JPH10132134A - Reversible solenoid valve - Google Patents
Reversible solenoid valveInfo
- Publication number
- JPH10132134A JPH10132134A JP28270696A JP28270696A JPH10132134A JP H10132134 A JPH10132134 A JP H10132134A JP 28270696 A JP28270696 A JP 28270696A JP 28270696 A JP28270696 A JP 28270696A JP H10132134 A JPH10132134 A JP H10132134A
- Authority
- JP
- Japan
- Prior art keywords
- main
- valve
- main valve
- control
- valve body
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Fluid-Driven Valves (AREA)
- Magnetically Actuated Valves (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、例えば冷凍サイク
ル系などに組み込まれ、正方向および逆方向に流れる流
体を制御する可逆型電磁弁に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a reversible solenoid valve incorporated in, for example, a refrigeration cycle system for controlling fluid flowing in forward and reverse directions.
【0002】[0002]
【従来の技術】従来のこの種の可逆型電磁弁は、特開平
5−99366号公報に記載された構造が知られてい
る。この可逆型電磁弁は、図7に示すように、弁本体1
には底面に開口され主弁室2に連通する一対の主流路
3,4を形成し、この両主流路3,4と主弁室2との連
通部にそれぞれ主弁口5,6を形成し、この主弁口5,
6を開閉する一対の主弁体7,8を主弁室2に摺動自在
に設け、この一対の主弁体7,8をそれぞれスプリング
9,10にてこの主弁口5,6を閉塞する方向に付勢し、
この主弁体7,8が主弁口5,6を開放することにより
前記主流路3,4のいずれか一方から流入した流体は主
弁室2を経て他方から流出されるようになっている。2. Description of the Related Art A structure of this type of conventional reversible solenoid valve is known from Japanese Patent Application Laid-Open No. 5-99366. As shown in FIG. 7, this reversible solenoid valve has a valve body 1
A pair of main passages 3 and 4 which are opened at the bottom surface and communicate with the main valve chamber 2 are formed, and main valve ports 5 and 6 are formed at the communication portions between the two main flow paths 3 and 4 and the main valve chamber 2 respectively. And this main valve port 5,
A pair of main valve bodies 7 and 8 for opening and closing the main valve body 6 are slidably provided in the main valve chamber 2, and the main valve ports 5 and 6 are closed by springs 9 and 10, respectively. In the direction of
When the main valve bodies 7 and 8 open the main valve ports 5 and 6, the fluid flowing from one of the main flow paths 3 and 4 flows out from the other through the main valve chamber 2. .
【0003】そして、前記弁本体1には主弁室2の両端
側の背圧側に連通路11,12にて連通されたパイロット流
入路13が形成され、このパイロット流入路13の両端部に
はシャトル弁口14,15を形成し、このパイロット流入路
13にシャトル弁口14,15を開閉するシャトル弁体16を摺
動自在に設け、このパイロット流入路13には前記主弁体
7,8に形成したブリードポート17,18および前記主弁
室2と主弁体7,8との間隙から流入された流体が前記
シャトル弁体16を押圧摺動させてシャトル弁口14,15の
いずれかを閉塞するようになっている。A pilot inflow passage 13 is formed in the valve body 1 on the back pressure side of both ends of the main valve chamber 2 through communication passages 11 and 12, and at both ends of the pilot inflow passage 13 Shuttle valve ports 14 and 15 are formed and this pilot inflow path
A shuttle valve body 16 for opening and closing the shuttle valve ports 14 and 15 is slidably provided in the valve 13, and bleed ports 17 and 18 formed in the main valve bodies 7 and 8 and the main valve chamber 2 are provided in the pilot inflow passage 13. Fluid flowing from the gap between the valve body and the main valve bodies 7 and 8 presses and slides the shuttle valve body 16 to close one of the shuttle valve ports 14 and 15.
【0004】また、前記パイロット流入路13の中間部に
は前記主弁室2の両主弁体7,8の中間部に連通したパ
イロット流出路19が連通され、このパイロット流出路19
の中間部には制御弁室20が形成され、この制御弁室20の
制御弁口21は電磁装置22の励磁動作で吸引されるプラン
ジャー23にて作動する制御弁体24が設けられている。A pilot outlet passage 19 communicating with an intermediate portion of the main valve chambers 7 and 8 of the main valve chamber 2 communicates with an intermediate portion of the pilot inflow passage 13.
A control valve chamber 20 is formed at an intermediate portion of the control valve chamber 20, and a control valve port 24 of the control valve chamber 20 which is operated by a plunger 23 which is sucked by an excitation operation of an electromagnetic device 22 is provided. .
【0005】そして、例えば、一方の主流路3の流体圧
が高くなると、流体は主弁室2の一方の主弁口5を閉塞
している主弁体7のブリードポート17および前記主弁室
2と一方の主弁体7との間隙からこの主弁体7の背圧側
に流入される。この一方の主弁体7の背圧側に流入され
た流体は連通路11からパイロット流入路13に流入されて
シャトル弁体16を他方のシャトル弁口15に向って押圧す
る。このパイロット流入路13に流入された流体はパイロ
ット流出路19に流入され、制御弁体24は制御弁口21を閉
塞しているので、パイロット流入路13に流入された流体
はシャトル弁体16を他方のシャトル弁口15を閉塞した状
態に保持する。[0005] For example, when the fluid pressure in one main flow path 3 becomes high, the fluid flows into the bleed port 17 of the main valve body 7 closing the one main valve port 5 of the main valve chamber 2 and the main valve chamber. The gas flows into the back pressure side of the main valve body 7 from a gap between the main valve body 2 and one of the main valve bodies 7. The fluid that has flowed into the back pressure side of one main valve body 7 flows into the pilot inflow path 13 from the communication passage 11 and presses the shuttle valve body 16 toward the other shuttle valve port 15. The fluid flowing into the pilot inflow passage 13 flows into the pilot outflow passage 19, and the control valve body 24 closes the control valve port 21. The other shuttle valve port 15 is kept closed.
【0006】また、この状態で一方の主弁体7の背圧側
の流体圧が高まり、一方の主弁体7はスプリング9の付
勢力と流体圧で一方の主弁口5を閉塞した状態に保持さ
れる。Further, in this state, the fluid pressure on the back pressure side of the one main valve body 7 increases, and the one main valve body 7 closes the one main valve port 5 by the urging force of the spring 9 and the fluid pressure. Will be retained.
