JPH10130050A - Preparation of dielectric material for low-temperature sintering - Google Patents

Preparation of dielectric material for low-temperature sintering

Info

Publication number
JPH10130050A
JPH10130050A JP8301287A JP30128796A JPH10130050A JP H10130050 A JPH10130050 A JP H10130050A JP 8301287 A JP8301287 A JP 8301287A JP 30128796 A JP30128796 A JP 30128796A JP H10130050 A JPH10130050 A JP H10130050A
Authority
JP
Japan
Prior art keywords
dielectric constant
target value
low
glass material
test
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8301287A
Other languages
Japanese (ja)
Inventor
Yoshinari Noyori
佳成 野寄
Yasuo Suzuki
靖生 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP8301287A priority Critical patent/JPH10130050A/en
Publication of JPH10130050A publication Critical patent/JPH10130050A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To compensate fluctuations in characteristics varying with every production lot even if a firing temp. and the compsn. ratio between a perform material and a glass material are kept constant, to easily maintain the specific dielectric constant of the final products constant and to avert the occurrence of the time and cost losses in production stages. SOLUTION: Small batch powder processing treatment to weigh a small amt. from a large amt. of a calcined high-dielectric constant materials of a BaO-TiO2 -Nd2 O3 system which is the prefrom material, to take out the preform material for a precedent test, to mix this material with the separately weighed glass material and to pulverize the mixture is executed and, thereafter, a sample is manufactured and the processing test to measure the specific dielectric constant is carried out. The amt. of the Bi2 O3 to be added is determined within the range of <=1vol.% according to the component of the specific dielectric constant lowered from its target value. A large batch treatment to weight the remaining preform material and glass material so as to attain the same component ratio as the compsn. ratio of the precedent test, to add and mix the prescribed amt. of the Bi2 O3 to and with this material and the pulverize the same is executed. There is no need for adding the Bi2 O3 if the specific dielectric constant nearly coincides with the target value in the precedent test.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、母体材料の特性変
動にもかかわらず、大バッチ処理品の比誘電率をほぼ目
標値に近づけることのできる低温焼結用誘電体材料の調
製方法に関するものである。更に詳しく述べると本発明
は、仮焼済みのBaO−TiO2 −Nd23 系の高誘
電率材料とガラス材料とを一定の割合で秤量し、先行試
験を実施して比誘電率の目標値からの低下分を求め、そ
れに応じて適量のBi2 3 を1容積%以内の範囲で添
加し、混合して微粉化することにより、製品の比誘電率
がほぼ目標値となるように調整できる低温焼結用誘電体
材料の調製方法に関するものである。この技術は、例え
ばマイクロ波帯における積層構造の共振器などに使用す
る高誘電率誘電体磁器の製造に有用である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for preparing a dielectric material for low-temperature sintering, which can make the relative dielectric constant of a large batch processed product substantially close to a target value despite the characteristic fluctuation of the base material. It is. More specifically, in the present invention, a calcined BaO—TiO 2 —Nd 2 O 3 -based high dielectric constant material and a glass material are weighed at a fixed ratio, a preliminary test is performed, and a target of relative dielectric constant is measured. The amount of decrease from the value is determined, and an appropriate amount of Bi 2 O 3 is added in the range of 1% by volume or less, mixed, and pulverized so that the relative dielectric constant of the product becomes almost the target value. The present invention relates to a method for preparing a dielectric material for low-temperature sintering that can be adjusted. This technique is useful, for example, for manufacturing a high dielectric constant dielectric porcelain used for a resonator having a laminated structure in a microwave band.

【0002】[0002]

【従来の技術】携帯電話などのマイクロ波を利用した各
種の移動体通信機器には誘電体フィルタが用いられてい
る。機器の小形化の要請にともなって、誘電体フィルタ
も一層の小形化が要求され、一部では積層構造のストッ
プ線路型フィルタが開発されている。この種の積層誘電
体フィルタは、誘電体セラミックスからなるグリーンシ
ート(未焼成シート)を何枚も積層して加圧一体化した
後、切断し焼成する工程を経て製作する。その際、内部
電極はグリーンシート上にスクリーン印刷し、外部電極
もスクリーン印刷により形成する。このため、電極材に
よる電極パターンが崩れない低い温度で焼結する高誘電
率の誘電体材料が必要となる。また、そのような低温焼
結用の誘電体材料が開発されれば、他の様々な構造の誘
電体フィルタ等も開発できる可能性が生じる。
2. Description of the Related Art Dielectric filters are used in various mobile communication devices using microwaves, such as mobile phones. Along with the demand for downsizing of devices, further downsizing of dielectric filters is required, and stop line filters having a laminated structure are being developed in some parts. This kind of laminated dielectric filter is manufactured through a process of laminating a number of green sheets (unfired sheets) made of dielectric ceramics, integrating them under pressure, and cutting and firing. At this time, the internal electrodes are screen-printed on the green sheet, and the external electrodes are also formed by screen printing. Therefore, a dielectric material having a high dielectric constant that sinters at a low temperature at which the electrode pattern of the electrode material does not collapse is required. Also, if such a dielectric material for low-temperature sintering is developed, there is a possibility that dielectric filters having various other structures can be developed.

