JPH10128288A - Gasification treatment of waste product and device therefore - Google Patents

Gasification treatment of waste product and device therefore

Info

Publication number
JPH10128288A
JPH10128288A JP8331435A JP33143596A JPH10128288A JP H10128288 A JPH10128288 A JP H10128288A JP 8331435 A JP8331435 A JP 8331435A JP 33143596 A JP33143596 A JP 33143596A JP H10128288 A JPH10128288 A JP H10128288A
Authority
JP
Japan
Prior art keywords
gasification
waste
gas
furnace
fluidized bed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8331435A
Other languages
Japanese (ja)
Other versions
JP3079051B2 (en
Inventor
Hiroyuki Fujimura
宏幸 藤村
Shosaku Fujinami
晶作 藤並
Kazuo Takano
和夫 高野
Masaaki Irie
正昭 入江
Tetsuhisa Hirose
哲久 廣勢
Takahiro Oshita
孝裕 大下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP08331435A priority Critical patent/JP3079051B2/en
Publication of JPH10128288A publication Critical patent/JPH10128288A/en
Application granted granted Critical
Publication of JP3079051B2 publication Critical patent/JP3079051B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/12Heat utilisation in combustion or incineration of waste
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Landscapes

  • Incineration Of Waste (AREA)
  • Air Supply (AREA)
  • Gasification And Melting Of Waste (AREA)
  • Processing Of Solid Wastes (AREA)
  • Treatment Of Sludge (AREA)
  • Coke Industry (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a gasification treatment method of a waste product for treating various waste products in batch and dissolving various problems such as destruction of the environment in accordance with the discharge and enabling to obtain a low calorie- or a middle calorie-gas becoming a chemical industrial raw material or a fuel gas. SOLUTION: In this gasification treatment method of the waste product, the waste product is gasified at low temp. by a fluidized layer gasification furnace 4, and obtained gaseous substance and char are introduced into a fusion furnace 6 to gasify them at high temp. and obtain the low calorie- or the middle calorie-gas e'. The fluidized bed gasification furnace 4 is preferred to use an internal circulation type fluidized bed gasification furnace, while the fusion furnace 6 is preferred to use a circulation fusion furnace. The fluidizing layer gasification furnace 4 has 450-800 deg.C internal temp. and the feed gas for gasification is preferred to be selected from among air, oxygen-rich air and a mixture of oxygen with steam and the internal temp. is >=1,300 deg.C and the feed gas for gasification is preferred to be selected from oxygen-rich air or oxygen.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、廃棄物のガス化処
理に係り、特に、廃棄物を低温次いで高温でガス化し、
エネルギー並びに金属等の有用物及び化学工業原料又は
燃料となるガスを回収して利用する廃棄物のガス化処理
方法と装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to gasification of waste, and more particularly to gasification of waste at a low temperature and then at a high temperature.
The present invention relates to a waste gasification treatment method and apparatus for recovering and utilizing energy, useful materials such as metals, and gases used as chemical industrial raw materials or fuels.

【0002】[0002]

【従来の技術】従来、都市ごみ、廃タイヤ、下水汚泥、
産業スラッジの相当割合が専用の焼却設備により、ま
た、し尿や高濃度廃棄物が専用の廃水処理設備により処
理されていたが、一方で多くの産業廃棄物が未処理のま
ま投棄されており、環境を汚染してきた。従来の焼却法
に代わる新たな環境保全型の廃棄物処理技術として、現
在、ガス化と高温燃焼を組み合わせた「ガス化燃焼シス
テム」の開発が各社により競われ、既に実用域に達して
いるものもある。現在、「ガス化燃焼システム」におい
て開発が先行しているものに、ガス化炉に竪型シャフト
炉を用いた方式(以下、S方式)とロータリーキルン炉
を用いた方式(以下、R方式)がある。
2. Description of the Related Art Conventionally, municipal waste, waste tires, sewage sludge,
A significant proportion of industrial sludge was treated by dedicated incinerators, and night soil and highly concentrated wastes were treated by dedicated wastewater treatment facilities.On the other hand, many industrial wastes were dumped untreated. Has polluted the environment. As a new environmental protection waste treatment technology that replaces the conventional incineration method, companies are currently competing for the development of a "gasification combustion system" that combines gasification and high-temperature combustion, and the technology has already reached the practical range. There is also. At present, the development of the “gasification combustion system” is ahead of the others, using a vertical shaft furnace as the gasification furnace (S method) and a system using a rotary kiln furnace (R method). is there.

【0003】前者のS方式では、ガス化炉内に乾燥・予
熱ゾーン(200〜300℃)、熱分解ゾーン(300
〜1000℃)、燃焼・溶融ゾーン(1500℃以上)
が上から順に層状に形成され、炉上部より投入された廃
棄物とコークスは、より下方のゾーンで発生したガスと
熱交換しながら炉内を下降する。炉内を上昇した生成ガ
スは、後段の燃焼炉にて約900℃で燃焼される。熱分
解ゾーンで生成した炭化物は、装入されたコークスとと
もに溶融・燃焼ゾーンに下降し、羽口から供給される酸
素富活空気により高温燃焼し、灰分と無機物の全量を溶
融する。後者のR方式では、廃棄物は破砕後、高温空気
により外熱されたドラム型の回転炉に供給され、約45
0℃でゆっくりと時間をかけて熱分解ガス化される。こ
の時生成する炭化物は炉から排出され、発火しない温度
まで冷却される。次いで、微粉砕された炭化物は、後段
の旋回式溶融炉に供給され、ガス化炉からの生成ガスと
ともに1300℃で高温燃焼し、灰分を溶融スラグ化す
る。
In the former S method, a drying / preheating zone (200-300 ° C.) and a pyrolysis zone (300
~ 1000 ° C), combustion / melting zone (1500 ° C or higher)
Are formed in layers from top to bottom, and the waste and coke introduced from the upper part of the furnace descend in the furnace while exchanging heat with the gas generated in the lower zone. The product gas that has risen in the furnace is burned at about 900 ° C. in a downstream combustion furnace. The carbide generated in the pyrolysis zone descends to the melting / combustion zone together with the charged coke, and is burned at high temperature by the oxygen-enriched air supplied from the tuyere, thereby melting the entire amount of ash and inorganic substances. In the latter R method, waste is crushed and then supplied to a drum-type rotary furnace externally heated by high-temperature air, and the waste is crushed for about 45 minutes.
It is pyrolysis gasified slowly at 0 ° C. over time. The carbide generated at this time is discharged from the furnace and cooled to a temperature that does not ignite. Next, the finely pulverized carbide is supplied to a later-stage revolving-type melting furnace, and is burned at a high temperature of 1300 ° C. together with a generated gas from a gasification furnace to convert ash into molten slag.

【0004】これら2方式の課題について述べる。S方
式のシャフト炉は、1700〜1800℃に達する溶融
ゾーンがガス化炉底部に存在するため、コークス等副資
材や酸素富活空気の使用が避けられず、このため運転費
が上昇する。また、コークス等を使用するために、二酸
化炭素の排出量が増加するという問題もある。さらに、
廃棄物中の金属のほぼ全量が溶融してしまうため、金属
の種類毎に地金としてリサイクル利用することが出来な
い。本方式のガス化炉は固定床炉というタイプに属する
が、形状が様々な廃棄物を層状に積み上げ、しかも最下
部に燃焼・溶融ゾーンを有するため、安定した運転が困
難である。何故なら、固定床炉ではガスを層内に均一に
流すこと、すなわち通気性の確保が極めて重要である
が、廃棄物の形状の多様性からこれが難しく、ガスの吹
き抜けや偏流が起きやすいからである。コークスの添加
は、補助燃料としての他にこうした通気性の確保の目的
もあるが、十分とは言えず、ガス流量や炉内圧の変動は
抑え難い。また、発生ガスの全てが1000℃を越える
高温部分を通過するわけではないので、ダイオキシン類
やフラン類の生成を完全に抑えることは不可能である。
The problems of these two systems will be described. In the S-type shaft furnace, since a melting zone reaching 1700 to 1800 ° C. is present at the bottom of the gasification furnace, the use of auxiliary materials such as coke and oxygen-enriched air is inevitable, thereby increasing operating costs. In addition, there is a problem that the use of coke or the like increases the amount of carbon dioxide emitted. further,
Since almost all of the metal in the waste is melted, it cannot be recycled as bullion for each type of metal. The gasification furnace of this system belongs to the type of fixed-bed furnace, but it is difficult to operate stably because wastes of various shapes are stacked in layers and a combustion / melting zone is provided at the bottom. This is because in a fixed-bed furnace, it is very important to flow gas uniformly in the bed, that is, to ensure gas permeability.However, this is difficult due to the variety of waste shapes, and gas blow-through and drift are likely to occur. is there. The addition of coke has the purpose of ensuring such air permeability in addition to the auxiliary fuel, but it is not sufficient, and it is difficult to suppress fluctuations in gas flow rate and furnace pressure. Further, since not all of the generated gas passes through a high-temperature portion exceeding 1000 ° C., it is impossible to completely suppress the production of dioxins and furans.

【0005】一方、R方式のガス化炉は、高温空気を用
いた外熱式の回転炉のため、伝熱が良くなく、従って炉
の著しい大型化が避けられなかった。また、熱分解によ
り生じたタールや未分解物が伝熱面を覆うために、伝熱
が悪化するといった問題があった。600℃にも達する
高温空気を排ガスとの熱交換により得ることは、熱交換
器の材料上にも無理がある。一方、生成する炭化物は、
回転炉から排出後に微粉砕してから燃焼炉に供給し、回
転炉から直接供給されるガスに合流させて高温燃焼させ
る。このため、排出、冷却、粉砕、貯留、供給といった
炭化物用のハンドリング設備が必要である。こうしたハ
ンドリング中に炭化物の保有する熱が冷却や放熱により
失われることも、エネルギー利用上望ましくない。な
お、炭化物を冷却しないまま外部に排出すると、空気と
接触した際に発火する恐れがある。
On the other hand, since the R type gasification furnace is an external heating type rotary furnace using high-temperature air, the heat transfer is not good, so that the furnace is inevitably increased in size. In addition, there is a problem that heat transfer is deteriorated because tar and undecomposed substances generated by thermal decomposition cover the heat transfer surface. Obtaining high-temperature air as high as 600 ° C. by heat exchange with exhaust gas is impossible on the material of the heat exchanger. On the other hand, the generated carbide is
After being discharged from the rotary furnace, it is pulverized and then supplied to the combustion furnace, where it is combined with the gas supplied directly from the rotary furnace and burned at a high temperature. For this reason, handling equipment for carbides such as discharge, cooling, pulverization, storage, and supply is required. During such handling, the loss of heat possessed by the carbide due to cooling or heat radiation is also undesirable in terms of energy utilization. If the carbide is discharged to the outside without cooling, it may ignite when it comes into contact with air.