【0007】また、この状態で電磁装置22が励磁される
と、プランジャー23がスプリング25に抗して吸引されて
制御弁体24が制御弁口21を開放し、流体はパイロット流
出路19を流出して主弁室2の主弁体7,8の間に流入さ
れ、主弁室2の主弁体7,8間の流体圧が高まり、他方
の主弁体8はスプリング10に抗して摺動されて他方の主
弁口6を開放し、流体は他方の主流路4に流出される。
また、同時に一方の主弁体7の背圧側の流体圧も低下
し、一方の主流路3に掛かる流体圧とのバランスで一方
の主弁体7もスプリング9に抗して摺動して一方の主弁
口5を開放し、一方の主流路3に掛かる流体圧で両主弁
体7,8が主弁口5,6を開放した状態を保持し、流体
は一方の主流路3から他方の主流路4に流出される。Further, when the electromagnetic device 22 is excited in this state, the plunger 23 is sucked against the spring 25, the control valve body 24 opens the control valve port 21, and the fluid flows through the pilot outflow passage 19. It flows out and flows into the space between the main valve bodies 7 and 8 of the main valve chamber 2, the fluid pressure between the main valve bodies 7 and 8 of the main valve chamber 2 increases, and the other main valve body 8 resists the spring 10. And slides to open the other main valve port 6, and the fluid flows out to the other main flow path 4.
At the same time, the fluid pressure on the back pressure side of the one main valve element 7 also decreases, and the one main valve element 7 slides against the spring 9 in balance with the fluid pressure applied to the one main flow path 3 so as to slide. The main valve ports 5 and 6 are opened, and the main valve bodies 7 and 8 maintain the state where the main valve ports 5 and 6 are opened by the fluid pressure applied to one main flow path 3, and the fluid flows from one main flow path 3 to the other. Out of the main flow path 4.
【0008】そして、この状態で電磁装置22が非励磁と
なると、プランジャー23がスプリング25により復帰して
制御弁口21を閉塞し、パイロット流入路13の流体圧が高
まってシャトル弁体16は他方のシャトル弁口15を閉塞
し、一方の主弁体7の背圧が高くなって一方の主流路3
の流体圧と同圧となると、スプリング9の付勢力で一方
の主弁体7は一方の主弁口5を閉塞し、また、他方の主
弁体8はスプリング10の付勢力で主弁口6を閉塞する。When the electromagnetic device 22 is de-energized in this state, the plunger 23 is returned by the spring 25 to close the control valve port 21 and the fluid pressure in the pilot inflow passage 13 increases, so that the shuttle valve body 16 The other shuttle valve port 15 is closed, and the back pressure of the one main valve body 7 increases, and the one main flow path 3 is closed.
When the pressure becomes equal to the fluid pressure of the first valve body, the one main valve element 7 closes the one main valve port 5 by the urging force of the spring 9, and the other main valve element 8 closes the main valve port 5 by the urging force of the spring 10. 6 is closed.
【0009】また、他方の主流路4の流体圧が高くなる
と、他方の主弁体8の背圧側における流体圧が上昇し、
他方のシャトル弁口15からパイロット流入路13に流入さ
れる流体でシャトル弁体16は一方のシャトル弁口14を閉
塞し、パイロット流出路19の流体圧も上昇される。この
状態で他方の主弁体8の背圧側の流体圧が高まり、他方
の主弁体8はスプリング10の付勢力と流体圧で他方の主
弁口6を閉塞した状態に保持される。When the fluid pressure in the other main flow path 4 increases, the fluid pressure on the back pressure side of the other main valve body 8 increases,
The shuttle valve body 16 closes the one shuttle valve port 14 with the fluid flowing into the pilot inflow path 13 from the other shuttle valve port 15, and the fluid pressure in the pilot outflow path 19 is also increased. In this state, the fluid pressure on the back pressure side of the other main valve body 8 increases, and the other main valve body 8 is held in a state where the other main valve port 6 is closed by the urging force of the spring 10 and the fluid pressure.
【0010】また、この状態で電磁装置22が励磁されて
制御弁体24が制御弁口21を開放すると、流体はパイロッ
ト流出路19を流出して主弁室2の主弁体7,8の間に流
入され、一方の主弁体7はスプリング9に抗して摺動さ
れ、一方の主弁口5を開放し、流体は一方の主流路3に
流出され、同時に他方の主弁体8の背圧側の流体圧も低
下し、他方の主流路4に掛かる流体圧とのバランスで他
方の主弁体8もスプリング10に抗して摺動して他方の主
弁口6を開放し、他方の主流路4に掛かる流体圧で両主
弁体7,8が主弁口5,6を開放した状態を保持し、流
体は他方の主流路4から一方の主流路3に流出される。In this state, when the electromagnetic device 22 is excited and the control valve 24 opens the control valve port 21, the fluid flows out of the pilot outflow passage 19, and the fluid flows out of the main valve 7, 8 of the main valve chamber 2. The main valve element 7 is slid against the spring 9 to open one main valve port 5, and the fluid flows out to one main flow path 3 and at the same time, the other main valve element 8 The fluid pressure on the back pressure side also decreases, and the other main valve body 8 slides against the spring 10 to open the other main valve port 6 in balance with the fluid pressure applied to the other main flow path 4, The fluid pressure applied to the other main flow path 4 keeps the main valve bodies 7, 8 with the main valve ports 5, 6 opened, and the fluid flows out of the other main flow path 4 to one main flow path 3.
【0011】そして、この状態で電磁装置22か非励磁と
なると、プランジャー23がスプリング25により復帰して
制御弁口21を閉塞し、パイロット流入路13の流体圧が高
まってシャトル弁体16は一方のシャトル弁口14を閉塞
し、他方の主弁体8の背圧側の圧力が高まり、他方の主
流路4に掛かる流体圧と同圧となるとスプリング10の付
勢力で他方の主弁体8は他方の主弁口6を閉塞し、ま
た、一方の主弁体7はスプリング9により一方の主弁口
5を閉塞する。When the electromagnetic device 22 is de-energized in this state, the plunger 23 is returned by the spring 25 to close the control valve port 21, and the fluid pressure in the pilot inflow passage 13 increases, and the shuttle valve body 16 When one shuttle valve port 14 is closed and the pressure on the back pressure side of the other main valve body 8 increases and becomes equal to the fluid pressure applied to the other main flow path 4, the other main valve body 8 is biased by the spring 10. Closes the other main valve port 6, and one main valve element 7 closes the one main valve port 5 by the spring 9.
【0012】[0012]
【発明が解決しようとする課題】上記可逆型電磁弁で
は、主弁室2と一対の主流路3,4との連通部にそれぞ
れ主弁口5,6を形成し、この主弁口5,6をそれぞれ
開閉する一対の主弁体7,8を設ける構造のため、主弁
室2に連通する二つの主流路3,4およびこの二つの主
流路3,4と主弁室2との連通部に形成した一対の主弁
口5,6を形成する流体通路の構造が複雑となり、ま
た、圧力損失が生じ流量を多くすることができない問題
を有している。In the above-mentioned reversible solenoid valve, main valve ports 5 and 6 are formed in communication portions between the main valve chamber 2 and the pair of main flow paths 3 and 4, respectively. The two main passages 3 and 4 communicating with the main valve chamber 2 and the communication between the two main passages 3 and 4 and the main valve chamber 2 are provided because of the structure in which the pair of main valve bodies 7 and 8 respectively opening and closing the main valve body 6 are provided. The structure of the fluid passage forming the pair of main valve ports 5 and 6 formed in the portion becomes complicated, and there is a problem that a pressure loss occurs and the flow rate cannot be increased.