【0003】誘電体材料の低温焼結化を図る方法として
ガラス材料を添加する技術が開発されている。例えばS
iO2 −B2 3 −BaO系のガラス材料を用いた低温
焼結誘電体磁器の製造方法が提案されている(特開平7
−69719号参照)。一般にガラス材料を添加するこ
とによる利点は低温焼結が可能になることであるが、反
面、ガラス材料の添加によって比誘電率が低下する問題
が生じる。また低温焼結における問題点は、焼結品の相
対密度が低くそのために焼結した誘電体磁器の比誘電率
が変動することである。
As a method of sintering a dielectric material at a low temperature, a technique of adding a glass material has been developed. For example, S
A method of manufacturing a low-temperature sintered dielectric porcelain using an iO 2 -B 2 O 3 -BaO-based glass material has been proposed (Japanese Patent Application Laid-Open No. Hei 7 (1994)).
-69719). In general, the advantage of adding a glass material is that low-temperature sintering becomes possible, but on the other hand, there is a problem that the addition of the glass material lowers the relative dielectric constant. Another problem with low-temperature sintering is that the relative density of the sintered product is low, and the relative dielectric constant of the sintered dielectric ceramic fluctuates.

【0004】このような問題を解決しうる技術として、
本発明者等は、Bi2 3 とAl23 を含有するBa
O−TiO2 −Nd2 3 系の高誘電率材料に対して、
ZnO−B2 3 −SiO2 −Al2 3 系のガラス材
料を添加して混合し微粉化する低温焼結誘電体磁器の製
造方法を提案した(特願平7−66979号)。これに
よって1000℃以下の焼成でも、十分な誘電特性が得
られるため、内部電極材(Ag,Au,Ag−Pdな
ど)を含んだ誘電体部品を成形し、そのまま焼成するこ
とが可能となり、例えば高性能の積層ストップ線路型誘
電体フィルタを製作できるようになる。
[0004] As a technique that can solve such a problem,
The present inventors have proposed Ba containing Bi 2 O 3 and Al 2 O 3.
Against O-TiO 2 -Nd 2 O 3 based high dielectric constant material,
It proposed a method of manufacturing a low-temperature sintering dielectric ceramic pulverized and mixed by adding glass material ZnO-B 2 O 3 -SiO 2 -Al 2 O 3 system (Japanese Patent Application No. 7-66979). As a result, sufficient dielectric properties can be obtained even at a firing temperature of 1000 ° C. or lower. Therefore, it is possible to mold a dielectric component including an internal electrode material (Ag, Au, Ag-Pd, etc.) and fire the same as it is. A high performance laminated stop line type dielectric filter can be manufactured.

【0005】[0005]

【発明が解決しようとする課題】しかし、母体材料(仮
焼済みのBaO−TiO2 −Nd2 3 系の高誘電率材
料)にガラス材料を添加する低温焼結用誘電体材料は、
母体材料の特性のばらつきや製造条件の微妙な変動によ
って、製造ロット毎に比誘電率がかなり変化するという
問題があり、安定した製品作りに支障を来している。B
2 3 とAl23 を含有するBaO−TiO2 −N
2 3 系の高誘電率材料に対して、ZnO−B2 3
−SiO2 −Al2 3 系のガラス材料を添加して混合
し微粉化した低温焼結用誘電体材料は、製造ロット毎の
比較的比誘電率の変動は少ないが、それでもばらつきが
大きい場合には±6程度の比誘電率の変動が認められ
る。比誘電率の変動は、フィルタを製作した時に共振波
長(共振周波数)の変動を招来し、それが大きすぎると
調整が困難もしくは不可能となってしまう。従って、製
造ロットが変わっても、できるだけ製品の比誘電率を一
定に制御することが肝要である。
However, a low-temperature sintering dielectric material in which a glass material is added to a base material (calcined BaO—TiO 2 —Nd 2 O 3 based high dielectric constant material)
There is a problem that the relative dielectric constant changes considerably for each production lot due to variations in the characteristics of the base material and subtle variations in the production conditions, which hinders stable product production. B
BaO-TiO 2 -N containing i 2 O 3 and Al 2 O 3
against d 2 O 3 based high dielectric constant material, ZnO-B 2 O 3
-The dielectric material for low-temperature sintering obtained by adding and mixing and pulverizing a glass material of -SiO 2 -Al 2 O 3 type has a relatively small variation in relative dielectric constant for each production lot, but still has a large variation. Has a variation in relative dielectric constant of about ± 6. A change in the relative dielectric constant causes a change in the resonance wavelength (resonance frequency) when a filter is manufactured, and if it is too large, adjustment becomes difficult or impossible. Therefore, it is important to keep the relative dielectric constant of the product as constant as possible even if the production lot changes.

【0006】焼成後の誘電体磁器の比誘電率は、一般に
相対密度の上昇とともに高くなる。従って材料特性のば
らつきによって比誘電率が低下した場合、焼成温度を上
げて相対密度を高くすれば良い訳であるが、内部に電極
材を有する場合には焼成温度を上げるにも限界がある。
その他の方法として、ガラス材料の添加量を増やして相
対密度を上げる方法が考えられるが、ガラス自体は低誘
電率材料であるので、ガラス材料の増加は比誘電率の低
下を招く。逆にガラス材料の添加量を減らして比誘電率
の上昇を図ろうとしても、相対密度は上昇せず、効果は
期待できない。このような理由で、高誘電率材料とガラ
ス材料との組成比率を変えて比誘電率を一定に制御する
ことは、非常に困難である。また仮に組成比率を変えて
比誘電率を一定に保つことが可能であったとしても、組
成計算が複雑になり秤量工程において作業者のミスが増
えることも懸念される。
[0006] The relative dielectric constant of the fired dielectric porcelain generally increases as the relative density increases. Therefore, when the relative dielectric constant is lowered due to the variation in the material characteristics, the firing temperature may be increased to increase the relative density. However, when the electrode material is provided inside, there is a limit in increasing the firing temperature.
As another method, a method of increasing the relative density by increasing the amount of the glass material added can be considered. However, since glass itself is a low dielectric constant material, an increase in the glass material causes a decrease in the relative dielectric constant. Conversely, even if an attempt is made to increase the relative dielectric constant by reducing the amount of the glass material added, the relative density does not increase and the effect cannot be expected. For this reason, it is very difficult to control the relative dielectric constant to be constant by changing the composition ratio between the high dielectric constant material and the glass material. Even if it is possible to keep the relative dielectric constant constant by changing the composition ratio, there is a concern that the calculation of the composition becomes complicated and that the number of errors made by the operator in the weighing process increases.