【0006】このように、廃棄物の焼却処理の新たな技
術として、廃棄物をガス化した後に高温燃焼してダイオ
キシンを分解するとともに灰分を溶融スラグ化する方法
が各種提案されている。しかしながら、ケミカルリサイ
クルの観点から、ガス化により可燃性ガスを回収する技
術は、今だ実用化されていない。一方で代表的な化学工
業原料であるNH3 (アンモニア)は硝酸、各種肥料
(硝安、硫安、尿素)、アクリロニトリル、カプロラク
タム等の原料として、大量生産されている化学工業上の
基礎原料である。NH3 はN2 とH2 から高圧下で触媒
を用いて合成されるが、H2 は天然ガス、ナフサなどの
スチームリフォーミングか、石油、石炭、石油コークス
などの部分燃焼、いわゆるガス化により得られてきた。
As described above, as a new technique for incineration of waste, various methods have been proposed for decomposing dioxin by gasifying the waste and then burning it at a high temperature and melting ash into molten slag. However, from the viewpoint of chemical recycling, a technique for recovering combustible gas by gasification has not yet been put to practical use. On the other hand, NH 3 (ammonia), which is a typical raw material for the chemical industry, is a basic raw material for the chemical industry that is mass-produced as a raw material for nitric acid, various fertilizers (ammonium nitrate, ammonium sulfate, urea), acrylonitrile, caprolactam, and the like. NH 3 is synthesized from N 2 and H 2 under high pressure using a catalyst. H 2 is formed by steam reforming of natural gas, naphtha, etc., or partial combustion of petroleum, coal, petroleum coke, etc., so-called gasification. It has been obtained.

【0007】H2 は前記のアンモニア以外に、メタノー
ルの合成、水素化脱硫、水素化分解、油脂の水素化、溶
接に用いられているが、これらH2 原料の多くは海外か
ら輸入されるため、二度にわたる石油ショック以降、H
2 を用いる化学工業製品、特にアンモニア工業製品は国
際競争力を失うに至った。このため、安価でしかも自国
内で調達可能なH2 原料が待望久しかった。一方、CO
(一酸化炭素)はガソリン、アルコール、有機酸、エス
テルなどの合成に用いられているが、COは石炭やコー
クス等のガス化により得られ、H2原料と同様にこれら
の原料の多くは海外に依存しているため、安価でしかも
自国内で調達可能なものが久しく待望されてきた。
[0007] In addition to the above-mentioned ammonia, H 2 is used in the synthesis of methanol, hydrodesulfurization, hydrocracking, hydrogenation of oils and fats, and welding. However, since many of these H 2 raw materials are imported from overseas, , After two oil shocks, H
Chemical products using 2 , especially ammonia products, have lost international competitiveness. For this reason, inexpensive and procurement can be H 2 raw materials in their own country was Hisashika' long-awaited. On the other hand, CO
(Carbon monoxide) is used in the synthesis of gasoline, alcohols, organic acids, esters, etc., but CO is obtained by gasification of coal, coke, etc., and many of these raw materials are abroad as well as H 2 raw materials. Therefore, products that are inexpensive and can be procured in the home country have been long-awaited.

【0008】[0008]

【発明が解決しようとする課題】本発明は、上記従来技
術に鑑み、運転操作が容易で安全性に優れ、しかも熱効
率が高く、発電あるいは工業用燃料ガス及び化学工業原
料として用いる、低カロリー又は中カロリーガスを得る
ための廃棄物のガス化処理方法を提供することを課題と
する。
DISCLOSURE OF THE INVENTION In view of the above prior art, the present invention provides a low-calorie or low-calorie fuel cell which is easy to operate, has excellent safety, has high thermal efficiency, and is used as a power generation or industrial fuel gas and a chemical industrial raw material. It is an object of the present invention to provide a method of gasifying waste to obtain medium-calorie gas.

【0009】[0009]

【課題を解決するための手段】上記課題を解決するため
に、本発明では、廃棄物を流動層ガス化炉で低温でガス
化し、得られるガス状物質とチャーをそのまま溶融炉に
導入して高温でガス化し、低カロリーガス又は中カロリ
ーガスを得ることを特徴とする廃棄物のガス化処理方法
としたものである。上記方法において、流動層ガス化炉
は、内部循環式流動層ガス化炉を用いるのが良く、また
溶融炉は旋回溶融炉を用いるのが良く、両者を併用して
用いるのが最適であり、そして、流動層ガス化炉の内部
温度は450〜800℃で、流動層の温度は450〜6
50℃とし、溶融炉の内部温度は1300℃以上とする
のが良い。
In order to solve the above-mentioned problems, in the present invention, waste is gasified at a low temperature in a fluidized-bed gasification furnace, and the obtained gaseous substance and char are directly introduced into a melting furnace. A gasification treatment method for waste, characterized in that gasification is performed at a high temperature to obtain low calorie gas or medium calorie gas. In the above method, the fluidized bed gasifier is preferably an internal circulation type fluidized bed gasifier, and the melting furnace is preferably a swirling melting furnace, and it is optimal to use both in combination, The internal temperature of the fluidized bed gasifier is 450 to 800 ° C., and the temperature of the fluidized bed is 450 to 6
The temperature is set to 50 ° C., and the internal temperature of the melting furnace is preferably set to 1300 ° C. or higher.

【0010】また、前記流動層ガス化炉は、ガス化のた
めの送入ガスを空気、空気とスチーム、酸素富活空気、
酸素富活空気とスチーム、酸素とスチームの混合物の中
から選択するのが良く、溶融炉は、ガス化のための送入
ガスを酸素富活空気又は酸素の中から選択するのが良
く、これらのガス化のための流動層ガス化及び溶融炉へ
の送入ガスは、トータルとして含有する全酸素量が廃棄
物を完全燃焼させるために必要な理論燃焼酸素量の0.
1〜0.6の範囲とし、このうち流動層ガス化炉に供給
される酸素量は、理論燃焼酸素量の0.1〜0.3の範
囲であるのが好ましい。前記溶融炉は、灰分を溶融スラ
グとして回収し、ダイオキシン類及びその前駆体をほぼ
完全に分解することができる。
[0010] The fluidized bed gasifier may be configured to supply gas for gasification with air, air and steam, oxygen-rich air,
It is good to select from oxygen-rich air and steam, a mixture of oxygen and steam, and the melting furnace is good to select the feed gas for gasification from oxygen-rich air or oxygen. The total amount of oxygen contained in the fluidized bed gasification for gasification of the gas and the gas fed into the melting furnace is 0.1% of the theoretical combustion oxygen amount necessary for completely burning the waste.
It is preferable that the amount of oxygen supplied to the fluidized-bed gasification furnace is in the range of 0.1 to 0.3 of the theoretical combustion oxygen amount. The melting furnace can collect ash as molten slag and almost completely decompose dioxins and their precursors.

【0011】本発明の方法で取得した低カロリー又は中
カロリーガスは、常圧又は高圧であり、発電あるいは工
業用燃料ガス又は化学工業原料として用いることがで
き、また、流動層ガス化炉は、流動層部が還元雰囲気で
あり、廃棄物中の金属を未酸化状態で回収することがで
きる。前記の本発明で用いる流動層ガス化炉は、流動層
部の温度等を検知して、低カロリー廃棄物と高カロリー
廃棄物の混合割合を調整する制御方法を採ることがで
き、また、用いる廃棄物が低質の場合は、補助的に石炭
を加えてカロリー調整することも可能である。さらに、
本発明では、廃棄物を低温でガス化する流動層ガス化炉
と、得られるガス状物質とチャーをそのまま導入し高温
でガス化し、低カロリーガス又は中カロリーガスを得る
溶融炉とを有する廃棄物のガス化処理装置としたもので
ある。
The low-calorie or medium-calorie gas obtained by the method of the present invention has a normal pressure or a high pressure, and can be used as a power generation or industrial fuel gas or a raw material for chemical industry. The fluidized bed is in a reducing atmosphere, and metals in the waste can be recovered in an unoxidized state. The fluidized-bed gasification furnace used in the present invention can detect a temperature or the like of the fluidized-bed portion, and can adopt a control method of adjusting a mixing ratio of the low-calorie waste and the high-calorie waste. If the quality of the waste is low, it is possible to adjust the calories by adding coal. further,
In the present invention, a waste gas having a fluidized bed gasification furnace for gasifying waste at a low temperature and a melting furnace for introducing the obtained gaseous substance and char as it is and gasifying it at a high temperature to obtain a low-calorie gas or a medium-calorie gas It is an apparatus for gasification of material.

【0012】本発明で用いる流動層ガス化炉としては、
流動層部とフリーボード部を有し、流動層部の温度を4
50〜650℃とし、フリーボード部の温度を600〜
800℃として用いることができ、また、用いる旋回溶
融炉は、燃焼室とスラグ分離室からなり、燃焼室でガス
状物質とチャーが送入ガスと共に旋回流を形成して高温
ガス化し、灰分が溶融してスラグ分離室で分離される。
また、本発明で用いる内部循環式流動層ガス化炉とは、
同一反応槽内の流動層中に流動媒体の強力な循環流を形
成させるもので、該循環流は、流動層中に吹込まれる流
動化ガスの部分的な強弱部位を設定することにより生じ
させるものである。従って、単なるバブリング式流動層
と異なり廃棄物の分散、破砕機能に優れ、単なる循環
(外部循環)式流動層のように複雑で大型化することも
なく、またこれよりも分散、破砕機能も優れており、加
圧型として用いるに容易な形態・構成を取り易いのであ
る。また、内部循環式流動層ガス化炉は円筒型のものが
特に好ましい。
The fluidized-bed gasification furnace used in the present invention includes:
It has a fluidized bed part and a free board part, and the temperature of the fluidized bed part is 4
50-650 ° C, and the temperature of the free board section is 600-
The whirl melting furnace used can be used at 800 ° C., and the whirl melting furnace to be used is composed of a combustion chamber and a slag separation chamber. It is melted and separated in the slag separation chamber.
Further, the internal circulation type fluidized bed gasifier used in the present invention,
A strong circulating flow of a fluidized medium is formed in a fluidized bed in the same reaction vessel, and the circulating flow is generated by setting a partial strong and weak portion of a fluidized gas blown into the fluidized bed. Things. Therefore, unlike a simple bubbling type fluidized bed, it has excellent waste dispersion and crushing functions, does not have the complexity and size of a simple circulating (external circulation) type fluidized bed, and has better dispersion and crushing functions than this. Therefore, it is easy to take a form and configuration that are easy to use as a pressurized mold. The internal circulation type fluidized bed gasification furnace is particularly preferably a cylindrical type.