【0013】本発明は上記問題点に鑑みなされたもの
で、一対の主流路とこの両主通路に連通する主弁室の主
弁口を一つにし、一つの主弁体の開閉で両主流路を連通
できるようにして流路構造を簡単にし、圧力損失を低減
し、流量を多くすることができる可逆型電磁弁を提供す
るものである。The present invention has been made in view of the above problems, and has a pair of main flow paths and a main valve port of a main valve chamber communicating with the two main passages. It is an object of the present invention to provide a reversible solenoid valve capable of simplifying a channel structure by allowing passages to communicate with each other, reducing pressure loss, and increasing a flow rate.
【0014】[0014]
【課題を解決するための手段】本発明の可逆型電磁弁
は、流入出口をそれぞれ両端面に開口した一対の主流
路、この一対の主流路を連通する主弁口を形成した主弁
室、前記主流路にそれぞれ両端部が連通されこの両端部
にシャトル弁口を形成したパイロット流入路、このパイ
ロット流入路に前記主弁室の背圧側を経て連通され制御
弁口を有する制御流路、この制御流路からそれぞれ逆止
弁口を経て前記一対の主流路にそれぞれ連通される一対
のパイロット流出路を設けた弁本体と、この弁本体の主
弁室に進退自在に設けられスプリングにより前記主弁口
を閉塞する方向に付勢されるとともにこの主弁室をこの
主弁口側と背圧側とを仕切る主弁体と、前記パイロット
流入路に摺動自在に設けられ前記一対の主流路の流体圧
により前記両シャトル弁口を開閉するシャトル弁体と、
電磁装置により作動され前記制御弁口を開閉する制御弁
体と、前記両逆止弁口をそれぞれ開閉し前記主流路から
制御流路への流体の流入を阻止する逆止弁体とを備えた
ものである。According to the present invention, there is provided a reversible solenoid valve of the present invention comprising: a pair of main passages each having an inlet and an outlet opened at both end surfaces; a main valve chamber having a main valve port communicating with the pair of main passages; A pilot inflow passage having both ends communicating with the main flow passage and having a shuttle valve port formed at both ends thereof, a control flow passage having a control valve opening communicated with the pilot inflow passage through the back pressure side of the main valve chamber, A valve body provided with a pair of pilot outflow paths respectively connected to the pair of main flow paths from the control flow path through the check valve ports, and a main body provided in the main valve chamber of the valve body so as to be able to advance and retreat, and the main body is provided with a spring. A main valve body which is urged in a direction to close the valve port and partitions the main valve chamber between the main valve port side and the back pressure side, and a pair of main flow paths provided slidably in the pilot inflow passage. Both shuttles by fluid pressure And the shuttle valve body for opening and closing the mouth,
A control valve body that is operated by an electromagnetic device to open and close the control valve port, and a check valve body that opens and closes the two check valve ports to prevent fluid from flowing from the main flow path to the control flow path. Things.
【0015】そして、主弁体がスプリングの付勢力によ
り主弁口を閉じているとともに制御弁口が制御弁体で閉
塞されている状態で、一方の流入出口の流体圧が高まる
と、一方の主流路に流入した流体はパイロット流入路に
一端側から流入し、流体はシャトル弁体を他端側に押圧
して他方のシャトル弁口を閉塞し、パイロット流入路の
他端側から他方の主流路に流出することを防止する。[0015] When the fluid pressure at one of the inflow ports and the outflow port increases when the main valve body closes the main valve port by the biasing force of the spring and the control valve port is closed by the control valve element, one of the inflow ports increases. The fluid flowing into the main flow path flows into the pilot inflow path from one end side, and the fluid presses the shuttle valve body to the other end side to close the other shuttle valve port, and the other main flow path from the other end side of the pilot inflow path. Prevents spillage on roads.
【0016】また、一方の主流路に流入した流体は一方
の逆止弁体を流動方向と逆方向から加圧して一方の逆止
弁口を閉じ、さらに、パイロット流入路に流入した流体
は制御弁体が閉じているために制御流路に流入されず、
主弁室の背圧側の流体圧が高まる。また、この状態では
主弁室の背圧側の圧力が高まるとともにスプリングの付
勢力で主弁体は主弁口を閉塞した状態に保持されてい
る。The fluid that has flowed into one of the main flow paths presses one of the check valves in a direction opposite to the flow direction to close the one of the check valve ports. Because the valve is closed, it does not flow into the control flow path,
The fluid pressure on the back pressure side of the main valve chamber increases. In this state, the pressure on the back pressure side of the main valve chamber increases, and the main valve body is held in a state where the main valve port is closed by the urging force of the spring.
【0017】この状態で、電磁装置への通電で制御弁体
が制御弁口を開くと、制御流路に流入した流体は一方の
逆止弁体が一方の主流路からの流体圧で閉塞されている
ため、一方の主流路から流入した流体はパイロット流入
路、主弁室の背圧側、制御弁口、制御流路、他方の逆止
弁口を経て他方のパイロット流出路に流出し、この他方
のパイロット流出路から他方の主流路に流出される。In this state, when the control valve body opens the control valve port when the electromagnetic device is energized, the fluid flowing into the control flow path is closed by one of the check valve bodies due to the fluid pressure from the one main flow path. Therefore, the fluid flowing from one main flow path flows through the pilot inflow path, the back pressure side of the main valve chamber, the control valve port, the control flow path, the other check valve port, and flows out to the other pilot flow path. It flows out from the other pilot outflow channel to the other main flow channel.
【0018】そして、主弁体の背圧側の流体が制御流路
から流出されると、一方の主流路に流入される流体圧で
主弁体はスプリングの付勢力に抗して主弁口から浮き上
がり、主弁口を開くため、流体は一方の主流路から他方
の主流路に流出される。When the fluid on the back pressure side of the main valve element flows out of the control flow path, the main valve element is pressed from the main valve port against the urging force of the spring by the fluid pressure flowing into one of the main flow paths. Fluid flows out of one main flow path to the other main flow path to lift up and open the main valve port.
【0019】また、流体が一方の主流路から他方の主流
路に流出されている状態で、電磁装置への通電が遮断さ
れて制御弁体が制御弁口を閉じると、主弁室の背圧側の
流体圧が高まり、この流体圧とスプリングの付勢力で主
弁体は主弁口を閉塞し他方の主流路への流体の流出がな
くなる。In a state where the fluid is flowing from one main flow path to the other main flow path, when the power supply to the electromagnetic device is cut off and the control valve body closes the control valve port, the back pressure side of the main valve chamber is closed. The main valve body closes the main valve port by this fluid pressure and the urging force of the spring, and the outflow of the fluid to the other main flow path is stopped.