【0007】そこで図2に示すように、母体材料である
仮焼済みのBaO−TiO2 −Nd 2 3 系の大量の高
誘電率材料から少量秤量して先行試験用の母体材料を取
り出し、取り出した母体材料と、別に秤量したガラス材
料とを混合して微粉化する小バッチ粉体加工処理を行っ
た後、試料を成形し所定の温度で低温焼成して比誘電率
を測定する先行試験を実施し、材料特性を評価する。そ
して、試料の比誘電率が目標値にほぼ一致している場合
には、小バッチ処理と同様の工程よって残りの大量の母
体材料を大バッチ処理し、次の工程(例えばグリーンシ
ート製造工程)へと向かう。しかし、もし試料の比誘電
率が目標値(許容範囲も含む)よりも低下している場合
には、その製造ロットの母体材料は当初目的としている
積層誘電体フィルタとしては使用できず廃棄せざるを得
ない(勿論、その母体材料は他の用途や製法による誘電
体材料としては使用可能なこともあるが、一連の製造工
程からは排除せざるをえない)。いずれにしても、折角
製造した母体材料(仮焼済みの高誘電率材料)が使用で
きないために、新たに母体材料を製造し直さねばなら
ず、時間的、コスト的なロスは極めて大きい。
Therefore, as shown in FIG.
BaO-TiO calcinedTwo-Nd TwoOThreeMass of system high
A small amount is weighed from the dielectric material to obtain a base material for the preliminary test.
The base material taken out and taken out, and the glass material weighed separately
Small batch powder processing that mixes
After that, the sample is molded and fired at a predetermined temperature
A preliminary test is performed to determine the material properties. So
And the relative permittivity of the sample almost matches the target value
In the same way as the small batch processing,
Large batch processing of the body material
Heading manufacturing process). However, if the relative dielectric
When the rate is lower than the target value (including the allowable range)
In some cases, the base material of the production lot is
Cannot be used as a laminated dielectric filter and must be discarded
No (of course, the base material is
Although it can be used as a body material, a series of manufacturing processes
Must be excluded from the process). In any case,
Uses manufactured base material (calcined high dielectric constant material)
Must remanufacture a new base material
However, time and cost losses are extremely large.

【0008】以上のことから、母体材料(仮焼済みの高
誘電率材料)とガラス材料との組成比率は一定に保った
まま、製造ロット毎の母体材料の材料特性や製造条件な
どによる比誘電率の低下を補償して、後工程で比誘電率
をほぼ目標値に一致させることができるような簡便な方
法が求められている。
[0008] From the above, while maintaining the composition ratio between the base material (calcined high dielectric constant material) and the glass material constant, the relative dielectric constant according to the material characteristics and manufacturing conditions of the base material for each production lot. There is a need for a simple method that can compensate for the decrease in the dielectric constant and make the relative dielectric constant substantially equal to the target value in a subsequent process.

【0009】本発明の目的は、焼成温度及び母体材料と
ガラス材料との組成比を一定に保ったままでも、製造ロ
ット毎に異なる特性変動を補償し、最終製品の比誘電率
を容易に一定に調整でき、製造工程における時間的、コ
スト的ロスの発生を回避できるような低温焼結用誘電体
材料の調製方法を提供することである。
It is an object of the present invention to compensate for characteristic variations that vary from one production lot to another and keep the relative dielectric constant of a final product easily, while keeping the firing temperature and the composition ratio between the base material and the glass material constant. It is an object of the present invention to provide a method for preparing a dielectric material for low-temperature sintering that can be adjusted to a low temperature and avoids a time and cost loss in a manufacturing process.

【0010】[0010]

【課題を解決するための手段】本発明では、図1に示す
ように、まず母体材料である仮焼済みのBaO−TiO
2 −Nd2 3 系の大量(1製造ロットで数十kg、例え
ば20kg程度)の高誘電率材料から少量(数十〜数百
g、例えば200g程度)秤量して先行試験用の母体材
料を取り出し、取り出した母体材料と、別に秤量したガ
ラス材料(例えばZnO系ガラス)とを混合して微粉化
する小バッチ粉体加工処理を行った後、成形し低温焼成
することで試料を作製し、特性(比誘電率)を測定する
先行試験を実施する。これによって比誘電率の測定値が
目標値にほぼ一致しているか否か、否の場合は目標値か
らの低下分を求める。
According to the present invention, as shown in FIG. 1, first, a calcined BaO--TiO, which is a base material, is used.
2 -Nd 2 O 3 based mass (1 production lot tens kg, for example about 20 kg) a high dielectric constant small amount of material (several tens to several hundreds g, for example, about 200g) of matrix material for the preceding test weighed After taking out the base material and mixing it with a separately weighed glass material (for example, ZnO-based glass) and subjecting it to small batch powder processing, the sample is formed by molding and firing at a low temperature. A preliminary test for measuring characteristics (relative permittivity) is performed. In this way, it is determined whether or not the measured value of the relative permittivity substantially coincides with the target value, and if not, the amount of decrease from the target value is obtained.

