JPH1013022A - Method for manufacturing multilayer printed wiring board - Google Patents

Method for manufacturing multilayer printed wiring board

Info

Publication number
JPH1013022A
JPH1013022A JP18129296A JP18129296A JPH1013022A JP H1013022 A JPH1013022 A JP H1013022A JP 18129296 A JP18129296 A JP 18129296A JP 18129296 A JP18129296 A JP 18129296A JP H1013022 A JPH1013022 A JP H1013022A
Authority
JP
Japan
Prior art keywords
wiring board
printed wiring
insulating layer
multilayer printed
electroless plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18129296A
Other languages
Japanese (ja)
Inventor
Shuichi Ogasawara
修一 小笠原
Hidenori Kato
英規 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Shinko Seisakusho KK
Original Assignee
Sumitomo Metal Mining Co Ltd
Shinko Seisakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd, Shinko Seisakusho KK filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP18129296A priority Critical patent/JPH1013022A/en
Publication of JPH1013022A publication Critical patent/JPH1013022A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a multilayer printed wiring board with improved fine patterning property, economy, and working efficiency. SOLUTION: In a method, an insulation layer is formed on the entire or one part of an insulation substrate surface where a conductor circuit is formed, for example, a via hole is formed as needed, an electroless plating is applied to the surface of the insulation layer, patterning is made, the conductor circuit is formed, and the above steps are repeated, thus manufacturing a multilayer printed wiring board. At this time, before electroless plating is made onto the insulation layer surface, the insulation layer is pre-treated by an alkali metal hydroxide solution of 0.1-10mol/l, is subjected to electroless plating, electrical copper plating as needed, and then heat treatment at 100-300 deg.C.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、多層プリント配線
板の回路間の電気絶縁性の改善と、これを達成するため
の絶縁層表面のエッチング処理作業性の改善に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement in electrical insulation between circuits of a multilayer printed wiring board and an improvement in workability of an etching process on an insulating layer surface for achieving the same.

【0002】[0002]

【従来の技術】最近におけるプリント配線板の多層化技
術として、プリント配線板表面に絶縁層を形成し、フォ
トリソグラフィー技法あるいはレーザー加工などにより
絶縁層の一部にビアホールを形成した後、絶縁層表面と
ビアホール部に無電解めっきを施し、次いでアディティ
ブ法またはサブトラクティブ法などを用いて回路を形成
する方法を必要なだけ繰り返す、いわゆるビルドアップ
法が開発されている。またこのビルドアップ法は、高密
度な多層プリント配線板を安価に製造し得る技術として
も注目されている。
2. Description of the Related Art As a recent multi-layered technology of a printed wiring board, an insulating layer is formed on the surface of the printed wiring board, and a via hole is formed in a part of the insulating layer by a photolithography technique or laser processing, and then the surface of the insulating layer is formed. A so-called build-up method has been developed in which an electroless plating is applied to a via hole portion, and then a method of forming a circuit using an additive method or a subtractive method is repeated as necessary. Also, this build-up method has attracted attention as a technique for inexpensively manufacturing a high-density multilayer printed wiring board.

【0003】このビルドアップ法によって得られた多層
プリント配線板の諸特性に大きな影響を及ぼすものの1
つに、絶縁層と無電解めっき皮膜との密着性が挙げら
れ、従来からその密着性を改善するための数多くの提案
がなされている。例えば、その代表的なものとして、エ
ッチング液に対して溶解性を有する微粒子を含有する物
質で絶縁層を形成し、次いで該絶縁層表面を機械的に研
磨し、その後エッチング液として過マンガン酸やクロム
酸などの強酸化剤を用いて絶縁層表面を化学的にエッチ
ングして絶縁層表面を粗面化した後、無電解めっきを施
す方法がある。
[0003] Although it has a great effect on various characteristics of a multilayer printed wiring board obtained by this build-up method,
One is the adhesion between the insulating layer and the electroless plating film, and many proposals have been made to improve the adhesion. For example, as a typical example, an insulating layer is formed using a substance containing fine particles having solubility in an etching solution, and then the surface of the insulating layer is mechanically polished. There is a method of chemically etching the surface of the insulating layer using a strong oxidizing agent such as chromic acid to roughen the surface of the insulating layer, and then performing electroless plating.

【0004】[0004]

【発明が解決しようとする課題】上記の手法を用いて作
製した多層プリント配線板は、一部実用化されているも
のの、エッチングに際して過マンガン酸やクロム酸など
の人体に有害な強酸化剤をエッチング液として用いるた
めに作業環境に支障をきたすという欠点がある。さら
に、パターニング後無電解めっき皮膜をエッチングして
回路を形成する際には、絶縁層表面に粗面化による凹凸
が存在するので回路間にめっき金属が残留し易く、回路
間隔が狭い場合には特に回路間の絶縁に支障をきたす可
能性があるといった問題点が指摘されている。
Although the multilayer printed wiring board manufactured by using the above-mentioned method has been partially put into practical use, a strong oxidizing agent harmful to the human body such as permanganic acid or chromic acid is used during etching. There is a drawback that the working environment is hindered because it is used as an etchant. Furthermore, when the circuit is formed by etching the electroless plating film after patterning, there is unevenness due to roughening on the surface of the insulating layer, so that the plating metal easily remains between the circuits, and when the circuit interval is small, In particular, a problem has been pointed out that insulation between circuits may be hindered.