【0020】なお、他方の主流路の流体圧が高まったと
きには、同様な作動で制御弁口の開口で流体は他方の主
流路から一方の主流路に流出される。When the fluid pressure in the other main flow path is increased, the fluid is discharged from the other main flow path to the one main flow path at the opening of the control valve port by the same operation.
【0021】[0021]
【発明の実施の形態】次に本発明の可逆型電磁弁の一実
施の形態の構成を図面に基いて説明する。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a perspective view of a reversible solenoid valve according to an embodiment of the present invention.
【0022】図2ないし図5に示すように、弁本体30は
主体部31とこの主体部31にボルト32により結合される蓋
体33とにて構成されている。As shown in FIGS. 2 to 5, the valve body 30 is composed of a main body 31 and a lid 33 connected to the main body 31 by bolts 32.
【0023】この弁本体30の主体部31には図1ないし図
4に示すように、流入出口34,35をそれぞれ両端面の略
中央部に開口した一対の主流路36,37が水平方向に形成
され、この一方の主流路36の内端部の上部には、図1、
図3および図5に示すように、この主体部31の上面に開
口した主弁室38が形成され、この主弁室38と一方の主流
路36との連通部に主弁口40が形成されている。また、図
3に示すように前記他方の主流路37の内端部には前記主
弁室38に連通され、この両主流路37,38は主弁口40の開
放で主弁室38を経て連通される。As shown in FIGS. 1 to 4, the main body 31 of the valve body 30 has a pair of main passages 36, 37 having inlets and outlets 34, 35 opened at substantially center portions of both end surfaces, respectively. The upper part of the inner end of one main flow path 36 is formed as shown in FIG.
As shown in FIGS. 3 and 5, a main valve chamber 38 that is open on the upper surface of the main body 31 is formed, and a main valve port 40 is formed in a communicating portion between the main valve chamber 38 and one of the main flow paths 36. ing. As shown in FIG. 3, the inner end of the other main flow passage 37 communicates with the main valve chamber 38. The two main flow passages 37 and 38 pass through the main valve chamber 38 when the main valve port 40 is opened. Communicated.
【0024】また、図1および図2に示すように前記主
流路37,38の内周面の一側に開口した流入連通路41,42
がこの主流路36,37と直交方向に形成され、この流入連
通路41,42の先端部は前記主流路36,37と平行状に形成
された直線状のパイロット流入路43の両端部にそれぞれ
連通されている。また、このパイロット流入路43の両端
部にはシャトル弁口44,45が形成されている。なお、こ
のパイロット流入路43は前記主体部31の端面に開口した
穿孔46にて形成し、一方のシャトル弁口44は縮径部にて
形成するとともに他方のシャトル弁口45は弁座部材47を
嵌合固着して形成し、この穿孔46の開口端は栓48にて閉
塞する。Also, as shown in FIGS. 1 and 2, the inflow communication passages 41, 42 opened on one side of the inner peripheral surface of the main flow passages 37, 38.
Are formed in a direction orthogonal to the main flow passages 36 and 37, and the leading ends of the inflow communication passages 41 and 42 are provided at both ends of a linear pilot inflow passage 43 formed in parallel with the main flow passages 36 and 37, respectively. Are in communication. Shuttle valve ports 44 and 45 are formed at both ends of the pilot inflow passage 43. The pilot inflow passage 43 is formed by a perforation 46 opened at the end face of the main body 31, one shuttle valve port 44 is formed by a reduced diameter portion, and the other shuttle valve port 45 is formed by a valve seat member 47. The opening end of the perforation 46 is closed by a stopper 48.
【0025】さらに、図1および図5に示すように、前
記パイロット流入路43の中間部は前記主体部31の主弁口
40の上端周縁に形成した凹窪部49に開口されている垂直
方向の制御連通路50に絞り孔51を介して連通され、この
制御連通路50にて前記パイロット流入路43は前記主弁室
38の背圧側に連通されるようになっている。Further, as shown in FIGS. 1 and 5, an intermediate portion of the pilot inflow passage 43 is a main valve port of the main body portion 31.
A vertical control communication passage 50 opened to a concave recess 49 formed at the upper peripheral edge of 40 is communicated through a throttle hole 51 with the pilot inflow passage 43 through the control communication passage 50.
It is connected to 38 back pressure side.
【0026】また、図1、図4および図5に示すよう
に、前記主体部31の凹窪部49には垂直方向の制御流路52
が開口され、この制御流路52の凹窪部49への開口縁は制
御弁口53を形成する弁座突縁54が形成されている。この
制御流路52の内端には前記パイロット流入路43と平行に
前記主弁室38を挟んだ対称位置に形成されている水平方
向の制御流出路55の中間部が連通されている。この制御
流出路55は前記主体部31の一側面に開口した穿孔55a に
て形成され、この穿孔55a は栓48b にて閉塞されてい
る。As shown in FIGS. 1, 4 and 5, a vertical control flow path 52 is provided in the concave portion 49 of the main body 31.
A valve seat protruding edge 54 forming a control valve port 53 is formed at an opening edge of the control flow channel 52 to the concave recess 49. An intermediate portion of a horizontal control outflow passage 55 formed at a symmetrical position across the main valve chamber 38 in parallel with the pilot inflow passage 43 is communicated with the inner end of the control flow passage 52. The control outflow passage 55 is formed by a perforation 55a opened on one side surface of the main body 31, and this perforation 55a is closed by a stopper 48b.
【0027】さらに、この制御流出路55の両端部はそれ
ぞれ逆止弁口56,57を形成した逆止弁室58,59が形成さ
れ、この逆止弁室58,59は前記一対の主流路36,37と直
交方向のパイロット流出路60,61に連通され、このパイ
ロット流出路60,61はそれぞれ前記一対の主流路36,37
の内周面の他側にそれぞれ開口されている。Further, check valve chambers 58 and 59 having check valve ports 56 and 57 are formed at both ends of the control outflow passage 55. The check valve chambers 58 and 59 are formed by the pair of main flow paths. The pilot outflow passages 60 and 61, which are orthogonal to the 36 and 37, respectively, are connected to the pair of main flow passages 36 and 37, respectively.
Are opened on the other side of the inner peripheral surface of the.
【0028】そして、前記流入連通路41,42およびパイ
ロット流出路60,61は前記主流路36,37を挟んで主体部
31の一側面に開口した穿孔62,63にて直線状に形成さ
れ、この穿孔62,63の開口端は栓64,65にて閉塞する。
また、前記逆止弁室58,59は前記主体部31の下面に開口
され、この逆止弁室58,59の開口部は栓66,67にて閉塞
されている。The inflow communication passages 41 and 42 and the pilot outflow passages 60 and 61 are formed by a main body with the main flow passages 36 and 37 interposed therebetween.
31 are formed in a straight line with perforations 62, 63 opened on one side surface, and the open ends of the perforations 62, 63 are closed by plugs 64, 65.
The check valve chambers 58, 59 are opened on the lower surface of the main body 31, and the openings of the check valve chambers 58, 59 are closed by plugs 66, 67.