【0011】特性測定の結果、比誘電率がほぼ目標値に
一致していれば、単に残りの母体材料と前記と同じガラ
ス材料とを先行試験と同じ組成比率となるように秤量
し、混合して微粉化する大バッチ処理を行えばよい。そ
れに対して特性測定の結果、比誘電率が目標値から低下
していることが分かれば、その低下分に応じて1容積%
以下の範囲内でBi2 3 の添加量を求める。そして残
りの母体材料と前記と同じガラス材料とを先行試験と同
じ組成比率となるように秤量し、またBi2 3を秤量
して添加し、混合して微粉化する大バッチ処理を行う。
このようにして調整された混合微粉化材料は、次の工
程、例えばグリーンシートの製造工程へと流れていく。
As a result of the characteristic measurement, if the relative dielectric constant substantially coincides with the target value, the remaining base material and the same glass material are simply weighed and mixed so as to have the same composition ratio as in the preceding test. A large batch process of pulverizing the powder may be performed. On the other hand, if the characteristic measurement shows that the relative dielectric constant has decreased from the target value, 1% by volume is calculated according to the decrease.
The addition amount of Bi 2 O 3 is determined within the following range. Then, the remaining base material and the same glass material as described above are weighed so as to have the same composition ratio as in the preceding test, and Bi 2 O 3 is weighed and added, followed by large batch processing of mixing and pulverizing.
The mixed and pulverized material thus adjusted flows to the next step, for example, a green sheet manufacturing step.

【0012】例えば母体材料が仮焼済みのBaO−Ti
2 −Nd2 3 系の高誘電率材料の場合、ガラス材料
を適量添加した材料を用いて積層誘電体フィルタを作製
するには、最終製品の比誘電率が63±1.5程度であ
れば共振周波数の調整可能範囲内であり使用可能なた
め、そのような比誘電率となるように誘電体材料を調製
する。
For example, the base material is calcined BaO--Ti
For O 2 -Nd 2 O 3 based high dielectric constant material, to produce a multilayer dielectric filter using an appropriate amount is added to the materials glass material, the dielectric constant of the final product at approximately 63 ± 1.5 If there is, it is within the adjustable range of the resonance frequency and can be used. Therefore, a dielectric material is prepared to have such a relative dielectric constant.

【0013】ここでBi2 3 の添加量は1容積%以内
とする。1容積%の添加で、比誘電率を約4程度向上さ
せることができる。それ以上の量のBi2 3 を添加し
ても比誘電率は増加せず逆に多過ぎると低下するし、ま
たBi2 3 の添加はQf 値を低下させる傾向が見られ
るため、過度の添加は意味がない。このことから、本発
明では先行試験の試料の比誘電率が目標値(許容範囲を
含む)より4程度低下していても、Bi2 3 の適量添
加によって比誘電率を高めて目標値近傍まで向上させる
ことができることが分かる。具体的には、例えば比誘電
率の目標値からの低下分yに対して、Bi2 3 の添加
量x(容積%)を、y≒3.2x2 +xなる式で算出す
る。
Here, the added amount of Bi 2 O 3 is within 1% by volume. By adding 1% by volume, the relative dielectric constant can be improved by about 4 or so. Even if more amount of Bi 2 O 3 is added, the relative dielectric constant does not increase and conversely decreases if it is too large, and addition of Bi 2 O 3 tends to lower the Qf value. Is meaningless. From this, in the present invention, even if the relative dielectric constant of the sample of the preceding test is lower than the target value (including the allowable range) by about four, the relative dielectric constant is increased by adding an appropriate amount of Bi 2 O 3 so as to be close to the target value. It can be seen that it can be improved up to. Specifically, for example, the addition amount x (volume%) of Bi 2 O 3 is calculated by the formula y ≒ 3.2x 2 + x with respect to the decrease y from the target value of the relative dielectric constant.

【0014】母体材料とガラス材料に対してBi2 3
を添加すると比誘電率が向上する理由は、完全には解明
されていないが、次のような要因が考えられる。Bi2
3の融点は817℃であり、低温焼結用誘電体材料の
焼成温度(通常900〜1000℃)よりもかなり低
い。そのため少量添加したBiは、ガラス材料中に入り
込み、焼結助剤として機能し、材料の焼結性を向上させ
るということである。従って重要なことは、Bi2 3
は、仮焼済みのBaO−TiO2 −Nd2 3 系の高誘
電率材料中に含まれているのではなく、それとは別にガ
ラス材料と共に入れられている必要がある。因みに、同
じ量のBi2 3 が仮焼済みのBaO−TiO2 −Nd
2 3 系の高誘電率材料中に予め加わっていたとして
も、本発明のような比誘電率が向上する効果は生じな
い。つまり添加した適量のBiがガラス中に入り込んで
いることが重要なのである。
Bi 2 O 3 is used for the base material and the glass material.
The reason why the relative dielectric constant is improved by adding is not completely elucidated, but the following factors are considered. Bi 2
The melting point of O 3 is 817 ° C., which is considerably lower than the firing temperature of the dielectric material for low-temperature sintering (usually 900 to 1000 ° C.). Therefore, Bi added in a small amount enters into the glass material, functions as a sintering aid, and improves the sinterability of the material. Therefore, what is important is that Bi 2 O 3
Is not contained in the calcined BaO—TiO 2 —Nd 2 O 3 -based high dielectric constant material, but must be put together with the glass material separately. Incidentally, Bi 2 O 3 in the same amount of preliminarily fired BaO-TiO 2 -Nd
Even if it is added in advance to a 2 O 3 -based high dielectric constant material, the effect of improving the relative dielectric constant as in the present invention does not occur. In other words, it is important that an appropriate amount of added Bi enters the glass.