【0013】[0013]

【発明の実施の形態】以下、本発明を詳細に説明する。
本発明で用いる廃棄物としては、都市ごみ、固形化燃料
(RDF)、スラリー化燃料(SWM)、バイオマス廃
物、プラスチック廃棄物(含FRP)、自動車廃棄物
(シュレッダーダスト、廃タイヤ)、家電廃棄物、特殊
廃棄物(医療廃棄物等)、下水汚泥、し尿、高濃度廃
液、産業スラッジといった発熱量、水分率、形状が大き
く異なる廃棄物と低品位石炭を用いることができるが、
これらを適当に組合せることも可能である。ここで、固
形化燃料、RDF(Refuse-derived Fuel)は、都市ごみ
を破砕選別後生石灰を添加し圧縮成形したものであり、
スラリー化燃料、SWM(Solid Water Mixture)は、都
市ごみを破砕後水スラリー化し、高圧下で水熱分解によ
り油化したものである。また、FRPは、繊維強化プラ
スチックのことであり、低品位石炭は、石炭化度の低い
褐炭、亜炭、泥炭、もしくは選炭時に出るボタのような
ものである。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail.
The waste used in the present invention includes municipal solid waste, solidified fuel (RDF), slurry fuel (SWM), biomass waste, plastic waste (including FRP), automobile waste (shredder dust, waste tires), and household electric appliance waste. Low-grade coal, such as waste, special waste (medical waste, etc.), sewage sludge, night soil, highly concentrated waste liquid, industrial sludge, etc.
These can be appropriately combined. Here, the solidified fuel, RDF (Refuse-derived Fuel), is obtained by crushing and sorting municipal solid waste, adding quicklime, and compression molding.
Slurried fuel, SWM (Solid Water Mixture), is obtained by crushing municipal solid waste into a water slurry and hydrolyzing it under high pressure to make oil. FRP is a fiber reinforced plastic, and low-grade coal is lignite, lignite, or peat having a low degree of coalification, or a kind of scum that is generated during coal cleaning.

【0014】これらの廃棄物は、初めに流動層ガス化炉
に供給されて熱分解ガス化されるが、特にこのガス化炉
に内部循環式流動層炉を採用することにより、廃棄物は
細破砕程度の前処理で供給することが可能となる。その
理由は、流動媒体の強力な旋回流動により、投入廃棄物
への伝熱が良好となり、また、大きなサイズの不燃物も
排出可能となるためである。こうした流動媒体の旋回流
動の効果については後述する。このため、廃棄物のう
ち、都市ごみ、バイオマス廃棄物、プラスチック廃棄
物、自動車廃棄物等は30cm程度に粗粉砕する。水分
率の高い下水汚泥とし尿は、専用の処理場にて遠心分離
機等を用いて脱水ケーキとした後に、本プラントサイト
まで輸送する。固形化燃料、スラリー化燃料、高濃度廃
液等はこのままの形で使用する。カロリー調整用に加え
る石炭は、40mm以下に破砕されていればこのまま使
用可能である。
[0014] These wastes are first supplied to a fluidized-bed gasifier to be pyrolyzed and gasified. In particular, by employing an internal circulation type fluidized-bed furnace in this gasifier, the wastes can be reduced. It becomes possible to supply by pretreatment of the degree of crushing. The reason for this is that the strong swirling flow of the fluid medium makes it possible to improve the heat transfer to the input waste and to discharge large-sized incombustibles. The effect of the swirling flow of the fluid medium will be described later. For this reason, among the wastes, municipal waste, biomass waste, plastic waste, automobile waste, and the like are roughly crushed to about 30 cm. Sewage sludge and urine with a high moisture content are converted into dehydrated cake using a centrifugal separator or the like at a dedicated treatment plant, and then transported to the plant site. Solid fuel, slurry fuel, high-concentration waste liquid, etc. are used as they are. Coal added for calorie adjustment can be used as it is if it is crushed to 40 mm or less.

【0015】上記廃棄物は、廃棄物自身の持つカロリー
とその水分の高低により高カロリー廃棄物と低カロリー
廃棄物に大別される。一般的には、都市ごみ、固形化燃
料、スラリー化燃料、プラスチック廃棄物、自動車廃棄
物、家電廃棄物は前者であり、バイオマス廃棄物、特殊
廃棄物(医療廃棄物等)、下水汚泥/し尿の脱水ケー
キ、高濃度廃液は後者に属する。これらを、高カロリー
廃棄物用ピット、低カロリー廃棄物用ピット、タンクに
受け入れ、各々のピットや中継タンクにて十分攪拌・混
合し、適宜ガス化炉に供給する。廃棄物中に混入した金
属はガス化炉内に入っても、融点が流動層温度より高け
れば未酸化状態で回収される。従って、回収された金属
は種類毎に地金として利用が可能である。
The above-mentioned wastes are roughly classified into high-calorie wastes and low-calorie wastes according to the calories of the wastes themselves and the level of their water content. In general, municipal solid waste, solidified fuel, slurry fuel, plastic waste, automobile waste, and household electric appliance waste are the former, biomass waste, special waste (medical waste, etc.), sewage sludge / sewer Dewatered cake and high-concentration waste liquid belong to the latter. These are received in a pit for high-calorie waste, a pit for low-calorie waste, and a tank, sufficiently stirred and mixed in each pit and a relay tank, and supplied to a gasification furnace as appropriate. Even if the metal mixed into the waste enters the gasification furnace, it is recovered in an unoxidized state if the melting point is higher than the fluidized bed temperature. Therefore, the recovered metal can be used as bullion for each type.

【0016】また、投入廃棄物の質が一定であれば、投
入廃棄物とガス化のために送入するガスの量比は一定で
あるが、投入廃棄物に占める低カロリー廃棄物の割合が
増えたり、全体の水分率が高くなったりすると、流動層
温度は所定値から下降する。こうした時には、投入廃棄
物中の低カロリー廃棄物と高カロリー廃棄物の量比を調
整することにより、投入廃棄物の発熱量を一定に保つこ
とが、後段のガス利用設備の上から望ましい。あるい
は、別法として発熱量の高い石炭等の補助燃料を添加し
て投入廃棄物のカロリー調整をすることもできる。
If the quality of the input waste is constant, the ratio of the amount of the input waste to the gas sent for gasification is constant, but the ratio of the low-calorie waste to the input waste is low. As the water content increases or the total water content increases, the fluidized bed temperature falls from a predetermined value. In such a case, it is desirable from the viewpoint of the gas utilization equipment at the subsequent stage that the calorific value of the input waste is kept constant by adjusting the ratio of the amount of the low-calorie waste to the amount of the high-calorie waste in the input waste. Alternatively, the calorie of the input waste can be adjusted by adding an auxiliary fuel such as coal having a high calorific value.

【0017】次に、本発明における低温でガス化するた
めに用いる流動層ガス化炉について説明する。この流動
層ガス化炉を低温でのガス化に用いる点が、本発明の特
徴点の一つとなっている。流動層炉自体は、燃焼炉又は
ガス化炉として既に公知であるが、可燃性ガスを得るた
めに流動層ガス化炉と溶融炉の組合せを用いる点は従来
技術とは異なる新規な技術である。高温ガス化炉に石炭
を微粉炭としてあるいは水スラリー化して供給する技術
は既に公知のものとなっているが、廃棄物の場合は微粉
砕することが石炭ほど容易でない。特に金属、ガレキ、
石のような不燃物を含有する場合は、ほとんど不可能と
いえる。ところが、流動層ガス化炉を用いれば、廃棄物
をバルクのまま熱分解ガス化することにより、可燃性の
ガス状物質と細かなチャーにできる。これは、このまま
後段の溶融炉に送って高温ガス化できる。流動層ガス化
炉は、廃棄物を緩慢な熱分解ガス化反応により可燃性の
ガス状物質とチャーに変えればよいので、流動層を比較
的低温とすることが出来る。
Next, a fluidized-bed gasification furnace used for gasification at a low temperature in the present invention will be described. One of the features of the present invention is that the fluidized bed gasifier is used for gasification at a low temperature. The fluidized bed furnace itself is already known as a combustion furnace or a gasifier, but it is a new technique different from the prior art in that a combination of a fluidized bed gasifier and a melting furnace is used to obtain combustible gas. . Techniques for supplying coal as pulverized coal or as a water slurry to a high-temperature gasifier are already known, but in the case of waste, it is not as easy to pulverize as waste coal. Especially metal, rubble,
It can be said that it is almost impossible when it contains incombustibles such as stones. However, if a fluidized-bed gasification furnace is used, the waste can be pyrolyzed and gasified as it is in bulk, thereby making combustible gaseous substances and fine char. This can be sent to a subsequent melting furnace as it is and gasified at a high temperature. The fluidized-bed gasifier can convert the waste into a combustible gaseous substance and char by a slow pyrolysis gasification reaction, so that the fluidized-bed can be kept at a relatively low temperature.

【0018】本発明で使用できる流動層ガス化炉として
は、公知の常圧型又は加圧型の流動層炉、例えばバブリ
ング型流動層炉等が、用いる廃棄物の性状等を勘案して
使用することが考えられるが、特に、本発明者によって
開発された内部循環式流動層ガス化炉を用いるのが好適
である。内部循環式流動層ガス化炉は、炉の水平断面が
円形のものが良く、炉底中央部に比較的緩慢な流動層、
炉底周辺部に比較的活発な流動層を形成し、流動層の表
面近傍の内壁沿いに内側に傾斜した傾斜壁を設け、流動
媒体の流れを周辺部から中央部へ転向することにより、
炉底中央部の緩慢流動層中を流動媒体が流動化しつつ下
降し、炉底周辺部の活発流動層中を流動媒体が流動化し
つつ上昇し、流動層下部にて流動媒体が中央部から周辺
部へ、流動層上部にて流動媒体が周辺部から中央部へ流
動化しつつ移動するような流動媒体の活発な旋回運動を
生ぜしめる流動層部を有している。
As the fluidized-bed gasification furnace that can be used in the present invention, a known normal-pressure or pressurized-type fluidized-bed furnace, such as a bubbling-type fluidized-bed furnace, may be used in consideration of the properties of the waste to be used. However, it is particularly preferable to use an internal circulation type fluidized bed gasification furnace developed by the present inventors. The internal circulation type fluidized bed gasifier has a good horizontal cross section of the furnace, a relatively slow fluidized bed in the center of the furnace bottom,
By forming a relatively active fluidized bed around the furnace bottom and providing an inwardly inclined wall along the inner wall near the surface of the fluidized bed, by turning the flow of the fluidized medium from the periphery to the center,
The fluidized medium descends while flowing in the slow fluidized bed at the center of the furnace bottom, and rises while fluidized in the active fluidized bed near the furnace bottom, and the fluidized medium flows from the central part to the lower part of the fluidized bed. The fluidized-bed portion has a fluidized-bed portion that causes an active swirling motion of the fluidized medium such that the fluidized medium moves while flowing from the peripheral portion to the central portion at the upper portion of the fluidized bed.