【0029】また、図3および図5に示すように、前記
蓋体33の下面には前記主弁室38に突出するスプリング受
け突部70が突設され、この蓋体33を主体部31の上面に嵌
合した状態でこの主体部31の主弁室38の上面を閉塞する
とともに凹窪部49の上部に主弁室38の背圧部となる空間
を形成し、この空間部にて前記制御連通路50と制御流路
52の制御弁口53とを主弁室38の背圧側に連通させる。As shown in FIGS. 3 and 5, a spring receiving projection 70 projecting from the main valve chamber 38 projects from the lower surface of the lid 33. In the state fitted to the upper surface, the upper surface of the main valve chamber 38 of the main body portion 31 is closed, and a space serving as a back pressure portion of the main valve chamber 38 is formed above the concave portion 49, and the space portion includes Control communication path 50 and control flow path
The control valve port 53 of 52 is communicated with the back pressure side of the main valve chamber 38.
【0030】次に、図1、図3および図5に示すよう
に、前記主弁室38の内周面に進退自在に設けられた主弁
体71は前記弁本体30の主弁室38の内周面に摺動されるよ
うになっており、前記主弁口40側と背圧側とを気密また
は液密に仕切るようになっている。この主弁体71の上面
には前記主弁室38に摺動自在に嵌合した主弁体案内体73
が嵌着され、この主弁体案内体73の上面にスプリング受
け孔74が形成され、この主弁体案内体73のスプリング受
け孔74に一端部を嵌合するとともに前記蓋体33のスプリ
ング受け突部70に他端部を巻装したコイル状のスプリン
グ75により前記主弁体71は主弁体案内体73を介して主弁
口40を閉塞する方向に付勢される。Next, as shown in FIGS. 1, 3 and 5, a main valve body 71 provided on the inner peripheral surface of the main valve chamber 38 so as to be able to move forward and backward is provided in the main valve chamber 38 of the valve body 30. The main valve port 40 and the back pressure side are air-tightly or liquid-tightly separated from each other by sliding on the inner peripheral surface. On the upper surface of the main valve body 71, a main valve body guide body 73 slidably fitted in the main valve chamber 38.
A spring receiving hole 74 is formed on the upper surface of the main valve body guide 73. One end of the spring receiving hole 74 is fitted into the spring receiving hole 74 of the main valve body guide 73, and the spring receiving hole of the lid 33 is The main valve body 71 is urged in a direction of closing the main valve port 40 via a main valve body guide 73 by a coil spring 75 having the other end wound around the projection 70.
【0031】また、図1および図2に示すように、前記
パイロット流入路43に摺動自在に設けられたシャトル弁
体80は前記一対の主流路36,37の流体圧により摺動して
前記両シャトル弁口45,46のいずれか一方を閉塞し他方
を開口するようになっている。As shown in FIGS. 1 and 2, a shuttle valve body 80 slidably provided in the pilot inflow passage 43 slides by the fluid pressure of the pair of main flow passages 36 and 37 to slide. One of the shuttle valve ports 45 and 46 is closed and the other is opened.
【0032】次に、図4に示すように、前記両逆止弁口
56,57をそれぞれ開閉する逆止弁体81,82は前記逆止弁
室58,59に進退自在に設けられ、この逆止弁体81,82は
それぞれ前記主流路36,37から制御流出路55への流体の
流入を阻止するとともに前記制御流出路55側の流体圧で
逆止弁口56,57を開放するようになっている。Next, as shown in FIG.
Check valves 81 and 82 for opening and closing 56 and 57 respectively are provided in the check valve chambers 58 and 59 so as to be able to advance and retreat, and the check valves 81 and 82 are respectively connected to the main flow passages 36 and 37 from the control outflow passages. The check valve ports 56 and 57 are opened by the fluid pressure on the control outflow passage 55 side while preventing the fluid from flowing into the control outflow passage 55.
【0033】また、図4および図5に示すように、前記
制御弁口53を開閉する電磁装置85は、コイル86とこのコ
イル86に嵌合固定された鉄心87およびヨーク88とにて構
成され、このコイル86に嵌合固定されたガイドチューブ
89に前記鉄心87の励磁で吸引されるプランジャー90が進
退自在に嵌合され、このプランジャー90はコイル状のス
プリング91によりこのプランジャー90の先端に嵌着した
制御弁体92が前記制御弁口53を閉塞する方向に付勢され
ている。また、このプランジャー90の先端とこのプラン
ジャー90に嵌着した制御弁体92との間にはこの制御弁体
92が前記制御弁口53を閉塞する方向に付勢するコイル状
のスプリング93が装着されている。As shown in FIGS. 4 and 5, the electromagnetic device 85 for opening and closing the control valve port 53 includes a coil 86, an iron core 87 fitted and fixed to the coil 86, and a yoke 88. Guide tube fitted and fixed to this coil 86
A plunger 90 that is attracted by the excitation of the iron core 87 is fitted to 89 so as to be able to advance and retreat, and the plunger 90 is controlled by a control valve body 92 fitted to the tip of the plunger 90 by a coil spring 91. It is urged in a direction to close the valve port 53. Also, the control valve body is provided between the tip of the plunger 90 and the control valve body 92 fitted to the plunger 90.
A coil-shaped spring 93 that biases the control valve port 53 in a direction in which 92 closes the control valve port 53 is mounted.
【0034】なお、図4および図5に示すように、前記
電磁装置85はガイドチューブ89が前記蓋体33に形成した
嵌合孔96に嵌合固定されて弁本体30に取り付けられる。As shown in FIGS. 4 and 5, the electromagnetic device 85 is attached to the valve body 30 by fitting the guide tube 89 into a fitting hole 96 formed in the lid 33.
【0035】次にこの実施の形態の作用を図6に基いて
説明する。Next, the operation of this embodiment will be described with reference to FIG.
【0036】主弁体71がスプリング75の付勢力により主
弁室38の主弁口40を閉じているとともに制御弁口53が制
御弁体92で閉塞されている状態で、一方の流入出口34の
流体圧が高まると、一方の主流路36に流入した流体は一
方の流入連通路41からパイロット流入路43に一端側から
流入し、このパイロット流入路43に流入された流体はシ
ャトル弁体80を他端側に押圧して他方のシャトル弁口45
を閉塞し、パイロット流入路43の他端側から他方の主流
路37に流出することを防止する。When the main valve body 71 closes the main valve port 40 of the main valve chamber 38 by the urging force of the spring 75 and the control valve port 53 is closed by the control valve element 92, one of the inflow / outflow ports 34 is provided. When the fluid pressure increases, the fluid that has flowed into one of the main flow paths 36 flows into the pilot inflow path 43 from one of the inflow communication paths 41 at one end, and the fluid that has flowed into the pilot inflow path 43 is a shuttle valve body 80. To the other end, and the other shuttle valve port 45
To prevent flow from the other end of the pilot inflow channel 43 to the other main flow channel 37.