【0005】本発明は上記従来の手法による多層プリン
ト配線板の製造における上記した問題点を解決し、ファ
インパターニング性に優れ、また経済性、作業性に優れ
た多層プリント配線板の製造方法を提供することを目的
とするものである。
The present invention solves the above-mentioned problems in the production of a multilayer printed wiring board by the above conventional method, and provides a method for producing a multilayer printed wiring board which is excellent in fine patterning property, economical and workable. It is intended to do so.

【0006】[0006]

【課題を解決するための手段】本発明者らは、上記の問
題点を解消すべく種々の検討を加えた結果、無電解めっ
き前処理として行う化学的なエッチング処理で形成され
た絶縁層表面の凹凸内部に施されためっき皮膜の突起部
分が、回路を形成する際のめっき金属残留の原因となり
やすいことを見出した。そして、上記絶縁層表面の凹凸
の程度を最適化すれば回路形成時におけるめっき金属の
残留を減少し得ることを見出し本発明を完成するに至っ
た。
The present inventors have made various studies to solve the above problems, and as a result, have found that the surface of an insulating layer formed by a chemical etching process performed as a pretreatment for electroless plating. It has been found that the protruding portions of the plating film applied to the inside of the irregularities easily cause plating metal residue when forming a circuit. Then, it has been found that by optimizing the degree of the irregularities on the surface of the insulating layer, it is possible to reduce the residual plating metal during circuit formation, thereby completing the present invention.

【0007】即ち、上記課題を解決するための本発明
は、導体回路を形成した絶縁基板面の全部または一部に
絶縁層を形成した後、必要に応じビアホール等を形成
し、絶縁層の表面に無電解めっきを施し、パターニング
し、導体回路を形成し、これを繰り返すことにより多層
プリント配線板を製造する工程において、絶縁層表面に
無電解めっきを施す前に、該絶縁層を0.1〜10モル
/リットルのアルカリ金属水酸化物水溶液で前処理し、
無電解めっきを施した後必要に応じ引き続き電気銅めっ
きを施し、次いで100〜300℃で熱処理することを
特徴とする多層プリント配線板の製造方法である。
That is, according to the present invention for solving the above-mentioned problems, an insulating layer is formed on all or a part of an insulating substrate surface on which a conductive circuit is formed, and then a via hole or the like is formed if necessary. In the step of manufacturing a multilayer printed wiring board by repeating electroless plating and patterning to form a conductor circuit and repeating this, before applying the electroless plating to the surface of the insulating layer, the insulating layer 0.1. Pretreatment with an aqueous solution of an alkali metal hydroxide of 10 to 10 mol / l,
This is a method for producing a multilayer printed wiring board, characterized in that electroless plating is performed after electroless plating is performed, followed by electrolytic copper plating, and then heat treatment is performed at 100 to 300 ° C.

【0008】そして、本発明において形成される絶縁層
はアルカリ現像型紫外線感光レジストであることが好ま
しい。また、必要に応じて絶縁層の形成および絶縁層表
面の導体回路の形成は少なくとも1回以上繰り返すこと
で多層プリント配線板の形成を行うものとする。
The insulating layer formed in the present invention is preferably an alkali-developing ultraviolet-sensitive resist. Further, if necessary, the formation of the insulating layer and the formation of the conductor circuit on the surface of the insulating layer are repeated at least once or more to form the multilayer printed wiring board.

【0009】[0009]

【発明の実施の形態】本発明では、絶縁層表面への無電
解めっき前処理液として、従来用いられている過マンガ
ン酸やクロム酸などの代わりに、アルカリ金属水酸化物
水溶液を用いる。この前処理では、絶縁層表面は膨潤し
親水化される。その結果、その後に行う触媒付与処理で
パラジウムなどの無電解めっき用触媒の絶縁層表面への
吸着が容易になる。
DETAILED DESCRIPTION OF THE INVENTION In the present invention, an aqueous solution of an alkali metal hydroxide is used as a pretreatment liquid for electroless plating on the surface of an insulating layer, instead of permanganic acid or chromic acid which has been conventionally used. In this pretreatment, the surface of the insulating layer swells and becomes hydrophilic. As a result, adsorption of the electroless plating catalyst such as palladium on the surface of the insulating layer becomes easy in the subsequent catalyst application treatment.