【0019】こうした特殊な流動層をガス化に用いた時
の特長を以下に示す。 生成するチャーが流動層上に堆積せず、流動層内に
良好・均一に分散されるため、特に活発流動層における
チャーの酸化が効率良く行われる。チャーの酸化により
発生する熱は、流動媒体に伝えられ、中央部における熱
分解ガス化の熱源として有効に利用される。 流動層表面では、傾斜壁によって上方向への運動を
転向された流動媒体が、中央部で激しく衝突するため、
チャーが微粉砕される。流動媒体に硬い珪砂を用いれ
ば、微粉砕はさらに促進される。 緩慢流動層での流動媒体の下降運動に伴う呑み込み
作用により、固形廃棄物は細破砕程度でガス化炉に供給
することが出来る。このため、破砕設備を省略すること
が出来、破砕用の電力を大幅に低減出来る。
The features when such a special fluidized bed is used for gasification are shown below. Since the generated char does not accumulate on the fluidized bed and is well and uniformly dispersed in the fluidized bed, the oxidation of the char in the active fluidized bed is particularly efficiently performed. The heat generated by the oxidation of the char is transferred to the fluidized medium and is effectively used as a heat source for pyrolysis gasification in the central part. On the surface of the fluidized bed, the fluid medium whose upward motion has been turned by the inclined wall collides violently in the center,
The char is pulverized. If hard silica sand is used as the fluidized medium, pulverization is further promoted. The solid waste can be supplied to the gasification furnace in the degree of fine crushing by the swallowing action accompanying the downward movement of the fluidized medium in the slow fluidized bed. For this reason, the crushing equipment can be omitted, and the power for crushing can be greatly reduced.

【0020】 流動媒体の旋回流動により、細破砕に
よる投入の結果生ずる粗大な不燃物でも、容易に排出出
来る。 流動層内全域における流動媒体の旋回流動により、
発生する熱が拡散されるため、焼結物やクリンカーによ
るトラブルを回避出来る。通常用いられるバブリング型
流動層の場合、流動媒体は流動層内を均一に流動化され
るものの、横方向の分散はあまり良くない。従って、上
述の〜の点において、本発明の内部循環式流動層の
方が通常用いられるバブリング流動層より優ると考えら
れる。
[0020] Due to the swirling flow of the flowing medium, even coarse incombustibles generated as a result of charging by fine crushing can be easily discharged. Due to the swirling flow of the fluid medium throughout the fluidized bed,
Since the generated heat is diffused, it is possible to avoid troubles caused by a sintered product or clinker. In the case of a commonly used bubbling type fluidized bed, the fluidized medium is uniformly fluidized in the fluidized bed, but the dispersion in the lateral direction is not so good. Accordingly, it is considered that the internal circulation type fluidized bed of the present invention is superior to the commonly used bubbling fluidized bed in the above points.

【0021】本発明で用いる流動層ガス化炉は、流動層
温度を450〜650℃としている。450℃以下で
は、熱分解ガス化の反応が極端に遅くなるために流動層
内に未分解物が堆積するといった問題を生じる。又、燃
焼速度の遅いチャーの生成量も多くなる。逆に、ガス化
温度を高くすると、熱分解ガス化反応が速くなるために
流動層内に未分解物が堆積する問題は解消されるもの
の、廃棄物の供給量の変動がガス発生量の変動を招くよ
うになる。これは後段の旋回溶融炉の運転に支障を来た
す。何故なら、旋回溶融炉への送入ガス量をガス化炉で
の発生ガス量に合わせて細かく調節することは不可能だ
からである。このために熱分解ガス化の反応がある程度
緩慢な650℃を上限としている。流動層上方の径の広
い部分を通常フリーボードと称するが、ここに酸素ある
いは酸素富活空気といった含酸素ガスを供給することに
より、後段の溶融炉の負荷を下げると共に、生成ガス中
のタール分やチャーのガス化を促進することが出来る。
The fluidized bed gasifier used in the present invention has a fluidized bed temperature of 450 to 650 ° C. If the temperature is lower than 450 ° C., the reaction of pyrolysis gasification becomes extremely slow, which causes a problem that undecomposed substances are deposited in the fluidized bed. Also, the amount of char whose combustion speed is low increases. Conversely, if the gasification temperature is increased, the problem of undecomposed matter accumulating in the fluidized bed is resolved because the pyrolysis gasification reaction becomes faster, but fluctuations in the amount of waste supplied will cause fluctuations in the amount of gas generated. Will be invited. This hinders the operation of the subsequent rotary melting furnace. This is because it is impossible to finely adjust the amount of gas supplied to the rotary melting furnace in accordance with the amount of gas generated in the gasification furnace. For this reason, the upper limit is 650 ° C., at which the reaction of pyrolysis gasification is somewhat slow. The portion having a large diameter above the fluidized bed is usually referred to as a free board. By supplying oxygen-containing gas such as oxygen or oxygen-enriched air thereto, the load on the subsequent melting furnace is reduced, and the tar content in the generated gas is reduced. And char gasification can be promoted.

【0022】また、本発明の流動層ガス化炉では、流動
層部にて450〜650℃で一次燃焼し、次いでフリー
ボート部にて600〜800℃、好ましくは650〜7
50℃で二次燃焼する。流動層ガス化炉の流動層へのガ
ス化のための送入ガス(ガス化剤)は、空気、空気とス
チーム、酸素富活空気、酸素富活空気とスチーム、酸素
とスチーム、の混合物の中から選択し、また、流動媒体
としては砂(硅砂、オリビン砂など)、アルミナ、鉄
粉、石灰石、ドロマイト等を使用する。フリーボードに
おける送入ガスには、これらのガスの他に、更に酸素を
その選択肢に含ませることもかまわない。流動層ガス化
炉で発生するガスには、多量のタールや炭化物が含まれ
るが、炭化物は流動層中で粉砕されて微粉状のチャーと
なり、ガスと共にそのまま溶融炉に導入される。一方、
流動層部は還元雰囲気であるため、廃棄物中の金属を地
金として有用な未酸化の状態で取出せる。
In the fluidized bed gasifier of the present invention, primary combustion is performed at 450 to 650 ° C. in the fluidized bed portion, and then 600 to 800 ° C., preferably 650 to 7 ° C. in the free boat portion.
Secondary combustion at 50 ° C. The feed gas (gasifying agent) for gasification into the fluidized bed of the fluidized bed gasifier is a mixture of air, air and steam, oxygen-enriched air, oxygen-enriched air and steam, oxygen and steam. It is selected from among them, and sand (silica sand, olivine sand, etc.), alumina, iron powder, limestone, dolomite, etc. are used as the fluid medium. In addition to these gases, oxygen supplied to the free board may further include oxygen as an option. The gas generated in the fluidized-bed gasification furnace contains a large amount of tar and carbides. The carbides are pulverized in the fluidized bed to form fine-grained char, which is directly introduced into the melting furnace together with the gas. on the other hand,
Since the fluidized bed has a reducing atmosphere, the metal in the waste can be extracted in an unoxidized state useful as a metal.

【0023】回収出来る金属は、その融点がガス化温度
以下のものに限られる。従って、アルミニウム(融点6
60℃)を回収するためには流動層温度を650℃以下
とする必要がある。このように、廃棄物の低温ガス化に
流動層ガス化炉を用いたことにより、多様な廃棄物、例
えば、数mmサイズから数十mmのものの処理が可能
で、しかも処理能力が高く、スケールアップが容易とな
る。また、機械的な駆動部が無く、温度等の調整操作が
容易で、熱媒体との間の伝熱が良く層内温度を均一に保
ち易い。さらに、流動層ガス化炉として内部循環式流動
層ガス化炉を用いると、廃棄物の無破砕処理が可能とな
り、流動層内で炭化物が効率良く粉砕されてチャーとな
り、流動層内でのチャーの分散が良いため、処理能力が
高く、層内温度が均一に保たれ、ガス化効率が高い等の
作用がある。
The metals that can be recovered are limited to those whose melting point is lower than the gasification temperature. Therefore, aluminum (melting point 6)
(60 ° C.), the fluidized bed temperature must be 650 ° C. or less. As described above, the use of a fluidized bed gasifier for low-temperature gasification of waste enables processing of various wastes, for example, those having a size of several mm to several tens of mm, and has a high processing capacity and scale. Up is easy. Further, since there is no mechanical drive unit, the operation of adjusting the temperature and the like is easy, the heat transfer between the heat medium and the layer is good, and the temperature in the layer is easily kept uniform. Furthermore, when an internal circulation type fluidized bed gasifier is used as a fluidized bed gasifier, waste can be crushed without being crushed, and the carbides are efficiently pulverized in the fluidized bed into a char, and the char in the fluidized bed is formed. Because of its good dispersion, there are effects such as high processing capacity, uniform temperature in the layer, and high gasification efficiency.

【0024】次で、溶融炉について説明する。該溶融炉
は、流動層ガス化炉から導入されるガス状物質とチャー
を送入ガスと接触させることにより、1300℃以上で
高温ガス化し、タールやチャーを完全にガス化して、含
有する灰分を溶融スラグとして炉底より排出するもので
ある。使用できる溶融炉としては、テキサコ炉のように
上部から吹き込むだけのタイプも使用できるが、好まし
くは、旋回溶融炉、即ち、ガス状物質とチャーがガス化
のための送入ガスと共に燃焼室中に旋回流を形成しなが
ら高温ガス化して、灰分を溶融し、溶融した灰分を分離
排出する形式の溶融炉を用いるのが良い。旋回溶融炉を
用いることにより、高負荷・高速燃焼が可能となり、ガ
スの滞留時間分布が狭くなり、旋回流による遠心力の作
用により、カーボン転換率、スラグミスト捕集率が高
く、しかも溶融炉本体のコンパクト化が図れる。
Next, the melting furnace will be described. In the melting furnace, gaseous substances introduced from a fluidized-bed gasification furnace and char are brought into contact with a feed gas to gasify the gas at a high temperature of 1300 ° C. or more, and gasify tar and char completely, thereby containing ash content. Is discharged from the furnace bottom as molten slag. As a melting furnace that can be used, a type that only blows in from the upper side, such as a Texaco furnace, can be used, but preferably, a swirling melting furnace, that is, a gaseous substance and char are mixed in a combustion chamber together with a feed gas for gasification. It is preferable to use a melting furnace of a type in which high temperature gasification is performed while forming a swirling flow to melt ash, and the melted ash is separated and discharged. The use of a swirling melting furnace enables high load and high speed combustion, narrows the gas residence time distribution, and increases the carbon conversion rate and slag mist collection rate due to the centrifugal force generated by the swirling flow. The body can be made more compact.