【0037】また、一方の主流路36に流入した流体は一
方のパイロット流出路60を経て一方の逆止弁室58に流入
し、逆止弁体81を流動方向と逆方向から加圧して一方の
逆止弁口56を閉じ、さらに、パイロット流入路43に流入
した流体は制御連通路50を経て主弁室38の背圧側に流入
されるが制御弁体92が閉じているため、制御流路52から
制御流出路55を経て両パイロット流出路60,61に流出す
ることがない。この状態では主弁室38の背圧側の圧力が
高まるとともにスプリング75の付勢力で主弁体71は主弁
口40を閉塞した状態に保持されている。The fluid that has flowed into one main flow path 36 flows into one check valve chamber 58 through one pilot flow path 60, and pressurizes a check valve body 81 in a direction opposite to the flow direction to cause one flow. Further, the fluid that has flowed into the pilot inflow passage 43 flows into the back pressure side of the main valve chamber 38 through the control communication passage 50, but the control valve body 92 is closed. There is no outflow from the path 52 to the pilot outflow paths 60, 61 via the control outflow path 55. In this state, the pressure on the back pressure side of the main valve chamber 38 increases, and the main valve body 71 is kept closed by the urging force of the spring 75.
【0038】この状態で、電磁装置85のコイル86への通
電で励磁された鉄心87にプランジャー90が吸引されて制
御弁体92が制御弁口53を開き、制御流路52に流入した流
体は制御流出路55に流動し、一方の逆止弁口56は一方の
主流路36からの流体圧で押圧されている逆止弁体81によ
り閉塞されているため、一方の主流路36から流入した流
体は一方の流入連通路41、パイロット流入路43、制御連
通路50、主弁室38の背圧側、制御弁口53、制御流路52、
制御流出路55を経て流動し、さらに、他方の逆止弁体82
を流体圧で押圧して開放した逆止弁口57を経て他方のパ
イロット流出路61に流出し、このパイロット流出路61か
ら他方の主流路37に流出される。In this state, the plunger 90 is attracted to the iron core 87 excited by energizing the coil 86 of the electromagnetic device 85, the control valve body 92 opens the control valve port 53, and the fluid flowing into the control flow path 52 Flows into the control outflow passage 55, and the one check valve port 56 is closed by the check valve body 81 which is pressed by the fluid pressure from the one main flow passage 36, so that it flows into the one main flow passage 36. The inflow communication passage 41, the pilot inflow passage 43, the control communication passage 50, the back pressure side of the main valve chamber 38, the control valve port 53, the control flow passage 52,
It flows through the control outlet channel 55 and, in addition, the other check valve body 82
Flows out to the other pilot outflow path 61 through the check valve port 57 which is opened by pressing with fluid pressure, and flows out from the pilot outflow path 61 to the other main flow path 37.
【0039】そして、主弁室38の背圧側の流体が制御流
路52から流出されると、一方の主流路36に流入される流
体圧で主弁体71はスプリング75の付勢力に抗して主弁口
40から浮き上がって主弁口40を開くため、流体は一方の
主流路36から他方の主流路37に流出される。When the fluid on the back pressure side of the main valve chamber 38 flows out of the control flow path 52, the main valve body 71 resists the urging force of the spring 75 by the fluid pressure flowing into one main flow path 36. Main valve
Fluid flows out of one main flow path 36 to the other main flow path 37 because it rises from 40 and opens the main valve port 40.
【0040】また、流体が一方の主流路36から他方の主
流路37に流出されている状態で、電磁装置85への通電が
遮断されてプランジャー90がスプリング91で付勢され、
制御弁体92が制御弁口53を閉じると、主弁室38の背圧側
の流体圧が高まり、この流体圧とスプリング75の付勢力
で主弁体71は主弁口40を閉塞し他方の主流路37への流体
の流出がなくなる。In a state where the fluid is flowing from one main flow path 36 to the other main flow path 37, the power supply to the electromagnetic device 85 is cut off, and the plunger 90 is urged by the spring 91.
When the control valve body 92 closes the control valve port 53, the fluid pressure on the back pressure side of the main valve chamber 38 increases, and the main valve body 71 closes the main valve port 40 by the fluid pressure and the urging force of the spring 75, thereby closing the other valve port. The fluid does not flow out to the main flow path 37.
【0041】そして、一方の主流路36に流入した流体は
一方の流入連通路41からパイロット流入路43に一端側か
ら流入し、このパイロット流入路43に流入された流体は
シャトル弁体80を他端側に押圧して他方のシャトル弁口
45を閉塞し、パイロット流入路43の他端側から他方の主
流路37に流出することを防止する。The fluid that has flowed into one of the main flow paths 36 flows from one of the inflow communication paths 41 into the pilot inflow path 43 from one end side, and the fluid that has flowed into the pilot inflow path 43 passes through the shuttle valve body 80 to the other end. Push to the end side and the other shuttle valve port
45 is closed to prevent the pilot inflow channel 43 from flowing out of the other end into the other main flow channel 37.
【0042】また、一方の主流路36に流入した流体は一
方のパイロット流出路60を経て一方の逆止弁室58に流入
し、逆止弁体81を流動方向と逆方向から加圧して一方の
逆止弁口56を閉じ、さらに、パイロット流入路43に流入
した流体は制御連通路50を経て主弁室38の背圧側に流入
されるが制御弁体92が閉じているため、制御流路52から
制御流出路55を経て両パイロット流出路60,61に流出す
ることがない。この状態では主弁室38の背圧側の圧力が
高まるとともにスプリング75の付勢力で主弁体71は主弁
口40を閉塞した状態に保持されている。The fluid that has flowed into one main flow path 36 flows into one check valve chamber 58 through one pilot flow path 60, and presses a check valve body 81 in a direction opposite to the flow direction, thereby causing the one-way flow. Further, the fluid that has flowed into the pilot inflow passage 43 flows into the back pressure side of the main valve chamber 38 through the control communication passage 50, but the control valve body 92 is closed. There is no outflow from the path 52 to the pilot outflow paths 60, 61 via the control outflow path 55. In this state, the pressure on the back pressure side of the main valve chamber 38 increases, and the main valve body 71 is kept closed by the urging force of the spring 75.
【0043】次に、他方の流入出口35の流体圧が高まる
と、他方の主流路37に流入した流体は他方の流入連通路
42からパイロット流入路43に他端側から流入し、このパ
イロット流入路43に流入された流体はシャトル弁体80を
一端側に押圧して一方のシャトル弁口44を閉塞し、パイ
ロット流入路43の一端側から一方の主流路36に流出する
ことを防止する。Next, when the fluid pressure at the other inflow / outflow port 35 increases, the fluid flowing into the other main flow path 37 is supplied to the other inflow communication path.
The fluid flowing into the pilot inflow passage 43 from the other end side through 42 presses the shuttle valve body 80 to one end side to close one shuttle valve port 44, and the pilot inflow passage 43 From the one end side to the one main flow path 36.