【0015】[0015]

【発明の実施の形態】本発明において用いる母体材料
(仮焼済みのBaO−TiO2 −Nd2 3 系の高誘電
率材料)としては、例えば主成分としてBaOが10〜
16モル%、TiO2 が67〜72モル%、Nd2 3
が16〜18モル%の組成を有し、それに対し副成分と
してBi2 3 を7〜10重量%、Al2 3 を0.3
〜1.0重量%含有している材料がある。またガラス材
料としては、ZnOが45〜70重量%、B2 3 が5
〜13重量%、SiO2 が7〜40重量%、Al2 3
が8〜20重量%である組成の、既にガラス化されてい
るZnO−B2 3 −SiO2 −Al2 3 系の材料が
ある。
As base material used in the Detailed Description of the Invention The present invention (calcined previously BaO-TiO 2 -Nd 2 O 3 based high dielectric constant material) is, for example, BaO is 10 as a main component
16 mol%, TiO 2 is 67 to 72 mol%, Nd 2 O 3
There has a composition of 16 to 18 mol%, the Bi 2 O 3 7 to 10 wt% as an auxiliary component other hand, the Al 2 O 3 0.3
There is a material containing about 1.0% by weight. As the glass material, 45 to 70% by weight of ZnO and 5% of B 2 O 3 were used.
To 13 wt%, SiO 2 is 7-40 wt%, Al 2 O 3
There composition is 8-20 wt%, already have material ZnO-B 2 O 3 -SiO 2 -Al 2 O 3 system is vitrified.

【0016】上記の母体材料は、それ自身、高誘電率を
呈する誘電特性をもつ。しかし、それ単独で良好な特性
を発現させるためには1300℃程度以上の高温での通
常焼成を行わねばならない。Agなどの内部電極材を含
んだ誘電体成形物を焼成し、誘電体部品を製造するため
には、1000℃以下で焼結できなければならない。そ
のため、母体材料にガラス材料を添加し、微粉化してい
る。
The above-mentioned host material itself has dielectric properties exhibiting a high dielectric constant. However, in order to exhibit good characteristics by itself, ordinary firing at a high temperature of about 1300 ° C. or more must be performed. In order to fire a dielectric molded product containing an internal electrode material such as Ag to produce a dielectric component, it must be able to be sintered at 1000 ° C. or lower. Therefore, a glass material is added to the base material, and the base material is pulverized.

【0017】BaO−TiO2 −Nd2 3 系の高誘電
率誘電体材料において、上記のような成分範囲が特に好
ましい理由は、材料自体の最良の特性を発現させるため
であり、次の通りである。主成分であるBaOは、10
モル%未満では比誘電率が小さくなり、16モル%を超
えると温度係数が大きくなる。TiO2 は、67モル%
未満では焼結性が悪くなり、72モル%を超えると温度
係数が大きくなる。Nd2 3 は、16モル%未満では
温度係数が悪く、18モル%を超えると比誘電率が小さ
くなる。また副成分であるBi2 3 は、7重量%未満
では温度係数の改善効果が小さく、10重量%を超える
と焼結性が悪くなる。Al2 3 は、0.3重量%未満
ではQf 及び温度係数の改善効果が少なく、1.0重量
%を超えると比誘電率が小さくQf が減少する。
In the BaO-TiO 2 -Nd 2 O 3 -based high dielectric constant dielectric material, the above-mentioned component range is particularly preferable because the material itself exhibits the best characteristics. It is. BaO as a main component is 10%.
If it is less than mol%, the relative dielectric constant becomes small, and if it exceeds 16 mol%, the temperature coefficient becomes large. TiO 2 is 67 mol%
If it is less than 70%, the sinterability is poor, and if it exceeds 72 mol%, the temperature coefficient becomes large. If Nd 2 O 3 is less than 16 mol%, the temperature coefficient is poor, and if it exceeds 18 mol%, the relative dielectric constant becomes small. When the content of Bi 2 O 3 as an auxiliary component is less than 7% by weight, the effect of improving the temperature coefficient is small, and when it exceeds 10% by weight, the sinterability deteriorates. When Al 2 O 3 is less than 0.3% by weight, the effect of improving Qf and temperature coefficient is small, and when it exceeds 1.0% by weight, the relative dielectric constant is small and Qf is reduced.

【0018】次にガラス材料は、高誘電率材料を低温焼
結化するためのものであるが、ZnO−B2 3 −Si
2 −Al2 3 系の適量添加が焼結磁器の相対密度の
向上に有効である。各成分範囲を特に前記のような値と
することが好ましい理由は、次の通りである。ZnO
は、45重量%未満では相対密度が低下するし、70重
量%を超えると比誘電率が小さくなる。B2 3 は、5
重量%未満ではQf が低くなり、13重量%を超えると
相対密度が低くなる。SiO2 は、7重量%未満では温
度係数改善の効果が少なく、40重量%を超えると相対
密度が低くなる。Al2 3 は、8重量%未満ではQf
が低くなり、20重量%を超えると比誘電率が小さくな
る。このようなガラス材料を母体材料であるBaO−T
iO2 −Nd2 3 系の高誘電率材料に対して3〜20
容積%添加することで、880〜1000℃の適当な温
度で焼成できる。このときガラス材料の添加量は3〜2
0容積%が好ましい。3容積%未満では低温焼結化し難
く、20容積%を超えると比誘電率が低下してしまう。
Next, the glass material is for sintering a high dielectric constant material at a low temperature, and is made of ZnO--B 2 O 3 --Si.
The addition of an appropriate amount of the O 2 —Al 2 O 3 system is effective for improving the relative density of the sintered porcelain. The reason why it is particularly preferable to set each component range to the above value is as follows. ZnO
When the content is less than 45% by weight, the relative density decreases, and when it exceeds 70% by weight, the relative dielectric constant decreases. B 2 O 3 is 5
If it is less than 13% by weight, Qf will be low, and if it exceeds 13% by weight, the relative density will be low. If the content of SiO 2 is less than 7% by weight, the effect of improving the temperature coefficient is small, and if it exceeds 40% by weight, the relative density becomes low. If the content of Al 2 O 3 is less than 8% by weight, Qf
Becomes lower, and when it exceeds 20% by weight, the relative dielectric constant becomes smaller. Such a glass material is used as a base material, BaO-T.
iO 2 -Nd 3 to 20 against 2 O 3 based high dielectric constant material
By adding the volume%, firing can be performed at an appropriate temperature of 880 to 1000 ° C. At this time, the addition amount of the glass material is 3 to 2
0% by volume is preferred. If it is less than 3% by volume, low-temperature sintering is difficult, and if it exceeds 20% by volume, the relative permittivity will be reduced.