【0025】溶融炉へのガス化のための送入ガスは、酸
素富活空気、酸素の中から選択することができる。送入
ガス中の酸素量は、前記流動層ガス化炉へのガス化のた
めの送入ガスを合せて、全酸素量が廃棄物を完全燃焼さ
せるために必要な理論酸素量の0.1〜0.6の範囲と
するのがよい。こうして、溶融炉から、低カロリー(1
000〜1500kcal/Nm3 (dry))もしく
は中カロリー(2500〜4500kcal/Nm
3 (dry))の燃料ガスを得ることができる。これら
のガス中には、CO、H2 といった有用ガス成分が多く
含まれている。廃棄物からCO、H2 主体のガスを得、
工業用燃料ガスあるいは化学工業の原料とすることは本
発明の特に優れた特徴といえる。後段の溶融炉で流動層
ガス化炉から導出されるチャー中の灰分をスラグ化する
ことにより、有害な重金属はスラグ中に封じ込められ、
溶出しなくなる。また、1300℃以上という高温燃焼
により、ダイオキシン類及びその前駆体並びにPCB等
がほぼ完全に分解されてしまう。
The gas supplied to the melting furnace for gasification can be selected from oxygen-enriched air and oxygen. The amount of oxygen in the supplied gas is adjusted to 0.1% of the theoretical amount of oxygen required to completely burn the waste by combining the supplied gas for gasification into the fluidized bed gasifier. It is better to be in the range of 0.6. Thus, from the melting furnace, low calorie (1
000-1500 kcal / Nm 3 (dry)) or medium calories (2,500-4500 kcal / Nm)
3 (dry)) of fuel gas can be obtained. These gases contain many useful gas components such as CO and H 2 . CO and H 2 gas are obtained from waste,
The use of industrial fuel gas or a raw material for the chemical industry is a particularly excellent feature of the present invention. By converting the ash in the char derived from the fluidized-bed gasification furnace into slag in the subsequent melting furnace, harmful heavy metals are contained in the slag,
No longer elutes. In addition, dioxins and their precursors, PCBs, and the like are almost completely decomposed by high-temperature combustion of 1300 ° C. or more.

【0026】次に図1を参照して、得られたガスをその
性状に応じた目的に利用する方法を述べる。その利用方
法はエネルギーを利用するサーマルリサイクルと化学工
業原料に供するケミカルリサイクルとがある。ガスが常
圧、高温の燃焼排ガスの場合、蒸気ボイラで回収したス
チームをスチームタービンに供給して、電力として回収
する。ガスが常圧の燃料ガスの場合は、ガスエンジンも
しくはディーゼルエンジンを用いて発電するか、あるい
は工業用燃料ガスとして利用する。この工業用燃料ガス
は、例えば製鉄や製鋼の工程で用いることが出来る。一
方、ガスが高圧(20〜40atm)の燃料ガスの場合
には、ガスタービンを用いた複合発電とするか、あるい
は工業用燃料ガスとして利用する。ガスがN2 を含まな
い高圧で中カロリーの燃料ガスの場合は、水素、メタン
(SNG)、メタノール等アルコール類、ガソリン製造
用の合成ガスとする。
Next, with reference to FIG. 1, a method for utilizing the obtained gas for a purpose according to its properties will be described. There are two types of usage: thermal recycling using energy and chemical recycling for raw materials in the chemical industry. When the gas is combustion exhaust gas at normal pressure and high temperature, the steam collected by the steam boiler is supplied to a steam turbine and collected as electric power. When the gas is a normal pressure fuel gas, power is generated using a gas engine or a diesel engine, or used as industrial fuel gas. This industrial fuel gas can be used, for example, in steelmaking and steelmaking processes. On the other hand, when the gas is a high-pressure (20 to 40 atm) fuel gas, a combined power generation using a gas turbine or an industrial fuel gas is used. When the gas is a high-pressure, medium-calorie fuel gas containing no N 2 , hydrogen, methane (SNG), alcohols such as methanol, and synthesis gas for gasoline production are used.

【0027】水素は、生成ガスをCO転化後、脱CO2
により得られる。メタンは、CO転化によりCO/H2
比を調整後、メタン化反応により得られる。メタノール
は、CO転化後メタノール合成反応により得られる。メ
タノールとエタノール以上の高級アルコールの混合物
は、アルコール合成反応により得られる。ガソリンは、
南アフリカ連邦のサゾールで実施されているように、フ
ィッシャートロプシュ反応により合成される。このよう
に、対象とする廃棄物の質と量、並びに建設地の条件、
目的生成物などを考慮して最適なプロセスを選定するこ
とが必要である。次に、スラグの利用について言及す
る。廃棄物を原料とすると、スラグ中には大なり小なり
塩素が含まれるため、エコセメントの原料とするのが有
力である。エコセメントは、焼却灰:下水汚泥:添加物
=4:3:3から作られる新種のセメントで、無筋コン
クリート製品や固化材としての用途がある。回収される
スラグには、水砕スラグと徐冷スラグがあるが、路盤
材、骨材、透水材等の土木建築用資材、あるいは園芸用
資材としても利用出来る。
Hydrogen is produced by converting the produced gas into CO and then removing CO 2.
Is obtained by Methane is converted to CO / H 2 by CO conversion.
After adjusting the ratio, it is obtained by methanation reaction. Methanol is obtained by a methanol synthesis reaction after CO conversion. A mixture of a higher alcohol such as methanol and ethanol is obtained by an alcohol synthesis reaction. Gasoline is
Synthesized by the Fischer-Tropsch reaction, as practiced in Sasol, South Africa. In this way, the quality and quantity of the target waste,
It is necessary to select an optimal process in consideration of the target product and the like. Next, the use of slag will be described. When waste is used as a raw material, slag contains a greater or lesser amount of chlorine, so it is effective to use it as a raw material for ecocement. Ecocement is a new type of cement made from incineration ash: sewage sludge: additive = 4: 3: 3, and has applications as unreinforced concrete products and solidifying materials. The collected slag includes granulated slag and slowly cooled slag, but can also be used as civil engineering and construction materials such as roadbed materials, aggregates, and water-permeable materials, or as horticultural materials.

【0028】[0028]

【実施例】以下、本発明を図面を用いて具体的に説明す
る。 実施例1 図2に、本発明のガス化処理方法に用いる装置の一例の
概略構成図を示す。図2は、高圧(20〜40atm)
の合成ガスを製造する実施例であり、図2において、1
はロックホッパシステム、2はホッパー、3はスクリュ
ーフィーダ、4は流動層ガス化炉、5は流動層部、6は
旋回溶融炉で、7は一次燃焼室、8は二次燃焼室、9は
スラグ分離室、10は廃熱ボイラ、11はスクラバー、
aは廃棄物、bは酸素、cはスチーム、dは不燃物、e
は低温ガス化ガス、e′は高温ガス化ガス、fはスラ
グ、f′は灰、gは生成ガスを示す。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be specifically described below with reference to the drawings. Embodiment 1 FIG. 2 shows a schematic configuration diagram of an example of an apparatus used for the gasification treatment method of the present invention. FIG. 2 shows a high pressure (20 to 40 atm)
2 is an example of producing a synthesis gas of FIG.
Is a lock hopper system, 2 is a hopper, 3 is a screw feeder, 4 is a fluidized bed gasifier, 5 is a fluidized bed, 6 is a swirling melting furnace, 7 is a primary combustion chamber, 8 is a secondary combustion chamber, and 9 is a secondary combustion chamber. Slag separation room, 10 is a waste heat boiler, 11 is a scrubber,
a is waste, b is oxygen, c is steam, d is non-combustible, e
Denotes a low-temperature gasified gas, e ′ denotes a high-temperature gasified gas, f denotes slag, f ′ denotes ash, and g denotes generated gas.

【0029】廃棄物aは、均一に混合され、ロックホッ
パーシステム1を経て、ホッパー2に投入される。次い
で、スクリューフィーダ3により流動層ガス化炉4に定
量供給される。該ガス化炉4の炉底には流動化ガスとし
て酸素bとスチームcの混合ガスが供給される。ガス化
炉4の流動層部5に落下した原料は、450〜650℃
に保持された流動層内でガス化のための酸素とスチーム
からなる送入ガスと接触し、速やかに熱分解ガス化され
る。これにより、ガス、タール、炭化物、H2Oが生成
するが、炭化物は流動層の攪乱運動により粉砕されチャ
ーとなる。これらは一括して後段の旋回溶融炉6の一次
燃焼室7に供給され、同じくガス化のために供給された
酸素bと旋回流中で混合しながら、1300℃以上の高
温で高速酸化される。このため、チャーに含まれる灰分
はスラグミストとなり、旋回流の遠心力により炉壁上の
スラグ相に捕捉され、炉壁を流れ下って二次燃焼室8に
入り、スラグfとしてスラグ分離室9の炉底から排出さ
れる。高温ガス化の酸化反応は二次燃焼室8で完結し、
2 、CO、CO2 とH2 Oから成る中カロリーガス
(2500〜4500kcal/Nm3 )となる。
[0029] The waste a is uniformly mixed and fed into the hopper 2 through the lock hopper system 1. Next, a fixed amount is supplied to the fluidized bed gasification furnace 4 by the screw feeder 3. A mixed gas of oxygen b and steam c is supplied to the bottom of the gasification furnace 4 as a fluidizing gas. The raw material that has fallen into the fluidized bed section 5 of the gasification furnace 4 is 450 to 650 ° C
In the fluidized bed held in the tank, the gas comes into contact with the gas supplied from oxygen and steam for gasification, and is rapidly pyrolyzed into gas. As a result, gas, tar, carbide, and H 2 O are generated, but the carbide is pulverized by the disturbance motion of the fluidized bed to become char. These are supplied collectively to the primary combustion chamber 7 of the later-stage swirling melting furnace 6, where they are oxidized at a high temperature of 1300 ° C. or higher while being mixed with oxygen b also supplied for gasification in the swirling flow. . For this reason, the ash contained in the char becomes slag mist, is captured by the slag phase on the furnace wall by the centrifugal force of the swirling flow, flows down the furnace wall, enters the secondary combustion chamber 8, and becomes the slag separation chamber 9 as slag f. From the bottom of the furnace. The oxidation reaction of high temperature gasification is completed in the secondary combustion chamber 8,
It becomes a medium calorie gas (2,500 to 4500 kcal / Nm 3 ) composed of H 2 , CO, and CO 2 and H 2 O.

【0030】ガス化炉4の流動層部5は還元雰囲気のた
め、原料中の金属のうち融点が流動層温度より高いもの
は、未酸化でクリーンな状態でガレキ、石、ガラス等と
ともに不燃物dとして炉底から排出される。このため、
金属地金として再利用が可能となる。溶融炉6を出たガ
スは、廃熱ボイラ10でスチームcを回収後、NaOH
水溶液を用いたスクラバー11で冷却・洗浄され、ダス
トやCO転化触媒を被毒するガス中のHCl等が除かれ
る。こうして、精製された生成ガスgが得られる。本ガ
スは工業用燃料ガスに用いることが出来るが、この場合
CO転化の必要は無いので、スクラバー11は簡略なも
ので済む。得られたH2 、CO、CO2 とH2Oから成
るガスは化学工業原料用の合成ガスとして使用される。
Since the fluidized bed portion 5 of the gasification furnace 4 is in a reducing atmosphere, the metals in the raw material having a melting point higher than the fluidized bed temperature are in a non-oxidized and clean state together with rubble, stone, glass and the like, and are incombustible. It is discharged from the furnace bottom as d. For this reason,
It can be reused as metal bullion. The gas that has left the melting furnace 6 is recovered in a waste heat boiler 10 after steam c is recovered.
It is cooled and washed by a scrubber 11 using an aqueous solution to remove dust and HCl in gas poisoning the CO conversion catalyst. Thus, a purified product gas g is obtained. This gas can be used for industrial fuel gas, but in this case, there is no need for CO conversion, so that the scrubber 11 can be simplified. The obtained gas composed of H 2 , CO, CO 2 and H 2 O is used as a synthesis gas for chemical industry raw materials.