【0044】また、他方の主流路37に流入した流体は他
方のパイロット流出路61を経て他方の逆止弁室59に流入
し、逆止弁体82を流動方向と逆方向から加圧して他方の
逆止弁口57を閉じ、さらに、パイロット流入路43に流入
した流体は制御連通路50を経て主弁室38の背圧側に流入
されるが制御弁体92が閉じているため、制御流路52から
制御流出路55を経て両パイロット流出路60,61に流出す
ることがない。この状態では主弁室38の背圧側の圧力が
高まるとともにスプリング75の付勢力で主弁体71は主弁
口40を閉塞した状態に保持されている。The fluid that has flowed into the other main flow path 37 flows into the other check valve chamber 59 via the other pilot outflow path 61, and pressurizes the check valve body 82 in a direction opposite to the flow direction, thereby causing the other check valve body 82 to flow. Further, the check valve port 57 is closed, and the fluid flowing into the pilot inflow passage 43 flows into the back pressure side of the main valve chamber 38 through the control communication passage 50, but the control valve body 92 is closed. There is no outflow from the path 52 to the pilot outflow paths 60, 61 via the control outflow path 55. In this state, the pressure on the back pressure side of the main valve chamber 38 increases, and the main valve body 71 is kept closed by the urging force of the spring 75.
【0045】この状態で、電磁装置85のコイル86への通
電で励磁された鉄心87にプランジャー90が吸引されて制
御弁体92が制御弁口53を開き、制御流路52に流入した流
体は制御流出路55に流動し、他方の逆止弁口57は他方の
主流路37からの流体圧で押圧されている逆止弁体82によ
り閉塞されているため、他方の主流路37から流入した流
体は他方の流入連通路42、パイロット流入路43、制御連
通路50、主弁室38の背圧側、制御弁口53、制御流路52、
制御流出路55を経て流動し、さらに、一方の逆止弁体81
を流体圧で押圧して開放した逆止弁口56を経て一方のパ
イロット流出路60に流出し、このパイロット流出路60か
ら一方の主流路36に流出される。In this state, the plunger 90 is attracted to the iron core 87 excited by energizing the coil 86 of the electromagnetic device 85, the control valve body 92 opens the control valve port 53, and the fluid flowing into the control flow path 52 Flows into the control outflow passage 55, and the other check valve port 57 is closed by the check valve body 82 pressed by the fluid pressure from the other main flow passage 37, so that the other check valve opening 57 flows into the other main flow passage 37. The flowed fluid is the other inflow communication path 42, the pilot inflow path 43, the control communication path 50, the back pressure side of the main valve chamber 38, the control valve port 53, the control flow path 52,
It flows through the control outlet channel 55, and further, the one check valve body 81
Flows out to one pilot outflow channel 60 through a check valve port 56 which is opened by pressing with fluid pressure, and flows out from this pilot outflow channel 60 to one main flow channel 36.
【0046】そして、主弁室38の背圧側の流体が制御流
路52から流出されると、他方の主流路37に流入される流
体圧で主弁体71はスプリング75の付勢力に抗して主弁口
40から浮き上がって主弁口40を開くため、流体は他方の
主流路37から他方の主流路36に流出される。When the fluid on the back pressure side of the main valve chamber 38 flows out of the control flow path 52, the main valve body 71 resists the urging force of the spring 75 by the fluid pressure flowing into the other main flow path 37. Main valve
Fluid flows out of the other main flow path 37 to the other main flow path 36 because it floats up from the 40 and opens the main valve port 40.
【0047】また、流体が他方の主流路37から一方の主
流路36に流出されている状態で、電磁装置85への通電が
遮断されてプランジャー90がスプリング91で付勢され、
制御弁体92が制御弁口53を閉じると、主弁室38の背圧側
の流体圧が高まり、この流体圧とスプリング75の付勢力
で主弁体71は主弁口40を閉塞し一方の主流路36への流体
の流出がなくなる。Further, in a state where the fluid is flowing from the other main flow path 37 to the one main flow path 36, the power supply to the electromagnetic device 85 is cut off, and the plunger 90 is urged by the spring 91.
When the control valve element 92 closes the control valve port 53, the fluid pressure on the back pressure side of the main valve chamber 38 increases, and the main valve element 71 closes the main valve port 40 by this fluid pressure and the urging force of the spring 75 to close one of the main valve ports 40. The outflow of the fluid to the main flow path 36 is eliminated.
【0048】そして、他方の主流路37に流入した流体は
他方の流入連通路42からパイロット流入路43に他端側か
ら流入し、このパイロット流入路43に流入された流体は
シャトル弁体80を一端側に押圧して一方のシャトル弁口
44を閉塞し、パイロット流入路43の一端側から一方の主
流路36に流出することを防止する。The fluid that has flowed into the other main flow path 37 flows into the pilot inflow path 43 from the other inflow communication path 42 from the other end side, and the fluid that has flowed into the pilot inflow path 43 passes through the shuttle valve body 80. Push to one end side and one shuttle valve port
44 is closed to prevent the pilot inflow channel 43 from flowing out to one main flow channel 36 from one end thereof.
【0049】また、他方の主流路37に流入した流体は他
方のパイロット流出路61を経て他方の逆止弁室59に流入
し、逆止弁体82を流動方向と逆方向から加圧して他方の
逆止弁口57を閉じ、さらに、パイロット流入路43に流入
した流体は制御連通路50を経て主弁室38の背圧側に流入
されるが制御弁体92が閉じているため、制御流路52から
制御流出路55を経て両パイロット流出路60,61に流出す
ることがない。この状態では主弁室38の背圧側の圧力が
高まるとともにスプリング75の付勢力で主弁体71は主弁
口40を閉塞した状態に保持されている。The fluid that has flowed into the other main flow path 37 flows into the other check valve chamber 59 through the other pilot outflow path 61, and pressurizes the check valve body 82 in a direction opposite to the flow direction, thereby causing the other check valve body 82 to flow. Further, the check valve port 57 is closed, and the fluid flowing into the pilot inflow passage 43 flows into the back pressure side of the main valve chamber 38 through the control communication passage 50, but the control valve body 92 is closed. There is no outflow from the path 52 to the pilot outflow paths 60, 61 via the control outflow path 55. In this state, the pressure on the back pressure side of the main valve chamber 38 increases, and the main valve body 71 is kept closed by the urging force of the spring 75.
【0050】[0050]
【発明の効果】本発明によれば、電磁装置で開閉される
制御弁体によりパイロット制御して、一対の主流路のい
ずれか一方の流体圧で他方に流出させることのできる可
逆型電磁弁において、一対の主流路とこの両主通路に連
通する主弁室の主弁口を一つにし、一つの主弁体の開閉
で両主流路を連通できるようにして流路構造を簡単に
し、圧力損失を低減し、流量を多くすることができる。According to the present invention, there is provided a reversible solenoid valve which can be pilot-controlled by a control valve body opened and closed by an electromagnetic device and can be caused to flow out of one of a pair of main flow paths to the other by a fluid pressure. A pair of main flow passages and a main valve port of a main valve chamber communicating with the two main passages are made into a single main valve opening, and the opening and closing of one main valve body allows the two main flow passages to communicate with each other. The loss can be reduced and the flow rate can be increased.