【0019】本発明では材料の平均粒径を0.数μm以
下に調整するのが好ましい。これによって反応性を高め
て低温焼結化を促進できる。なお、母体材料とガラス材
料は予め混合し微粉化してもよいが、Bi2 3 を添加
した後の時点で、それら母体材料とガラス材料とBi2
3 を混合し微粉化する方が工程も簡略化されるため好
ましい。
In the present invention, the average particle size of the material is set to 0.1. It is preferable to adjust it to several μm or less. Thereby, reactivity can be increased and low-temperature sintering can be promoted. Note that the base material and the glass material may be mixed in advance and pulverized. However, at the time after adding Bi 2 O 3 , the base material, the glass material, and the Bi 2
Mixing O 3 and pulverizing it is preferable because the process is simplified.

【0020】[0020]

【実施例】母体材料となる仮焼済みのBaO−TiO2
−Nd2 3 系の高誘電率材料とZnO系のガラス材料
とを秤量する。 母体材料 主成分はBaO15モル%、TiO2 69モル%、Nd
2 3 16モル%であり、副成分としてBi2 3 8重
量%、Al2 3 :0.3重量%を含む組成であって、
仮焼が終了した材料である。 ガラス材料 ZnO70重量%、B2 3 7重量%、SiO2 11重
量%、Al2 3 12重量%の組成の予めガラス化した
材料である。 これらの材料を、容量比で、母体材料95に対してガラ
ス材料5の割合で混合する。
EXAMPLE A calcined BaO-TiO 2 serving as a base material was used.
-Nd 2 O 3 -based high dielectric constant material and ZnO-based glass material are weighed. Base material The main components are BaO 15 mol%, TiO 2 69 mol%, Nd
A 2 O 3 16 mol%, Bi 2 O 3 8% by weight as an auxiliary component, Al 2 O 3: A composition comprising 0.3 wt%,
This is a material that has been calcined. Glass material A pre-vitrified material having a composition of 70% by weight of ZnO, 7% by weight of B 2 O 3 , 11% by weight of SiO 2 and 12% by weight of Al 2 O 3 . These materials are mixed at a volume ratio of the glass material 5 to the base material 95.

【0021】これらの混合粉体に、Bi2 3 を3容積
%以下の範囲で添加し(比較のためBi2 3 無添加の
ものも含む)、混合して微粉化(平均粒径:0.6μ
m)して材料粉体を調製する。それら各種の材料粉体を
用いて測定用試料を製造する。その製造工程は極く一般
的なものであり、バインダを加えて造粒し、所定形状に
プレス成形した後、所定温度(ここでは930℃)で焼
成する。そして、空洞共振器法で比誘電率εr を測定す
る。測定結果を図3に示す。図3はBi2 3 添加量
(容積%)に対する比誘電率εr をプロットしたもので
ある。
To these mixed powders, Bi 2 O 3 is added in a range of 3% by volume or less (including those without Bi 2 O 3 for comparison), mixed and pulverized (average particle size: 0.6μ
m) to prepare a material powder. A measurement sample is manufactured using the various material powders. The manufacturing process is a very general one, in which a binder is added, granulated, pressed into a predetermined shape, and then fired at a predetermined temperature (here, 930 ° C.). Then, the relative permittivity εr is measured by the cavity resonator method. FIG. 3 shows the measurement results. FIG. 3 is a plot of the relative dielectric constant εr with respect to the amount of Bi 2 O 3 added (% by volume).

【0022】図3から分かるように、Bi2 3 を1容
積%以下の範囲で適量添加することにより、Bi2 3
を添加していない場合に比べて比誘電率を4程度引き上
げ得ることが分かる。但し、Bi2 3 の添加量が1容
積%を超えると、逆に比誘電率が下降し始めるし、また
図示していないがQf も大きく低下することが分かった
ため、上記のように1容積%以下の範囲で適量添加する
ことになる。これによって、例えば焼結品の比誘電率の
目標値が63で許容範囲が±1.5であれば、母体材料
とガラス材料とに対してBi2 3 を0.6容積%程度
添加することによって比誘電率を目標値に近づけること
ができ、使用可能な誘電特性に調整できることになる。
As can be seen from FIG. 3, by adding an appropriate amount of Bi 2 O 3 within a range of 1% by volume or less, Bi 2 O 3 is added.
It can be seen that the relative dielectric constant can be increased by about 4 as compared with the case where no is added. However, when the added amount of Bi 2 O 3 exceeds 1% by volume, on the contrary, the relative dielectric constant starts to decrease, and although not shown, it has been found that Qf also greatly decreases. % Or less. Thus, for example, if the target value of the relative dielectric constant of the sintered product is 63 and the allowable range is ± 1.5, about 0.6% by volume of Bi 2 O 3 is added to the base material and the glass material. As a result, the relative permittivity can be made closer to the target value, and the dielectric constant can be adjusted to a usable dielectric property.