【0031】実施例2 次に、低カロリーガスを得る常圧の内部循環式流動層ガ
ス化炉を用いるガス化について、図3を用いて説明す
る。図3において、図2と同じ符号は同じ名称を表し、
12はフリーボード、13はバーナ、14はトロンメ
ル、15はバケットコンベア、16はバーナである。予
め破砕された廃棄物aと石炭jは、ホッパー2に供給さ
れた後に、スクリュー式の定量供給装置3を用いて流動
層ガス化炉4に供給される。ガス化炉4の下方からは予
熱された空気b″が流動化ガスとして挿入され、分散板
上に硅砂の流動層5が形成される。廃棄物aと石炭jは
流動層5の上方に投入され、450〜650℃に保持さ
れた流動層5内で空気中のO2 と接触し、速やかに熱分
解ガス化される。ガス化炉4の炉底からは流動媒体の硅
砂が不燃物とともに排出され、トロンメル14により粗
大不燃物dが系外に排出される。
Embodiment 2 Next, gasification using an internal-circulation type fluidized-bed gasification furnace at normal pressure for obtaining low-calorie gas will be described with reference to FIG. 3, the same reference numerals as those in FIG. 2 denote the same names,
12 is a free board, 13 is a burner, 14 is a trommel, 15 is a bucket conveyor, and 16 is a burner. After the crushed waste a and coal j are supplied to the hopper 2, they are supplied to the fluidized-bed gasification furnace 4 using the screw type quantitative supply device 3. Preheated air b ″ is inserted as a fluidizing gas from below the gasification furnace 4 to form a fluidized bed 5 of silica sand on the dispersion plate. Wastes a and coal j are injected above the fluidized bed 5. Then, it comes into contact with O 2 in the air in the fluidized bed 5 maintained at 450 to 650 ° C., and is quickly pyrolyzed to gas. The coarse incombustible material d is discharged out of the system by the trommel 14.

【0032】分離された硅砂hはバケットコンベア15
により上方へ搬送された後、ガス化炉4に戻される。不
燃物d中には金属が含まれるが、実用的には流動層温度
を500〜600℃とすることにより、鉄、銅、アルミ
ニウムをリサイクル可能な状態で回収できる。流動層5
での低温ガス化反応によりガス、タール、炭化物が生成
する。ガスとタールは、気化して炉内を上昇する。炭化
物は流動層5の攪乱運動により微粉砕されてチャーとな
る。チャーは多孔質で軽いため、生成ガスの上向きの流
れに同伴される。流動媒体に固い硅砂hを用いること
で、炭化物の粉砕は促進される。フリーボード12には
空気b′が吹き込まれ、600〜800℃の再度ガス化
が行われる。こうして、ガス成分の低分子化と、ター
ル、チャーのガス化が進む。
The separated silica sand h is supplied to the bucket conveyor 15.
And then returned to the gasifier 4. Although metals are contained in the noncombustible material d, iron, copper, and aluminum can be recovered in a recyclable state by setting the fluidized bed temperature to 500 to 600 ° C. Fluidized bed 5
Gas, tar, and carbides are generated by the low-temperature gasification reaction in the reactor. The gas and tar vaporize and rise in the furnace. The carbide is finely pulverized by the disturbance motion of the fluidized bed 5 to form char. Because the char is porous and light, it is entrained in the upward flow of product gas. By using hard silica sand as the fluidized medium, the grinding of carbides is promoted. Air b 'is blown into the free board 12, and gasification at 600 to 800 ° C is performed again. In this way, the molecular components of the gas components are reduced, and the gasification of tar and char proceeds.

【0033】ガス化炉を出た生成ガスeは、旋回溶融炉
6の一次燃焼室7に供給され、予熱された酸素富活空気
b′と旋回流中で混合しながら、1300℃以上で高温
ガス化する。燃焼は二次燃焼室8で完結し、燃焼排ガス
e′はスラグ分離室9から排出される。チャーに含まれ
る灰分は高温のためにスラグミストとなり、旋回流の遠
心力により一次燃焼室7の炉壁上の溶融スラグ相に捕捉
され、炉壁を流れ下って二次燃焼室8に入り、スラグ分
離部9の底部より流下する。なお、旋回溶融炉6の一次
燃焼室7と二次燃焼室8には、昇温バーナ16が1台ず
つ設置されている。こうして、低カロリー(1000〜
1500kcal/Nm3 )の可燃性ガスを得ることが
できる。
The product gas e exiting the gasification furnace is supplied to the primary combustion chamber 7 of the swirling melting furnace 6, where it is mixed with the preheated oxygen-enriched air b 'in a swirling flow and is heated to a high temperature of 1300 ° C. or more. Gasify. The combustion is completed in the secondary combustion chamber 8, and the combustion exhaust gas e 'is discharged from the slag separation chamber 9. The ash contained in the char becomes slag mist due to the high temperature, is captured by the molten slag phase on the furnace wall of the primary combustion chamber 7 due to the centrifugal force of the swirling flow, flows down the furnace wall and enters the secondary combustion chamber 8, It flows down from the bottom of the slag separation section 9. In the primary combustion chamber 7 and the secondary combustion chamber 8 of the swirling melting furnace 6, one heating burner 16 is installed. Thus, low calories (1000-
A combustible gas of 1500 kcal / Nm 3 ) can be obtained.

【0034】実施例3 図4は、旋回溶融炉に別の形式を用いた10〜40at
mの合成ガスを得るための別の実施例である。図4にお
いて、ガス化炉は内部循環式流動層ガス化炉4を用いて
おり、供給された廃棄物aの炭化物が、流動層上に堆積
せず流動層内に均一に分散され、炭化物の微粉化・ガス
化が促進される。本タイプの流動層炉では、原料廃棄物
は供給時の破砕粒度を大きくでき、サイズの大きい不燃
物でも排出が可能である。また、発生熱の拡散に秀れて
いるためクリンカートラブルが少ない等の特長を有す
る。ガス化炉4を出た生成ガスeは、旋回式溶融炉6の
燃焼室7に供給され、予熱された酸素bと旋回流中で混
合しながら、1300℃以上でガス化する。
Example 3 FIG. 4 shows a 10 to 40 at using another type of swirling melting furnace.
Another example for obtaining m synthesis gas. In FIG. 4, the gasification furnace uses an internal circulation type fluidized bed gasification furnace 4, and the carbide of the supplied waste a is not uniformly deposited on the fluidized bed but is uniformly dispersed in the fluidized bed. Pulverization and gasification are promoted. In this type of fluidized bed furnace, the raw material waste can be increased in crushing particle size at the time of supply, and large-sized incombustibles can be discharged. In addition, it has features such as less clinker trouble due to excellent diffusion of generated heat. The product gas e exiting the gasification furnace 4 is supplied to a combustion chamber 7 of a swirling melting furnace 6 and gasified at 1300 ° C. or higher while being mixed with preheated oxygen b in a swirling flow.

【0035】実施例4 図5は、別の形式の旋回溶融炉を用いた別の実施例であ
る。旋回溶融炉6のスラグ分離室9には、内部に輻射ボ
イラ19を設置し、その下部に水槽20を設け、一旦水
面近くまで下降したガスが水面近くで水管の裏側に廻り
込めるようになっている。輻射ボイラ19内では、ガス
の流れ方向と重力の方向が一致するため、壁に付着した
スラグは、大きく成長することなく落下する。また、流
れ落ちるスラグ自身の熱も、輻射ボイラ19が回収する
ため、熱回収の効率が高くなる。さらに、水面近くでガ
スの流れ方向が急激に変化するため、ガス中に含まれる
スラグミストは、その慣性力により、多くが水に回収さ
れる。溶融炉6を出たガスe′は、対流ボイラ21に供
給され、熱回収される。なお上記二次燃焼室8は省くこ
とも可能である。本実施例は、発電を目的としたプロセ
スに最も適している。
Embodiment 4 FIG. 5 shows another embodiment using another type of swirling melting furnace. A radiation boiler 19 is installed inside the slag separation chamber 9 of the swirling melting furnace 6, and a water tank 20 is provided below the slag separation chamber 9, so that the gas that has once descended to near the water surface can flow to the back side of the water pipe near the water surface. I have. In the radiation boiler 19, since the direction of gas flow and the direction of gravity match, the slag attached to the wall falls without growing large. Further, since the radiation boiler 19 also recovers the heat of the slag flowing down, the efficiency of heat recovery is increased. Furthermore, since the flow direction of the gas changes rapidly near the water surface, much of the slag mist contained in the gas is recovered by the water due to its inertial force. The gas e 'that has left the melting furnace 6 is supplied to a convection boiler 21 where heat is recovered. The secondary combustion chamber 8 can be omitted. This embodiment is most suitable for a process intended for power generation.

【0036】実施例5 ここで図3の構成図における、代表的なテストデータを
示す。表1は、ガス化に用いた原料廃棄物の性状であ
る。これは、通常の都市ごみに石炭を添加してカロリー
調整を施したものである。この原料廃棄物を、流動層ガ
ス化炉にて500〜600℃で低温ガス化し、次いで旋
回式溶融炉にて1350℃で高温ガス化した時の結果
を、表2〜表4に示す。表2はガス化全体の、すなわち
ガス化炉に溶融炉を加えたガス化の物質収支であり、原
料廃棄物を100とした時のものである。ガス化するた
めのガス化剤としては酸素46とスチーム36が消費さ
れる。この結果、生成ガスは112と原料廃棄物より増
えているが、これは主にガス化剤の酸素が加わったため
である。表3も同様に両炉の熱収支である。これも原料
廃棄物の燃焼熱を基準の100としているが、生成ガス
の燃焼熱が60であることから、冷ガス効率は60%で
ある。
Embodiment 5 Here, representative test data in the configuration diagram of FIG. 3 is shown. Table 1 shows the properties of the raw material waste used for gasification. This is the result of calorie adjustment by adding coal to ordinary municipal waste. Tables 2 to 4 show the results obtained when this raw material waste was gasified at a low temperature of 500 to 600 ° C in a fluidized bed gasification furnace and then gasified at a high temperature of 1350 ° C in a swirling melting furnace. Table 2 shows the mass balance of the entire gasification, that is, the gasification balance obtained by adding a melting furnace to the gasification furnace, where the raw material waste is set to 100. Oxygen 46 and steam 36 are consumed as a gasifying agent for gasification. As a result, the generated gas is 112, which is larger than that of the raw material waste, mainly because oxygen of the gasifying agent has been added. Table 3 also shows the heat balance of both furnaces. Also in this case, the combustion heat of the raw material waste is set to 100 as a reference, but since the combustion heat of the generated gas is 60, the cold gas efficiency is 60%.

