC回路よりなることを特徴とする請求項
7に記載の双方向光半導体装置。
11. The bidirectional optical semiconductor device according to claim 7, wherein said substrate is made of quartz, and said optical waveguide is made of a PLC circuit formed on said substrate by a difference in refractive index of said quartz. .
【請求項12】 前記基板は樹脂よりなり、 前記光導波路は、前記基板に前記樹脂の屈折率差により
形成された光回路よりなることを特徴とする請求項7に
記載の双方向光半導体装置。
12. The bidirectional optical semiconductor device according to claim 7, wherein the substrate is made of a resin, and the optical waveguide is made of an optical circuit formed on the substrate by a difference in the refractive index of the resin. .
【請求項13】 信号光を伝搬する光導波路が設けられ
た基板と、 前記光導波路に、前記信号光を前記光導波路から分岐さ
せるように設けられた板状の光学部材とを備え、 前記光学部材は、受光面に対称軸を持たない平面形状を
有していることを特徴とする光合分波装置。
13. The optical system comprising: a substrate provided with an optical waveguide for transmitting signal light; and a plate-shaped optical member provided on the optical waveguide so as to branch the signal light from the optical waveguide. An optical multiplexing / demultiplexing device, wherein the member has a planar shape having no symmetric axis on a light receiving surface.
【請求項14】 前記光学部材の受光面は、平行四辺形
状を有していることを特徴とする請求項13に記載の光
合分波装置。
14. The optical multiplexer / demultiplexer according to claim 13, wherein the light receiving surface of the optical member has a parallelogram shape.
【請求項15】 前記光学部材の受光面は、内角の角度
が互いに異なる三角形状を有していることを特徴とする
請求項13に記載の光合分波装置。
15. The optical multiplexing / demultiplexing device according to claim 13, wherein the light receiving surface of the optical member has a triangular shape in which the angles of the inner angles are different from each other.
【請求項16】 前記光導波路は、前記基板に埋め込ま
れた光ファイバよりなることを特徴とする請求項13に
記載の光合分波装置。
16. The optical multiplexer / demultiplexer according to claim 13, wherein said optical waveguide is made of an optical fiber embedded in said substrate.
【請求項17】 前記基板は石英よりなり、 前記光導波路は、前記基板に前記石英の屈折率差により
形成されたPLC回路よりなることを特徴とする請求項
13に記載の光合分波装置。
17. The optical multiplexer / demultiplexer according to claim 13, wherein the substrate is made of quartz, and the optical waveguide is made of a PLC circuit formed on the substrate by a difference in refractive index of the quartz.
【請求項18】 前記基板は樹脂よりなり、 前記光導波路は、前記基板に前記樹脂の屈折率差により
形成された光回路よりなることを特徴とする請求項13
に記載の光合分波装置。
18. The optical waveguide according to claim 13, wherein the substrate is made of a resin, and the optical waveguide is made of an optical circuit formed on the substrate by a difference in the refractive index of the resin.
3. The optical multiplexer / demultiplexer according to claim 1.
JP29632998A 1998-10-19 1998-10-19 Semiconductor light receiving device, bi-directional optical semiconductor device and light multiplexing/ demultiplexing device Pending JP2000121867A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29632998A JP2000121867A (en) 1998-10-19 1998-10-19 Semiconductor light receiving device, bi-directional optical semiconductor device and light multiplexing/ demultiplexing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29632998A JP2000121867A (en) 1998-10-19 1998-10-19 Semiconductor light receiving device, bi-directional optical semiconductor device and light multiplexing/ demultiplexing device

Publications (1)

Publication Number Publication Date
JP2000121867A true JP2000121867A (en) 2000-04-28

Family

ID=17832138

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29632998A Pending JP2000121867A (en) 1998-10-19 1998-10-19 Semiconductor light receiving device, bi-directional optical semiconductor device and light multiplexing/ demultiplexing device

Country Status (1)

Country Link
JP (1) JP2000121867A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002154841A (en) * 2000-07-07 2002-05-28 Ohara Inc Low expansion transparent crystallized glass, crystallized glass substrate and optical waveguide element
JP2004085913A (en) * 2002-08-27 2004-03-18 Nippon Sheet Glass Co Ltd Optical connector
JP2009151106A (en) * 2007-12-20 2009-07-09 Fujitsu Ltd Single-core bidirectional optical device
JP2017015828A (en) * 2015-06-29 2017-01-19 住友電気工業株式会社 Optical module

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002154841A (en) * 2000-07-07 2002-05-28 Ohara Inc Low expansion transparent crystallized glass, crystallized glass substrate and optical waveguide element
JP4704585B2 (en) * 2000-07-07 2011-06-15 株式会社オハラ Low expansion transparent crystallized glass, crystallized glass substrate and optical waveguide device
JP2004085913A (en) * 2002-08-27 2004-03-18 Nippon Sheet Glass Co Ltd Optical connector
JP2009151106A (en) * 2007-12-20 2009-07-09 Fujitsu Ltd Single-core bidirectional optical device
JP2017015828A (en) * 2015-06-29 2017-01-19 住友電気工業株式会社 Optical module

Similar Documents

Publication Publication Date Title
US4969712A (en) Optoelectronic apparatus and method for its fabrication
US5703980A (en) Method for low-loss insertion of an optical signal from an optical fibre to a waveguide integrated on to a semiconductor wafer
US10288805B2 (en) Coupling between optical devices
JPH04212110A (en) Electronic and optical module of optical fiber
JPH11109149A (en) Wavelength dividing multiple optical device and its manufacture
JP3344446B2 (en) Optical transceiver module
JP3490745B2 (en) Composite optical waveguide type optical device
US6480647B1 (en) Waveguide-type wavelength multiplexing optical transmitter/receiver module
CA2217688C (en) Coupling of light into a monolithic waveguide device
KR20090025953A (en) Hybrid integration structure between optical active devices and planar lightwave circuit using fiber array
US20220035100A1 (en) Optical Circuit and Optical Connection Structure
EP0649038B1 (en) Optical waveguide mirror
JP2000121867A (en) Semiconductor light receiving device, bi-directional optical semiconductor device and light multiplexing/ demultiplexing device
US20020071636A1 (en) Method and apparatus for attaching an optical fibre to an optical device
JP2000131543A (en) Optical transmission and reception module and its manufacture
JPH0255304A (en) Optical integrated circuit
AU3718699A (en) Assembly of optical component and optical fibre
JP2579092B2 (en) WDM module for bidirectional optical transmission
KR101501140B1 (en) Planar Lightwave Circuit Module Having an Improved Structure of an Optical Power Monitor
JP2744309B2 (en) Coupling structure of optical waveguide and light receiving element
JP3257785B2 (en) Manufacturing method of optical transceiver module
JP3533566B2 (en) Optical transceiver module
JP3357979B2 (en) Optical wavelength multiplexer / demultiplexer
JP2897742B2 (en) Optical transceiver module
JP3120777B2 (en) Optical waveguide type signal light monitor device