【0010】本発明の前処理法としては、絶縁層表面と
前処理液とが接触すればよく、特に限定されないが、例
えば浸漬法や吹き付け法などが推奨される。またアルカ
リ金属水酸化物水溶液による前処理は、従来の過マンガ
ン酸やクロム酸などのように絶縁層を強力に溶解するタ
イプではないので、絶縁層表面には過度の凹凸が形成さ
れることがなく、その結果、無電解めっき皮膜形成時に
めっき金属の残留などの問題を生ずることがない。さら
に、エッチング時の作業性や、廃液処理などにも特に問
題はない。
The pretreatment method of the present invention is not particularly limited as long as the surface of the insulating layer and the pretreatment liquid are in contact with each other, but, for example, a dipping method or a spraying method is recommended. In addition, pretreatment with an aqueous alkali metal hydroxide solution is not of the type that dissolves the insulating layer as strongly as conventional permanganic acid or chromic acid, so that excessive irregularities may be formed on the insulating layer surface. As a result, there is no problem such as residual plating metal during the formation of the electroless plating film. Further, there is no particular problem in the workability at the time of etching and the treatment of waste liquid.

【0011】本発明において前処理液として用いるアル
カリ金属水酸化物水溶液の濃度は、0.1〜10モル/
リットルの範囲内が適切である。濃度が0.1モル/リ
ットル未満の場合には、前処理温度、前処理時間などを
増加させても十分な効果が得られず、、めっき金属の未
析出などの問題を生ずる。一方濃度が10モル/リット
ルを超える場合には、処理液の粘度が著しく高くなるた
めに、絶縁層に形成された微細なビアホールなどの内部
にまで均一にエッチング処理を行うことが困難となり、
やはりめっき皮膜の未析出などの問題を生じやすくな
る。また絶縁層構成材料によっては、高濃度のアルカリ
溶液によって絶縁層が部分的に剥離する危険性もある。
In the present invention, the concentration of the aqueous alkali metal hydroxide solution used as the pretreatment liquid is 0.1 to 10 mol / mol.
A range of liters is appropriate. If the concentration is less than 0.1 mol / liter, sufficient effects cannot be obtained even if the pretreatment temperature, pretreatment time, and the like are increased, and problems such as non-precipitation of plated metal occur. On the other hand, when the concentration exceeds 10 mol / liter, the viscosity of the processing liquid becomes extremely high, so that it becomes difficult to uniformly perform the etching treatment even inside a fine via hole or the like formed in the insulating layer.
Again, problems such as non-precipitation of the plating film tend to occur. Further, depending on the material of the insulating layer, there is a risk that the insulating layer is partially peeled off by a high-concentration alkaline solution.

【0012】本発明での前処理時間および前処理温度
は、上記した溶液濃度および絶縁層構成材料によって適
正な範囲が異なるために一概に定めることはできない。
従って実操業を行うにに際して予め適正な温度および時
間などの条件を求めておく必要がある。また本発明の前
処理液に用いるアルカリ金属水酸化物としては特に限定
はないが、経済性の点で水酸化ナトリウムおよび水酸化
カリウムの使用が推奨される。また本発明において用い
られる絶縁層材料は、前述のようにアルカリ金属水酸化
物水溶液によって膨潤し親水化される構造のものがよ
く、いわゆるアルカリ現像型の紫外線感光レジストなど
が適している。
In the present invention, the pretreatment time and the pretreatment temperature cannot be unconditionally determined because an appropriate range differs depending on the above-mentioned solution concentration and the material constituting the insulating layer.
Therefore, it is necessary to determine in advance conditions such as appropriate temperature and time before actual operation. The alkali metal hydroxide used in the pretreatment liquid of the present invention is not particularly limited, but use of sodium hydroxide and potassium hydroxide is recommended from the viewpoint of economy. The insulating layer material used in the present invention preferably has a structure which is swollen and hydrophilized by an aqueous alkali metal hydroxide solution as described above, and a so-called alkali developing type ultraviolet-sensitive resist is suitable.

【0013】本発明において行う前処理は、前述したよ
うに絶縁層表面に過度の凹凸を形成させるのではなく、
絶縁層表面を膨潤し親水化することを目的として行うも
のである。よってその後の無電解めっき用触媒の付与お
よび無電解めっき処理は従来法によって支障なく行うこ
とができるが、得られためっき皮膜は実用に耐え得る水
準といわれる0.8kgf/cm以上の密着強度値が得
られない。これは、本発明の前処理では従来にようにめ
っき金属が絶縁層に複雑に入り込むことによって得られ
るいわゆるアンカー効果が十分に得られないためであ
る。
The pretreatment performed in the present invention does not cause excessive unevenness to be formed on the surface of the insulating layer as described above.
This is performed for the purpose of swelling and hydrophilizing the surface of the insulating layer. Therefore, the subsequent application of a catalyst for electroless plating and electroless plating can be carried out by conventional methods without any problem. However, the obtained plating film has an adhesion strength value of 0.8 kgf / cm or more, which is said to be a level that can be used practically. Can not be obtained. This is because in the pretreatment of the present invention, the so-called anchor effect obtained by the complicated penetration of the plating metal into the insulating layer as in the related art cannot be sufficiently obtained.