【0037】この冷ガス効率はエネルギー回収率とほぼ
同一の意味を有するもので、時間当りの生成ガスの燃焼
熱(高位ベース)の原料廃棄物の燃焼熱(高位ベース)
に対する割合である。以上より、可燃性ガス回収を目的
とする場合、原料廃棄物の低位発熱量は、ここで設定し
た3500kcal/kgをほぼ下限とすることが判
る。低位発熱量が3500kcal/kgを上回るほ
ど、冷ガス効率は60%より大きくなる。炉壁からの熱
損失は5.9であるが、これを縮小できれば、冷ガス効
率はさらに増すことが期待される。表4は生成ガスの乾
ガス組成であり、ガス中の水分はカウントしていない。
可燃成分であるH2 とCOで77%を占めている。従っ
て、この77%に相当する容積が、CO転化後のH2
なる。
This cold gas efficiency has almost the same meaning as the energy recovery rate. The heat of combustion of the generated gas per unit time (higher base) is the heat of combustion of the raw material waste (higher base).
Is the ratio to From the above, it can be seen that, for the purpose of recovering the combustible gas, the lower limit of the calorific value of the raw material waste is substantially set to 3500 kcal / kg set here. As the lower heating value exceeds 3500 kcal / kg, the cold gas efficiency becomes greater than 60%. The heat loss from the furnace wall is 5.9, but if this can be reduced, it is expected that the cold gas efficiency will be further increased. Table 4 shows the dry gas composition of the produced gas, and the moisture in the gas was not counted.
Accounting for 77% in H 2 and CO is combustible components. Therefore, the volume corresponding to this 77% is H 2 after CO conversion.

【0038】[0038]

【表1】 [Table 1]

【0039】[0039]

【表2】 [Table 2]

【0040】[0040]

【表3】 注) 本熱収支は高位発熱量基準である。 Q:燃焼熱、 H:エンタルピー[Table 3] Note) This heat balance is based on the higher calorific value. Q: heat of combustion, H: enthalpy

【0041】[0041]

【表4】 [Table 4]

【0042】実施例6 図6に本発明に用いる他の装置の一例の全体構成図を示
す。図6では、高圧(20atm程度)で低カロリーの
燃料ガスを製造後、ガスタービンを用いて複合発電を行
なうケースを示す。図6において、32はセラミックフ
ィルター、33はガスタービン、34はスチームタービ
ン、kは電力、mは排ガス、これ以外は図2と同じであ
る。ガス化炉4に空気b″、溶融炉6に酸素富活空気
b′が供給されるため、溶融炉6からの生成ガスは
2 、CO、CO2 、N2 と水蒸気から成る低カロリー
ガス(1000〜1500kcal/Nm3 (dr
y))となる。ガス化炉、溶融炉の温度条件は実施例1
と同じである。
Embodiment 6 FIG. 6 shows an overall configuration diagram of an example of another apparatus used in the present invention. FIG. 6 shows a case in which after a low-calorie fuel gas is produced at a high pressure (about 20 atm), combined power generation is performed using a gas turbine. 6, reference numeral 32 denotes a ceramic filter, 33 denotes a gas turbine, 34 denotes a steam turbine, k denotes electric power, m denotes exhaust gas, and the rest is the same as FIG. Since air b ″ is supplied to the gasification furnace 4 and oxygen-enriched air b ′ is supplied to the melting furnace 6, the generated gas from the melting furnace 6 is a low-calorie gas composed of H 2 , CO, CO 2 , N 2 and steam. (1000 to 1500 kcal / Nm 3 (dr
y)). Example 1 The temperature conditions of the gasification furnace and melting furnace
Is the same as

【0043】この後、廃熱ボイラ10でスチームcを回
収し、セラミックフィルター32で灰f′を分離後、ガ
スタービン33に供給され、電力kを発生後、廃熱ボイ
ラ10でスチームcを回収し、大気放出される。回収さ
れたスチームcは、スチームタービン34に供給され電
力kを発生する。ここでは、生成ガスを高温のまま脱塵
後、ガスタービンに供給する方法を示したが、無論図2
と同じように生成ガスを常温で精製したからガスタービ
ン33に供給することも可能である。ただし、この方法
では発電効率は若干低下する。
Thereafter, the steam c is collected by the waste heat boiler 10, and the ash f 'is separated by the ceramic filter 32, and then supplied to the gas turbine 33. After the electric power k is generated, the steam c is collected by the waste heat boiler 10. And is released to the atmosphere. The recovered steam c is supplied to the steam turbine 34 to generate electric power k. Here, a method was shown in which the generated gas was dedusted at a high temperature and then supplied to the gas turbine.
In the same manner as described above, the product gas can be supplied to the gas turbine 33 after being purified at normal temperature. However, in this method, the power generation efficiency is slightly reduced.

【0044】実施例7 図7に、本発明に用いるの他の装置の一例の全体構成図
を示す。図7では、常圧下で低カロリーの燃料ガスを製
造後、ガスエンジンを用いて複合発電するケースを示
す。図7において、35はガスエンジンである。このケ
ースでは、廃棄物aと石炭jをホッパー2への供給する
際、ロックホッパーは不要である。ガス化炉4に空気
b″、溶融炉6に酸素富活空気b′が供給されるため、
生成ガスの構成はN2 、H2 、CO、CO2 、H2 Oか
ら成る低カロリーガス(1000〜1500kcal/
Nm3 (dry))となる。ガス化炉、溶融炉の温度条
件は実施例1と同じである。この後、廃熱ボイラ10で
スチームcを回収し、スクラバー11で生成ガスを冷却
・洗浄する。得られた常温の生成ガスは、ガスエンジン
35に供給され電力kを発生後、再び廃熱ボイラ10で
スチームcを回収し、大気放出される。回収されたスチ
ームの全量は、スチームタービン34に供給され、電力
kを発生する。コスト削減のため、ガスエンジン35の
後の廃熱ボイラ10は省略することも可能であるが、発
電効率は低下する。
Embodiment 7 FIG. 7 shows an overall configuration diagram of an example of another device used in the present invention. FIG. 7 shows a case in which a low-calorie fuel gas is produced under normal pressure, and then combined power generation is performed using a gas engine. In FIG. 7, 35 is a gas engine. In this case, the lock hopper is unnecessary when supplying the waste a and the coal j to the hopper 2. Since air b ″ is supplied to the gasification furnace 4 and oxygen-enriched air b ′ is supplied to the melting furnace 6,
Configuration of the product gas is N 2, H 2, CO, low calorie gas composed of CO 2, H 2 O (1000~1500kcal /
Nm 3 (dry)). The temperature conditions of the gasification furnace and the melting furnace are the same as in Example 1. Thereafter, the steam c is collected by the waste heat boiler 10, and the generated gas is cooled and washed by the scrubber 11. The obtained normal-temperature generated gas is supplied to the gas engine 35 to generate electric power k, and then the steam c is collected again by the waste heat boiler 10 and released to the atmosphere. The entire amount of the recovered steam is supplied to the steam turbine 34 to generate electric power k. For cost reduction, the waste heat boiler 10 after the gas engine 35 can be omitted, but the power generation efficiency is reduced.

【0045】[0045]

【発明の効果】本発明は廃棄物を燃料ガスあるいは化学
工業原料に変換する資源化方法を提供し、環境保全を維
持しつつ資源有価物の回収技術を提供するもので、サー
マルリサイクル、マテリアルリサイクル、ケミカルリサ
イクルを通じて廃棄物を新たな資源として活用を計るも
のである。具体的には、以下の効果を得ることができ
る。 低温ガス化と高温ガス化を組合せたガス化処理によ
り廃棄物を中カロリーの合成ガスに変換し、次いでアン
モニア、メタノール等の化学工業原料にするというケミ
カルリサイクルが可能となる。
Industrial Applicability The present invention provides a resource recycling method for converting waste into fuel gas or a raw material for chemical industry, and provides a technology for recovering resource valuables while maintaining environmental conservation. It aims to utilize waste as a new resource through chemical recycling. Specifically, the following effects can be obtained. Chemical recycling of converting waste into medium-calorie synthesis gas by gasification combining low-temperature gasification and high-temperature gasification, and then converting it into chemical industrial raw materials such as ammonia and methanol becomes possible.

【0046】 合成ガス生成の過程で灰分をスラグ化
して無害化することができる。生成スラグは土木建築材
としてマテリアルリサイクルできる。 廃棄物中に含まれる鉄、銅、アルミニウム等の有価
金属を未酸化状態で回収できるためマテリアルリサイク
ルが可能となる。 低カロリーの可燃性ガスを回収することにより、ガ
スタービン等の燃料あるいは工業用燃料ガスとしてサー
マルリサイクルすることも可能である。 1300℃以上という高温度域を経るため、有害な
ダイオキシン類をほぼ完全に分解できる。
The ash can be made slag and harmless during the process of syngas generation. The generated slag can be recycled as civil engineering materials. Since valuable metals such as iron, copper, and aluminum contained in waste can be recovered in an unoxidized state, material recycling becomes possible. By recovering low-calorie combustible gas, it is also possible to thermally recycle it as fuel for gas turbines or industrial fuel gas. Since it passes through a high temperature range of 1300 ° C. or more, harmful dioxins can be almost completely decomposed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の処理方法によるガス化利用の全体概念
図。
FIG. 1 is an overall conceptual diagram of gasification utilization by a treatment method of the present invention.

【図2】本発明の処理方法に用いる装置の一例を示す概
念構成図。
FIG. 2 is a conceptual configuration diagram showing an example of an apparatus used for the processing method of the present invention.

【図3】本発明の処理方法に用いる装置の別の一例を示
す概略構成図。
FIG. 3 is a schematic configuration diagram showing another example of an apparatus used for the processing method of the present invention.

【図4】本発明の処理方法に用いる装置の別の一例を示
す概略構成図。
FIG. 4 is a schematic configuration diagram showing another example of an apparatus used for the processing method of the present invention.

【図5】本発明の処理方法に用いる装置の別の一例を示
す概略構成図。
FIG. 5 is a schematic configuration diagram showing another example of an apparatus used for the processing method of the present invention.

【図6】本発明の処理方法に用いる装置の別の一例を示
す概略構成図。
FIG. 6 is a schematic configuration diagram showing another example of an apparatus used for the processing method of the present invention.

【図7】本発明の処理方法に用いる装置の別の一例を示
す概略構成図。
FIG. 7 is a schematic configuration diagram showing another example of an apparatus used for the processing method of the present invention.