【0023】図3において、Bi2 3 添加量が1容積
%以下の範囲では、比誘電率をYとしBi2 3 の添加
量をxとして2次曲線で近似すると、その曲線は、 Y≒3.2x2 +x+c で表せる。ここでcはBi2 3 無添加の時の比誘電率
である。母体材料やガラス材料、あるいは両者の混合割
合、粉体の調整状況などによって比誘電率は変化する
が、それに対するBi2 3 添加よる比誘電率増大の効
果の程度はほぼ同一なので(グラフ的にはほぼ平行移動
の関係にある)、比誘電率の目標値からの差をyとする
と、 y≒3.2x2 +x となる。従って、先行試験を実施してBi2 3 無添加
の場合の比誘電率を測定し、測定した比誘電率の目標値
からの低下分yを求めると、上記の式からBi23
加量xを算出できる。大バッチ処理では、その分だけB
2 3 を添加することで、比誘電率がほぼ目標値とな
るような低温焼結用誘電体材料を調製できることにな
る。
In FIG. 3, when the amount of Bi 2 O 3 added is 1% by volume or less, when the relative permittivity is Y and the amount of added Bi 2 O 3 is x, the curve is approximated by a quadratic curve. ≒ 3.2x 2 + x + c Here, c is the relative dielectric constant when Bi 2 O 3 is not added. The relative dielectric constant changes depending on the matrix material, the glass material, the mixing ratio of the two, and the state of adjustment of the powder, but the degree of the effect of the increase of the relative dielectric constant by the addition of Bi 2 O 3 is almost the same. Has a substantially parallel movement relationship), and when y is a difference from the target value of the relative dielectric constant, y ≒ 3.2x 2 + x. Therefore, by implementing the preceding test measurement of specific dielectric constant in the case of Bi 2 O 3 not added, when determining the decrease amount y from the target value of the measured dielectric constant, Bi 2 O 3 added from the above equation The quantity x can be calculated. In large batch processing, B
By adding i 2 O 3 , it is possible to prepare a dielectric material for low-temperature sintering such that the relative dielectric constant becomes almost a target value.

【0024】[0024]

【発明の効果】本発明は上記のように、母体材料とガラ
ス材料に対して、その比誘電率の目標値からの低下分に
相当する量だけBi2 3 を添加し、混合し微粉化する
調製方法であるので、母体材料とガラス材料のみを用い
た場合の比誘電率が目標値より低下していてそのままで
は使用不能であっても、母体材料とガラス材料の組成比
率を変えることなく、且つ焼成温度を変えることなく、
Bi2 3 の適量添加という簡単な操作で比誘電率を向
上し目標値近傍の材料を調製できる。その結果、母体材
料の有効利用を図ることができ、歩留りの低下、コスト
の削減に寄与できる。また比誘電率をかなり正確に調整
できるために、積層誘電体フィルタなどの製品を製造す
る際、共振周波数の調整などの工程を簡素化できる効果
もある。
As described above, according to the present invention, Bi 2 O 3 is added to a matrix material and a glass material in an amount corresponding to a decrease from a target value of the relative dielectric constant, mixed, and pulverized. Therefore, even if the relative dielectric constant when using only the base material and the glass material is lower than the target value and cannot be used as it is, without changing the composition ratio of the base material and the glass material , And without changing the firing temperature
By a simple operation of adding an appropriate amount of Bi 2 O 3 , it is possible to improve the relative dielectric constant and prepare a material near the target value. As a result, the base material can be effectively used, which can contribute to a reduction in yield and a reduction in cost. In addition, since the relative permittivity can be adjusted quite accurately, there is an effect that a process such as adjustment of a resonance frequency can be simplified when manufacturing a product such as a laminated dielectric filter.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る材料調製工程の一例を示す説明
図。
FIG. 1 is an explanatory view showing an example of a material preparation step according to the present invention.

【図2】従来の材料調製工程の一例を示す説明図。FIG. 2 is an explanatory view showing an example of a conventional material preparation step.

【図3】Bi2 3 添加量に対する比誘電率の変化を示
すグラフ。
FIG. 3 is a graph showing a change in relative dielectric constant with respect to the amount of added Bi 2 O 3 .