【0014】このために本発明においては、無電解めっ
きを施した後、または必要に応じて引き続いて電気銅め
っきを施した後、100〜300℃の温度範囲で熱処理
を行うことにより無電解めっき皮膜の密着性を高めるも
のである。熱処理温度が100℃未満である場合には熱
処理時間を長くしても十分な効果は得られず、一方30
0℃を超える場合には絶縁層が高熱による劣化を起こす
ために好ましくない。また熱処理時間は、熱処理温度や
絶縁層構成材料、エッチング処理条件によってその適正
範囲が異なるために、実操業を行うに際して予め密着性
の改善効果および絶縁層の熱による劣化などを勘案して
適正時間を定めておく必要がある。
For this purpose, in the present invention, the electroless plating is performed by performing a heat treatment at a temperature of 100 to 300 ° C. after the electroless plating or, if necessary, the subsequent electrolytic copper plating. It enhances the adhesion of the film. If the heat treatment temperature is lower than 100 ° C., a sufficient effect cannot be obtained even if the heat treatment time is lengthened.
If the temperature exceeds 0 ° C., the insulating layer is undesirably deteriorated by high heat. Since the appropriate range of the heat treatment time varies depending on the heat treatment temperature, the material of the insulating layer, and the etching conditions, the proper time is taken into consideration in advance of the actual operation in consideration of the effect of improving the adhesion and the deterioration of the insulating layer due to heat. It is necessary to determine.

【0015】本発明において行われる無電解めっき法は
特に限定されず公知の方法を採用すればよく、また本発
明の効果は形成されるめっき皮膜の金属種によっては左
右されることはない。さらにまた、絶縁層の形成方法、
ビアホールの形成方法なども公知の方法を採用すればよ
い。
The electroless plating method performed in the present invention is not particularly limited, and a known method may be employed, and the effect of the present invention does not depend on the metal species of the plating film to be formed. Furthermore, a method of forming an insulating layer,
A well-known method may be adopted as a method of forming a via hole.

【0016】[0016]

【実施例】次に実施例および比較例によって本発明をさ
らに詳細に説明する。 実施例1:縦400mm、横500mm、厚さ1.6m
m(銅厚18μm)の両面銅張ガラスエポキシ基板を用
い、銅皮膜を塩化第2鉄溶液でパターンニングすること
によって最小ピッチ150μmの回路を有する両面プリ
ント配線板を得た。得られたプリント配線板の表面に太
陽インク製アルカリ現像型フォトレジスト「SL−2」
を厚さ50μmになるように塗布し、乾燥し、直径10
0μmのビアホールをフォトリソグラフィー技法を用い
て絶縁層の所定箇所に形成し、また直径400μmのス
ルーホールを基板の所定箇所にドリルによって形成し
た。その後、絶縁層表面をバフ研磨によって厚さ10μ
m研磨した。
Next, the present invention will be described in more detail with reference to Examples and Comparative Examples. Example 1: 400 mm long, 500 mm wide, 1.6 m thick
A double-sided printed wiring board having a circuit with a minimum pitch of 150 μm was obtained by patterning the copper film with a ferric chloride solution using a double-sided copper-clad glass epoxy substrate of m (copper thickness 18 μm). On the surface of the obtained printed wiring board, an alkali-developable photoresist “SL-2” made by Taiyo Ink
Is applied to a thickness of 50 μm, dried, and has a diameter of 10 μm.
A 0 μm via hole was formed at a predetermined position on the insulating layer using a photolithography technique, and a 400 μm diameter through hole was formed at a predetermined position on the substrate by drilling. Then, the insulating layer surface is buffed to a thickness of 10 μm.
m.

【0017】以上の処理によって得られた基板を40℃
の5モル/リットルの水酸化ナトリウム水溶液に5分間
浸漬し、次いで水洗した。25℃の奥野製薬社製「0P
C−80キャタリスト」溶液に5分間浸漬し、水洗後2
5℃の奥野製薬社製「OPC−555アクセレーター」
溶液に5分間浸漬し水洗した。その後、基板を硫酸銅5
水和物を10g/リットル、エチレンジアミン4酢酸2
ナトリウムを30g/リットル、35%ホルムアルデヒ
ド溶液を5g/リットル、2,2′−ビピリジルを10
mg/リットル、平均分子量1,000のポリエチレン
グリコールを0.5g/リットル含有するpH12.
5、65℃の無電解銅めっき液中に10分間浸漬し、厚
さ0.3μmの無電解銅めっき皮膜を形成した。
The substrate obtained by the above processing is heated at 40 ° C.
Was immersed in a 5 mol / liter aqueous sodium hydroxide solution for 5 minutes, and then washed with water. 25 ° C Okuno Pharmaceutical “0P
C-80 Catalyst ”solution for 5 minutes, rinse with water 2
"OPC-555 Accelerator" manufactured by Okuno Pharmaceutical Company at 5 ℃
It was immersed in the solution for 5 minutes and washed with water. After that, the substrate is made of
Hydrate 10 g / l, ethylenediaminetetraacetic acid 2
30 g / l of sodium, 5 g / l of a 35% formaldehyde solution and 10 g of 2,2'-bipyridyl
pH mg containing 0.5 g / l of polyethylene glycol having an average molecular weight of 1,000 mg / l.
5. Dipped in an electroless copper plating solution at 65 ° C. for 10 minutes to form an electroless copper plating film having a thickness of 0.3 μm.