【図1】本発明の一実施の形態を示す可逆型電磁弁の弁
本体の蓋体を外した状態の平面図である。FIG. 1 is a plan view of a reversible solenoid valve according to an embodiment of the present invention with a cover of a valve body removed.
【図2】同上II−II線部の縦断正面図である。FIG. 2 is a vertical sectional front view taken along the line II-II of FIG.
【図3】図1に示すIII−III線部の縦断正面図である。FIG. 3 is a vertical sectional front view taken along line III-III shown in FIG. 1;
【図4】図1に示すIV−IV線部の縦断正面図である。FIG. 4 is a vertical sectional front view taken along the line IV-IV shown in FIG. 1;
【図5】図1に示すV−V線部の縦断正面図である。FIG. 5 is a vertical sectional front view taken along a line VV shown in FIG. 1;
【図6】同上流路を示す説明図である。FIG. 6 is an explanatory view showing the same flow path.
【図7】従来の可逆型電磁弁の縦断正面図である。FIG. 7 is a vertical sectional front view of a conventional reversible solenoid valve.
30 弁本体 34,35 流入出口 36,37 主流路 38 主弁室 40 主弁口 43 パイロット流入路 44,45 シャトル弁口 52 制御流路 53 制御弁口 56,57 逆止弁口 60,61 パイロット流出路 71 主弁体 75 スプリング 80 シャトル弁体 81,82 逆止弁体 85 電磁装置 92 制御弁体 30 Valve body 34, 35 Inlet / outlet 36, 37 Main flow path 38 Main valve chamber 40 Main valve port 43 Pilot inflow path 44, 45 Shuttle valve port 52 Control flow path 53 Control valve port 56, 57 Check valve port 60, 61 Pilot Outflow path 71 Main valve element 75 Spring 80 Shuttle valve element 81, 82 Check valve element 85 Electromagnetic device 92 Control valve element
Claims (1)
対の主流路、この一対の主流路を連通する主弁口を形成
した主弁室、前記主流路にそれぞれ両端部が連通されこ
の両端部にシャトル弁口を形成したパイロット流入路、
このパイロット流入路に前記主弁室の背圧側を経て連通
され制御弁口を有する制御流路、この制御流路からそれ
ぞれ逆止弁口を経て前記一対の主流路にそれぞれ連通さ
れる一対のパイロット流出路を設けた弁本体と、 この弁本体の主弁室に摺動自在に設けられスプリングに
より前記主弁口を閉塞する方向に付勢されるとともにこ
の主弁室をこの主弁口側と背圧側とを仕切る主弁体と、 前記パイロット流入路に摺動自在に設けられ前記一対の
主流路の流体圧により前記両シャトル弁口を開閉するシ
ャトル弁体と、 電磁装置により作動され前記制御弁口を開閉する制御弁
体と、 前記両逆止弁口をそれぞれ開閉し前記主流路から制御流
路への流体の流入を阻止する逆止弁体とを備えたことを
特徴とする可逆型電磁弁。1. A pair of main flow passages each having an inlet and an outlet opened at both end surfaces, a main valve chamber having a main valve port communicating with the pair of main flow passages, and both end portions connected to the main flow passage. A pilot inflow channel with a shuttle valve port
A control flow path having a control valve port communicated with the pilot inflow path through the back pressure side of the main valve chamber, a pair of pilots respectively communicating from the control flow path to the pair of main flow paths through the check valve ports, respectively; A valve body provided with an outflow passage, slidably provided in a main valve chamber of the valve body, urged by a spring in a direction to close the main valve port, and connecting the main valve chamber to the main valve port side. A main valve body for partitioning the back pressure side, a shuttle valve body slidably provided in the pilot inflow passage, for opening and closing the two shuttle valve ports by fluid pressure of the pair of main flow paths, A reversible valve, comprising: a control valve element that opens and closes a valve port; and a check valve element that opens and closes each of the two check valve ports to prevent fluid from flowing from the main flow path to the control flow path. solenoid valve.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28270696A JPH10132134A (en) | 1996-10-24 | 1996-10-24 | Reversible solenoid valve |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28270696A JPH10132134A (en) | 1996-10-24 | 1996-10-24 | Reversible solenoid valve |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH10132134A true JPH10132134A (en) | 1998-05-22 |
Family
ID=17655998
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP28270696A Pending JPH10132134A (en) | 1996-10-24 | 1996-10-24 | Reversible solenoid valve |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH10132134A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016506484A (en) * | 2013-03-28 | 2016-03-03 | 浙江三花股▲ふん▼有限公司 | Linear two-way solenoid valve |
-
1996
- 1996-10-24 JP JP28270696A patent/JPH10132134A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016506484A (en) * | 2013-03-28 | 2016-03-03 | 浙江三花股▲ふん▼有限公司 | Linear two-way solenoid valve |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS5815707Y2 (en) | Pilot type directional valve | |
US4592533A (en) | Solenoid-operated two-way directional needle-valve, normally closed | |
JP4562885B2 (en) | Bidirectional pilot type electromagnetic flow path on-off valve and bidirectional piping | |
JPH10132134A (en) | Reversible solenoid valve | |
JPH04312205A (en) | Slow start valve | |
JP4046555B2 (en) | 3-way selector valve | |
JP2004360876A (en) | Three-way valve | |
JPH06229402A (en) | Flow rate direction control valve device | |
JPH0438088Y2 (en) | ||
JP2924011B2 (en) | Flow path switching valve | |
JPS6145428Y2 (en) | ||
JPH0454499Y2 (en) | ||
JPS6123736Y2 (en) | ||
JPS5825182Y2 (en) | Internal pilot type 4-way solenoid valve | |
JP2924173B2 (en) | Water supply valve device | |
JPH06700Y2 (en) | solenoid valve | |
JP2566435Y2 (en) | Temperature compensation structure of pressure control valve | |
JPH0434302Y2 (en) | ||
JPH0249361Y2 (en) | ||
JP2528580Y2 (en) | Double solenoid type switching valve and double pilot type solenoid valve using the same | |
JPH0577909B2 (en) | ||
JPS6319405A (en) | Flow control valve | |
JPS591908B2 (en) | 2 port 2 position switching valve | |
JPH087458Y2 (en) | Stacked pressure reducing valve | |
JPH0599366A (en) | Reversible solenoid valve |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Effective date: 20051209 Free format text: JAPANESE INTERMEDIATE CODE: A971007 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20051221 |
|
A131 | Notification of reasons for refusal |
Effective date: 20060308 Free format text: JAPANESE INTERMEDIATE CODE: A131 |
|
A02 | Decision of refusal |
Effective date: 20060705 Free format text: JAPANESE INTERMEDIATE CODE: A02 |