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 母体材料である仮焼済みのBaO−Ti
2 −Nd2 3 系の大量の高誘電率材料から少量秤量
して先行試験用の母体材料を取り出し、取り出した母体
材料と、別に秤量したガラス材料とを混合して微粉化す
る小バッチ粉体加工処理を行った後、試料を成形し低温
焼成して比誘電率を測定する先行試験を実施し、比誘電
率の測定値の目標値からの低下分を求め、残りの大量の
母体材料と前記と同じガラス材料とを先行試験と同じ組
成比率となるように秤量し、それらの材料に先行試験結
果による比誘電率の目標値からの低下分に応じて1容積
%以下の範囲内でBi2 3 を添加して混合し微粉化す
る大バッチ処理を行い、それによって大バッチ処理品の
比誘電率が目標値にほぼ一致するように調整することを
特徴とする低温焼結用誘電体材料の調製方法。
1. A calcined BaO—Ti as a base material
O 2 -Nd 2 O 3 based retrieval of large amounts of matrix material for the preceding test with a small amount weighed a high dielectric constant material is micronized and mixed with base material extracted, and a glass material weighed separately small batches After the powder processing, the sample is molded and fired at low temperature to conduct a preliminary test to measure the relative permittivity, and the decrease in the measured relative permittivity from the target value is determined. The materials and the same glass material as described above are weighed so as to have the same composition ratio as in the preceding test. A low-temperature sintering process characterized in that Bi 2 O 3 is added, mixed and finely pulverized, and the relative dielectric constant of the large-batch processed product is adjusted to substantially match a target value. Preparation method of dielectric material.
【請求項2】 ガラス材料が、ZnO系の材料である請
求項1記載の低温焼結用誘電体材料の調製方法。
2. The method for preparing a dielectric material for low-temperature sintering according to claim 1, wherein the glass material is a ZnO-based material.
【請求項3】 比誘電率の測定値の目標値からの低下分
yに対して、Bi23 の添加量x(容積%)を、y≒
3.2x2 +xなる式で算出し添加する請求項1記載の
低温焼結用誘電体材料の調製方法。
3. The addition amount x (vol%) of Bi 2 O 3 is defined as y ≒ with respect to the decrease y of the measured value of the relative dielectric constant from the target value.
3.2x 2 + x becomes method for preparing a low-temperature sintered dielectric material of claim 1, wherein the calculated added formula.
JP8301287A 1996-10-25 1996-10-25 Preparation of dielectric material for low-temperature sintering Pending JPH10130050A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8301287A JPH10130050A (en) 1996-10-25 1996-10-25 Preparation of dielectric material for low-temperature sintering

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8301287A JPH10130050A (en) 1996-10-25 1996-10-25 Preparation of dielectric material for low-temperature sintering

Publications (1)

Publication Number Publication Date
JPH10130050A true JPH10130050A (en) 1998-05-19

Family

ID=17895024

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8301287A Pending JPH10130050A (en) 1996-10-25 1996-10-25 Preparation of dielectric material for low-temperature sintering

Country Status (1)

Country Link
JP (1) JPH10130050A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002075291A1 (en) * 2001-03-15 2002-09-26 Japan Spectral Laboratory Co. Ltd. Method and instrument for optically measuring constant of optical property of dielectric substance, and manufacturing system incorporating the device
WO2008117710A1 (en) * 2007-03-26 2008-10-02 Murata Manufacturing Co., Ltd. Photosensitive dielectric paste and electronic part made with the same
CN102693834A (en) * 2011-03-21 2012-09-26 吴浩 Microwave ceramic capacitor production method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002075291A1 (en) * 2001-03-15 2002-09-26 Japan Spectral Laboratory Co. Ltd. Method and instrument for optically measuring constant of optical property of dielectric substance, and manufacturing system incorporating the device
WO2008117710A1 (en) * 2007-03-26 2008-10-02 Murata Manufacturing Co., Ltd. Photosensitive dielectric paste and electronic part made with the same
JP5104852B2 (en) * 2007-03-26 2012-12-19 株式会社村田製作所 Photosensitive dielectric paste and electronic component using the same
CN102693834A (en) * 2011-03-21 2012-09-26 吴浩 Microwave ceramic capacitor production method

Similar Documents

Publication Publication Date Title
JPH10130050A (en) Preparation of dielectric material for low-temperature sintering
JP2974829B2 (en) Microwave dielectric porcelain composition
JPH10330161A (en) Production of low-temperature sinterable dielectric substance ceramic
JP2781503B2 (en) Dielectric porcelain composition for low-temperature firing, dielectric resonator or dielectric filter obtained using the same, and methods for producing them
JP3002613B2 (en) Dielectric porcelain composition for producing dielectric resonator or filter for microwave, method for producing the same, dielectric resonator or filter for microwave obtained using the dielectric porcelain composition, and method for producing the same
JPH08259319A (en) Low-temperature-baked dielectric porcelain and its production
EP0625491B1 (en) Dielectric ceramic composition for use in high frequency
JP2781501B2 (en) Dielectric ceramic composition for low temperature firing
KR100478127B1 (en) Dielectric Ceramic Composition
KR20060012632A (en) Dielectric ceramic composition, process for producing the same, dielectric ceramic employing it and multilayer ceramic component
JP2781502B2 (en) Dielectric porcelain composition for low-temperature firing, dielectric resonator or dielectric filter obtained using the same, and methods for producing them
JPH04118806A (en) Dielectric ceramic composition for microwave
JPH08239263A (en) Production of low temperature sintered dielectric porcelain
JPH08239262A (en) Dielectric porcelain composition
JP2002265266A (en) Dielectric porcelain composition and dielectric device
JPH01234358A (en) Dielectric ceramic composition
KR20200135658A (en) Manufacturing method of high-frequency dielectric and a high-frequency dielectric device manufactured using the method
JP4235896B2 (en) DIELECTRIC CERAMIC COMPOSITION, PROCESS FOR PRODUCING THE SAME, DIELECTRIC CERAMIC USING THE SAME, AND MULTILAYER CERAMIC COMPONENT
JP4006655B2 (en) Dielectric porcelain composition for microwave
JPH11116329A (en) Production of microwave dielectric laminated component
JPH04272609A (en) Dielectric ceramic composition for microwave
CN111384572A (en) Dielectric resonator, dielectric filter, communication equipment and method for preparing dielectric block
JPH06283022A (en) Manufacture of dielectric ceramic composite for microwave
CN111384577A (en) Dielectric resonator, dielectric filter, communication equipment and method for preparing dielectric block
JPH07182922A (en) Dielectric ceramic composition