【0018】得られた基板を150℃に保持された加熱
炉内に10分間静置して熱処理を行った。その後、無電
解銅めっき皮膜上に硫酸銅5水和物を80g/リット
ル、硫酸を180g/リットル含有する電気銅めっき液
を用い、陰極電流密度を3A/dmにして23℃で3
0分間電気銅めっきを行った。さらに電気銅めっき皮膜
上に従来法に従ってフォトリソグラフィー技法によって
最小ピッチ150μmの回路間隔にエッチングレジスト
をパターニングした後、40ボーメの塩化第2鉄溶液を
用い、温度50℃、シャワー圧2.0kg/cmで4
0秒間エッチングを行い回路形成を行った。
The obtained substrate was left in a heating furnace maintained at 150 ° C. for 10 minutes to perform a heat treatment. Thereafter, an electrolytic copper plating solution containing 80 g / l of copper sulfate pentahydrate and 180 g / l of sulfuric acid was used on the electroless copper plating film at a cathode current density of 3 A / dm 2 and at 23 ° C. for 3 hours.
Electroless copper plating was performed for 0 minutes. Further, after an etching resist is patterned on the electrolytic copper plating film at a circuit interval of a minimum pitch of 150 μm by a photolithography technique according to a conventional method, a ferric chloride solution of 40 Baume is used at a temperature of 50 ° C. and a shower pressure of 2.0 kg / cm. 2 in 4
The circuit was formed by etching for 0 seconds.

【0019】以上の工程を経ることによって、最終的に
回路厚さ18μm、回路の最小ピッチ150μm、ビア
ホール径100μm、スルーホール径400μmの4層
プリント配線板を得ることができた。得られたプリント
配線板の基板に対する回路の密着強度は1.0kgf/
cmであり、この値は実用に耐え得る値であった。また
めっきの未析出による回路の断線、ビアホールの導通不
良などの問題は発生せず、さらに回路間に銅めっき皮膜
の残留も観察されず、電気的な信頼性においても十分満
足し得るものであった。
Through the above steps, a four-layer printed wiring board having a circuit thickness of 18 μm, a minimum circuit pitch of 150 μm, a via hole diameter of 100 μm, and a through hole diameter of 400 μm was finally obtained. The adhesion strength of the circuit of the obtained printed wiring board to the substrate is 1.0 kgf /
cm, which was a value that could be put to practical use. Also, no problems such as disconnection of the circuit due to non-deposition of plating and poor conduction of via holes did not occur, no copper plating film remained between the circuits, and the electrical reliability was satisfactory. Was.

【0020】実施例2:無電解銅めっき皮膜の熱処理を
100℃に保持された加熱炉内に1時間基板を保持する
ことによって行った以外は実施例1と同様な手順で4層
プリント配線板を得た。得られたプリント配線板の基板
に対する回路の密着強度は0.8kgf/cmであり、
この値は実用に耐え得る値であった。まためっきの未析
出による回路の断線、ビアホールの導通不良などの問題
は発生せず、さらに回路間に銅めっき皮膜の残留も観察
されず、電気的な信頼性においても十分満足し得るもの
であった。
Example 2 A four-layer printed wiring board was manufactured in the same procedure as in Example 1 except that the heat treatment of the electroless copper plating film was performed by holding the substrate in a heating furnace maintained at 100 ° C. for one hour. I got The adhesion strength of the circuit to the substrate of the obtained printed wiring board is 0.8 kgf / cm,
This value was a value that could withstand practical use. Also, no problems such as disconnection of the circuit due to non-deposition of plating and poor conduction of via holes did not occur, no copper plating film remained between the circuits, and the electrical reliability was satisfactory. Was.

【0021】実施例3:無電解銅めっき皮膜の熱処理を
300℃に保持された加熱炉内に3分間基板を保持する
ことによって行った以外は実施例1と同様な手順で4層
プリント配線板を得た。得られたプリント配線板の基板
に対する回路の密着強度は1.0kgf/cmであり、
この値は実用に耐え得る値であった。まためっきの未析
出による回路の断線、ビアホールの導通不良などの問題
は発生せず、さらに回路間に銅めっき皮膜の残留も観察
されず、電気的な信頼性においても十分満足し得るもの
であった。
Example 3 Four-layer printed wiring board in the same procedure as in Example 1 except that the heat treatment of the electroless copper plating film was performed by holding the substrate in a heating furnace maintained at 300 ° C. for 3 minutes. I got The adhesion strength of the circuit of the obtained printed wiring board to the substrate is 1.0 kgf / cm,
This value was a value that could withstand practical use. Also, no problems such as disconnection of the circuit due to non-deposition of plating and poor conduction of via holes did not occur, no copper plating film remained between the circuits, and the electrical reliability was satisfactory. Was.

【0022】実施例4:0.1モル/リットルの水酸化
ナトリウム水溶液を用い、70℃で1時間のエッチング
処理を行った以外は実施例1と同様な手順で4層プリン
ト配線板を得た。得られたプリント配線板の基板に対す
る回路の密着強度は0.8kgf/cmであり、この値
は実用に耐え得る値であった。まためっきの未析出によ
る回路の断線、ビアホールの導通不良などの問題は発生
せず、さらに回路間に銅めっき皮膜の残留も観察され
ず、電気的な信頼性においても十分満足し得るものであ
った。
Example 4 A four-layer printed wiring board was obtained in the same procedure as in Example 1, except that an etching treatment was performed at 70 ° C. for 1 hour using a 0.1 mol / L aqueous solution of sodium hydroxide. . The adhesion strength of the circuit of the obtained printed wiring board to the substrate was 0.8 kgf / cm, which was a value that could withstand practical use. Also, no problems such as disconnection of the circuit due to non-deposition of plating and poor conduction of via holes did not occur, no copper plating film remained between the circuits, and the electrical reliability was satisfactory. Was.

【0023】実施例5:10モル/リットルの水酸化ナ
トリウム水溶液を用い、30℃で2分間のエッチング処
理を行った以外は実施例1と同様な手順で4層プリント
配線板を得た。得られたプリント配線板の基板に対する
回路の密着強度は1.0kgf/cmであり、この値は
実用に耐え得る値であった。まためっきの未析出による
回路の断線、ビアホールの導通不良などの問題は発生せ
ず、さらに回路間に銅めっき皮膜の残留も観察されず、
電気的な信頼性においても十分満足し得るものであっ
た。
Example 5 A four-layer printed wiring board was obtained in the same manner as in Example 1 except that an etching treatment was performed at 30 ° C. for 2 minutes using a 10 mol / L sodium hydroxide aqueous solution. The adhesion strength of the circuit of the obtained printed wiring board to the substrate was 1.0 kgf / cm, which was a value that could withstand practical use. Also, no problems such as disconnection of the circuit due to non-deposition of plating and poor conduction of via holes did not occur, and no copper plating film remained between the circuits.
The electrical reliability was satisfactory.

【0024】実施例6:5モル/リットルの水酸化ナト
リウム水溶液を用い、40℃で5分間のエッチング処理
を行った以外は実施例1と同様な手順で4層プリント配
線板を得た。得られたプリント配線板の基板に対する回
路の密着強度は1.0kgf/cmであり、この値は実
用に耐え得る値であった。まためっきの未析出による回
路の断線、ビアホールの導通不良などの問題は発生せ
ず、さらに回路間に銅めっき皮膜の残留も観察されず、
電気的な信頼性においても十分満足し得るものであっ
た。
Example 6 A four-layer printed wiring board was obtained in the same manner as in Example 1, except that an etching treatment was performed at 40 ° C. for 5 minutes using a 5 mol / L sodium hydroxide aqueous solution. The adhesion strength of the circuit of the obtained printed wiring board to the substrate was 1.0 kgf / cm, which was a value that could withstand practical use. Also, no problems such as disconnection of the circuit due to non-deposition of plating and poor conduction of via holes did not occur, and no copper plating film remained between the circuits.
The electrical reliability was satisfactory.

【0025】実施例7:無電解銅めっきを行わず、代わ
りに硫酸ニッケル6水和物を0.1モル/リットル、グ
リシンを0.3モル/リットル、ホスフィン酸ナトリウ
ムを0.1モル/リットル含有するpH7の無電解ニッ
ケルめっき液を用い、60℃で1分間の浸漬により無電
解ニッケルめっきを施し、厚さ0.1μmのニッケルメ
ッキ皮膜を形成した以外は実施例1と同様な手順で4層
プリント配線板を得た。得られたプリント配線板の基板
に対する回路の密着強度は1.1kgf/cmであり、
この値は実用に耐え得る値であった。まためっきの未析
出による回路の断線、ビアホールの導通不良などの問題
は発生せず、さらに回路間に銅めっき皮膜の残留も観察
されず、電気的な信頼性においても十分満足し得るもの
であった。
Example 7: Without electroless copper plating, instead of nickel sulfate hexahydrate 0.1 mol / l, glycine 0.3 mol / l, sodium phosphinate 0.1 mol / l Using the same electroless nickel plating solution having a pH of 7 and immersing it at 60 ° C. for 1 minute to perform electroless nickel plating to form a nickel plating film having a thickness of 0.1 μm, the same procedure as in Example 1 was repeated. A layer printed wiring board was obtained. The adhesion strength of the circuit of the obtained printed wiring board to the substrate is 1.1 kgf / cm,
This value was a value that could withstand practical use. Also, no problems such as disconnection of the circuit due to non-deposition of plating and poor conduction of via holes did not occur, no copper plating film remained between the circuits, and the electrical reliability was satisfactory. Was.

【0026】実施例8:実施例1の手順で得られた4層
プリント配線板の表面に、実施例1と同様の手順で絶縁
層レジストの形成、ビアホールの形成、スルーホールの
形成、無電解銅めっき皮膜の形成、熱処理、電気銅めっ
き皮膜の形成、およびフォトリソグラフィー技法による
パターニング処理を行うことによって6層プリント配線
板を得た。得られたプリント配線板の基板に対する回路
の密着強度は1.0kgf/cmであり、この値は実用
に耐え得る値であった。まためっきの未析出による回路
の断線、ビアホールの導通不良などの問題は発生せず、
さらに回路間に銅めっき皮膜の残留も観察されず、電気
的な信頼性においても十分満足し得るものであった。
Example 8: On the surface of the four-layer printed wiring board obtained by the procedure of Example 1, in the same procedure as in Example 1, form an insulating layer resist, form a via hole, form a through hole, and electrolessly. A six-layer printed wiring board was obtained by performing formation of a copper plating film, heat treatment, formation of an electrolytic copper plating film, and patterning by photolithography. The adhesion strength of the circuit of the obtained printed wiring board to the substrate was 1.0 kgf / cm, which was a value that could withstand practical use. In addition, problems such as disconnection of the circuit due to undeposited plating and poor conduction of the via hole did not occur.
Further, no residual copper plating film was observed between the circuits, and the electrical reliability was sufficiently satisfactory.

【0027】比較例1:0.05モル/リットルの水酸
化ナトリウム水溶液を用い、80℃で2時間のエッチン
グ処理を行った以外は実施例1と同様な手順でレジスト
表面への無電解銅めっき皮膜の形成までを行った。その
結果、レジスト表面には多数の無電解銅めっきの未析出
部を生じ、これを用いてプリント配線板を得ることはで
きなかった。
Comparative Example 1: Electroless copper plating on a resist surface in the same procedure as in Example 1 except that etching was performed at 80 ° C. for 2 hours using an aqueous solution of 0.05 mol / L sodium hydroxide. The process up to the formation of the film was performed. As a result, a large number of undeposited portions of electroless copper plating were formed on the resist surface, and it was not possible to obtain a printed wiring board using this.

【0028】比較例2:12モル/リットルの水酸化ナ
トリウム水溶液を用い、25℃で1分間のエッチング処
理を行った以外は実施例1と同様な手順でレジスト表面
への無電解銅めっき皮膜の形成までを行った。その結
果、多数のビアホール側面部に無電解銅めっきの未析出
部を生じ、また絶縁層レジストの一部が基板から剥離し
たため、これを用いてプリント配線板を得ることはでき
なかった。
Comparative Example 2 An electroless copper plating film was formed on a resist surface in the same procedure as in Example 1 except that an etching treatment was performed at 25 ° C. for 1 minute using a 12 mol / liter sodium hydroxide aqueous solution. Performed up to formation. As a result, undeposited portions of electroless copper plating were formed on the side surfaces of a large number of via holes, and a part of the insulating layer resist was peeled off from the substrate. Therefore, a printed wiring board could not be obtained by using this.

【0029】比較例3:無電解銅めっき後の熱処理を9
0℃に保持された加熱炉内に基板を3時間保持すること
によって行った以外は実施例1と同様な手順で4層プリ
ント配線板を得た。得られたプリント配線板の基板に対
する回路の密着強度は0.7kgf/cmであり、実用
に耐え得る値が得られなかった。
Comparative Example 3: Heat treatment after electroless copper plating was 9
A four-layer printed wiring board was obtained in the same procedure as in Example 1, except that the substrate was held in a heating furnace maintained at 0 ° C. for 3 hours. The adhesive strength of the circuit of the obtained printed wiring board to the substrate was 0.7 kgf / cm, and a value that could withstand practical use was not obtained.

【0030】無電解銅めっき後の熱処理を310℃に保
持された加熱炉内に基板を1分間保持することによって
行った以外は実施例1と同様な手順で4層プリント配線
板を得た。得られたプリント配線板の基板に対する回路
の密着強度は0.8kgf/cmであったが、絶縁層レ
ジストに部分的な変色、劣化が観察され、これを電子部
品として用いるには信頼性が欠けるため、実用に耐え得
るものとはならなかった。
A four-layer printed wiring board was obtained in the same procedure as in Example 1, except that the heat treatment after the electroless copper plating was performed by holding the substrate in a heating furnace maintained at 310 ° C. for one minute. Although the adhesion strength of the circuit to the substrate of the obtained printed wiring board was 0.8 kgf / cm, partial discoloration and deterioration were observed in the insulating layer resist, and the use of this as an electronic component lacked reliability. Therefore, it was not practically usable.

【0031】[0031]

【発明の効果】以上述べたように本発明によるときは、
従来困難であったファインパターニング性の優れた無電
解めっき皮膜を絶縁層表面に形成することが可能とな
り、高密度多層プリント配線板を経済性、作業性に優れ
た方法で得ることができる。
As described above, according to the present invention,
It is possible to form an electroless plating film having excellent fine patterning properties on the surface of the insulating layer, which has been difficult in the past, and it is possible to obtain a high-density multilayer printed wiring board by a method excellent in economy and workability.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 導体回路を形成した絶縁基板面の全部ま
たは一部に絶縁層を形成した後、絶縁層の表面に無電解
めっきを施し、パターニングし、導体回路を形成し、こ
れを繰り返すことにより多層プリント配線板を製造する
工程において、絶縁層表面に無電解めっきを施す前に、
該絶縁層を0.1〜10モル/リットルのアルカリ金属
水酸化物水溶液で前処理し、無電解めっきを施し、次い
で100〜300℃で熱処理することを特徴とする多層
プリント配線板の製造方法。
An insulating layer is formed on all or a part of an insulating substrate surface on which a conductive circuit is formed, and then the surface of the insulating layer is subjected to electroless plating and patterning to form a conductive circuit, and this is repeated. In the process of manufacturing a multilayer printed wiring board by, before performing electroless plating on the insulating layer surface,
A method for producing a multilayer printed wiring board, wherein the insulating layer is pretreated with a 0.1 to 10 mol / l alkali metal hydroxide aqueous solution, subjected to electroless plating, and then heat-treated at 100 to 300 ° C. .
【請求項2】 前記無電解めっきを施した後、さらに電
気銅めっきを施すことを特徴とする請求項1記載の多層
プリント配線板の製造方法。
2. The method for manufacturing a multilayer printed wiring board according to claim 1, wherein after the electroless plating is performed, an electrolytic copper plating is further performed.
【請求項3】 前記絶縁層はアルカリ現像型紫外線感光
レジストであることを特徴とする請求項1または2記載
の多層プリント配線板の製造方法。
3. The method for manufacturing a multilayer printed wiring board according to claim 1, wherein said insulating layer is an alkali-developing ultraviolet light-sensitive resist.
JP18129296A 1996-06-21 1996-06-21 Method for manufacturing multilayer printed wiring board Pending JPH1013022A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18129296A JPH1013022A (en) 1996-06-21 1996-06-21 Method for manufacturing multilayer printed wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18129296A JPH1013022A (en) 1996-06-21 1996-06-21 Method for manufacturing multilayer printed wiring board

Publications (1)

Publication Number Publication Date
JPH1013022A true JPH1013022A (en) 1998-01-16

Family

ID=16098139

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18129296A Pending JPH1013022A (en) 1996-06-21 1996-06-21 Method for manufacturing multilayer printed wiring board

Country Status (1)

Country Link
JP (1) JPH1013022A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100816667B1 (en) * 2000-07-20 2008-03-27 롬 앤드 하스 일렉트로닉 머트어리얼즈, 엘.엘.씨 Methods of producing conductor layers on dielectric surfaces

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100816667B1 (en) * 2000-07-20 2008-03-27 롬 앤드 하스 일렉트로닉 머트어리얼즈, 엘.엘.씨 Methods of producing conductor layers on dielectric surfaces

Similar Documents

Publication Publication Date Title
US4895739A (en) Pretreatment for electroplating process
US4952286A (en) Electroplating process
JPH0711487A (en) Method for self-promoting replenishment-type immersion coating and composition therefor
JPH06330378A (en) Method for directly forming electroplated layer on nonconductive material surface
US5770032A (en) Metallizing process
JP4000225B2 (en) Manufacturing method of multilayer printed wiring board
US4968398A (en) Process for the electrolytic removal of polyimide resins
US5017742A (en) Printed circuit board
JPH1013022A (en) Method for manufacturing multilayer printed wiring board
JPH09246716A (en) Surface layer printed wiring board (slc) manufacturing method
JPH05259611A (en) Production of printed wiring board
US5792248A (en) Sensitizing solution
JP2000261149A (en) Mutilayer printed wiring board and manufacture thereof
JPH06256960A (en) Production of copper-coated aramid substrate
JPH06316768A (en) Electroless plating method for fluorine containing polyimide resin
JPH1013023A (en) Method for manufacturing multilayer printed wiring board
JPH05167248A (en) Method of manufacturing printed wiring board
JP2723090B2 (en) Manufacturing method of printed wiring board
JPH10107447A (en) Manufacture of multi-layered printed wiring board
JPH11191675A (en) Manufacture of build-up printed wiring board
JPH11251720A (en) Manufacture of printed wiring board
JPS61163693A (en) Manufacture of printed wiring board
JPH08204339A (en) Manufacture of printed wiring board
JP3936781B2 (en) Multilayer printed wiring board
JPS60241291A (en) Method of producing printed circuit board