【符号の説明】[Explanation of symbols]

1:ロックホッパシステム、2:ホッパー、3:スクリ
ューフィーダ、4:流動層ガス化炉、5:流動層部、
6:旋回溶融炉で、7:一次燃焼室、8:二次燃焼室、
9:スラグ分離室、10:廃熱ボイラ、11:スクラバ
ー、12:フリーボード、13:バーナ、14、1
4′:スクリーン(トロンメル)、15:流動媒体循環
路(バケットコンベア)、16:バーナ、17、1
7′:ロックホッパー、18:傾斜壁、19:輻射ボイ
ラ、20:水槽、21:対流ボイラ、22、22′:貯
留槽、32:セラミックフィルター、33:ガスタービ
ン、34:スチームタービン、35:ガスエンジン a:廃棄物、b:酸素、b′:酸素富化空気、b″:空
気、c:水蒸気(スチーム)、d:不燃物、e:低温ガ
ス化生成ガス、e′:高温ガス化生成ガス、f:溶融ス
ラグ、g:合成ガス、h:流動媒体、i:水、j:石
灰、k:電力、m:排ガス
1: Lock hopper system, 2: Hopper, 3: Screw feeder, 4: Fluidized bed gasifier, 5: Fluidized bed section,
6: swirling melting furnace, 7: primary combustion chamber, 8: secondary combustion chamber,
9: Slag separation room, 10: Waste heat boiler, 11: Scrubber, 12: Free board, 13: Burner, 14, 1
4 ': Screen (Trommel), 15: Fluid medium circulation path (bucket conveyor), 16: Burner, 17, 1
7 ': lock hopper, 18: inclined wall, 19: radiation boiler, 20: water tank, 21: convection boiler, 22, 22': storage tank, 32: ceramic filter, 33: gas turbine, 34: steam turbine, 35: Gas engine a: waste, b: oxygen, b ': oxygen-enriched air, b ": air, c: water vapor (steam), d: incombustible, e: low-temperature gasification product gas, e': high-temperature gasification Product gas, f: molten slag, g: synthesis gas, h: flowing medium, i: water, j: lime, k: electric power, m: exhaust gas

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI F23G 5/16 ZAB F23G 5/32 ZAB 5/32 ZAB F23L 7/00 C F23L 7/00 A B C10G 1/00 B // C10G 1/00 1/10 1/10 B09B 3/00 ZAB 303L (72)発明者 入江 正昭 東京都大田区羽田旭町11番1号 株式会社 荏原製作所内 (72)発明者 廣勢 哲久 東京都大田区羽田旭町11番1号 株式会社 荏原製作所内 (72)発明者 大下 孝裕 東京都大田区羽田旭町11番1号 株式会社 荏原製作所内──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification code FI F23G 5/16 ZAB F23G 5/32 ZAB 5/32 ZAB F23L 7/00 C F23L 7/00 AB C10G 1/00 B // C10G 1/00 1/10 1/10 B09B 3/00 ZAB 303L (72) Inventor Masaaki Irie 11-1 Haneda Asahimachi, Ota-ku, Tokyo Ebara Corporation (72) Inventor Tetsuhisa Hirose Ota, Tokyo (71) Inventor Takahiro 11-12 Haneda Asahi-cho, Ota-ku, Tokyo Inside Ebara Manufacturing Co., Ltd.

Claims (17)

【特許請求の範囲】[Claims] 【請求項1】 廃棄物を流動層ガス化炉で低温でガス化
し、得られるガス状物質とチャーを溶融炉に導入して高
温でガス化し、低カロリーガス又は中カロリーガスを得
ることを特徴とする廃棄物のガス化処理方法。
1. Gasification of waste at a low temperature in a fluidized-bed gasification furnace, introduction of the resulting gaseous substance and char into a melting furnace to gasify at a high temperature to obtain a low calorie gas or a medium calorie gas. Waste gasification method.
【請求項2】 前記流動層ガス化炉は、内部循環式流動
層ガス化炉であることを特徴とする請求項1記載の廃棄
物のガス化処理方法。
2. The method according to claim 1, wherein the fluidized bed gasifier is an internal circulation type fluidized bed gasifier.
【請求項3】 前記溶融炉は、旋回溶融炉であることを
特徴とする請求項1記載の廃棄物のガス化処理方法。
3. The method according to claim 1, wherein the melting furnace is a rotary melting furnace.
【請求項4】 前記流動層ガス化炉は、内部循環式流動
層ガス化炉であり、溶融炉は旋回溶融炉であることを特
徴とする請求項1記載の廃棄物のガス化処理方法。
4. The waste gasification method according to claim 1, wherein the fluidized bed gasification furnace is an internal circulation type fluidized bed gasification furnace, and the melting furnace is a swirling melting furnace.
【請求項5】 前記流動層ガス化炉は、内部温度が45
0〜800℃であることを特徴とする請求項1記載の廃
棄物のガス化処理方法。
5. The fluidized bed gasifier has an internal temperature of 45.
The gasification treatment method for waste according to claim 1, wherein the temperature is 0 to 800C.
【請求項6】 前記流動層ガス化炉は、流動層の温度が
450〜650℃であることを特徴とする請求項1記載
の廃棄物のガス化処理方法。
6. The waste gasification method according to claim 1, wherein the fluidized bed gasification furnace has a temperature of the fluidized bed of 450 to 650 ° C.
【請求項7】 前記溶融炉は、内部温度が1300℃以
上であることを特徴とする請求項1記載の廃棄物のガス
化処理方法。
7. The waste gasification method according to claim 1, wherein the melting furnace has an internal temperature of 1300 ° C. or higher.
【請求項8】 前記流動層ガス化炉は、ガス化のための
流動層への送入ガスを空気、空気とスチーム、酸素富活
空気、酸素富活空気とスチーム、酸素とスチームの混合
物の中から選択することを特徴とする請求項1記載の廃
棄物のガス化処理方法。
8. The fluidized-bed gasification furnace is configured to supply gas to the fluidized bed for gasification with air, air and steam, oxygen-enriched air, oxygen-enriched air and steam, and a mixture of oxygen and steam. The method for gasifying waste according to claim 1, wherein the method is selected from the group consisting of:
【請求項9】 前記溶融炉は、ガス化のための送入ガス
を酸素富活空気又は酸素の中から選択することを特徴と
する請求項1記載の廃棄物のガス化処理方法。
9. The gasification treatment method for waste according to claim 1, wherein the melting furnace selects a feed gas for gasification from oxygen-enriched air or oxygen.
【請求項10】 前記ガス化のための流動層ガス化及び
溶融炉への送入ガスは、トータルとして含有する全酸素
量が廃棄物を完全燃焼させるために必要な理論燃焼酸素
量の0.1〜0.6の範囲であることを特徴とする請求
項1記載の廃棄物のガス化処理方法。
10. The gas fed into the fluidized-bed gasification and melting furnace for gasification has a total oxygen content of 0.1% of the theoretical combustion oxygen amount required for completely burning waste. 2. The method for gasifying waste according to claim 1, wherein the amount is in the range of 1 to 0.6.
【請求項11】 前記送入ガスのうち流動層ガス化炉に
供給される酸素量は、理論燃焼酸素量の0.1〜0.3
の範囲であることを特徴とする請求項10記載の廃棄物
のガス化処理方法。
11. The amount of oxygen supplied to the fluidized-bed gasifier of the input gas is 0.1 to 0.3 of the theoretical combustion oxygen amount.
The method for gasification of waste according to claim 10, wherein:
【請求項12】 前記溶融炉は、灰分を溶融スラグとし
て回収し、ダイオキシン類及びその前駆体をほぼ完全に
分解することを特徴とする請求項1記載の廃棄物のガス
化処理方法。
12. The waste gasification method according to claim 1, wherein the melting furnace collects ash as molten slag and decomposes dioxins and their precursors almost completely.
【請求項13】 前記取得した低カロリー又は中カロリ
ーガスが、常圧又は高圧であり、発電あるいは工業用燃
料ガス又は化学工業原料として用いることを特徴とする
請求項1記載の廃棄物のガス化処理方法。
13. The gasification of waste according to claim 1, wherein the obtained low-calorie or medium-calorie gas is at normal pressure or high pressure and used as power generation or industrial fuel gas or chemical industrial raw material. Processing method.
【請求項14】 前記流動層ガス化炉は、流動層部が還
元雰囲気であり、廃棄物中の金属を未酸化状態で回収す
ることを特徴とする請求項1記載の廃棄物のガス化処理
方法。
14. The gasification treatment of waste according to claim 1, wherein the fluidized bed gasifier has a fluidized bed part in a reducing atmosphere and recovers metal in waste in an unoxidized state. Method.
【請求項15】 前記流動層ガス化炉に供給する廃棄物
は、低カロリー廃棄物と高カロリー廃棄物の混合割合を
調整することを特徴とする請求項1記載の廃棄物のガス
化処理方法。
15. The waste gasification method according to claim 1, wherein the waste supplied to the fluidized-bed gasification furnace is adjusted in a mixing ratio of low calorie waste and high calorie waste. .
【請求項16】 前記廃棄物が低質の場合は、補助燃料
として石炭を用いることを特徴とする請求項1記載の廃
棄物のガス化処理方法。
16. The waste gasification treatment method according to claim 1, wherein when the waste is of low quality, coal is used as an auxiliary fuel.
【請求項17】 廃棄物を低温でガス化する流動層ガス
化炉と、得られるガス状物質とチャーを高温でガス化
し、低カロリーガス又は中カロリーガスを得る溶融炉と
を有することを特徴とする廃棄物のガス化処理装置。
17. A fluidized-bed gasification furnace for gasifying waste at a low temperature, and a melting furnace for gasifying the obtained gaseous substance and char at a high temperature to obtain a low-calorie gas or a medium-calorie gas. Waste gasification treatment equipment.
JP08331435A 1995-11-28 1996-11-28 Gasification of waste Expired - Lifetime JP3079051B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08331435A JP3079051B2 (en) 1995-11-28 1996-11-28 Gasification of waste

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP33118595 1995-11-28
JP8-252234 1996-09-04
JP7-331185 1996-09-04
JP25223496 1996-09-04
JP08331435A JP3079051B2 (en) 1995-11-28 1996-11-28 Gasification of waste

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP11305993A Division JP2000140800A (en) 1995-11-28 1999-10-27 Device for gasification treatment of waste
JP2000099371A Division JP2000351979A (en) 1995-11-28 2000-03-31 Gasification treatment of waste material

Publications (2)

Publication Number Publication Date
JPH10128288A true JPH10128288A (en) 1998-05-19
JP3079051B2 JP3079051B2 (en) 2000-08-21

Family

ID=27334105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08331435A Expired - Lifetime JP3079051B2 (en) 1995-11-28 1996-11-28 Gasification of waste

Country Status (1)

Country Link
JP (1) JP3079051B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000319671A (en) * 1999-03-11 2000-11-21 Ebara Corp Operation control method of two-stage waste gasification system waste
US6161490A (en) * 1996-09-04 2000-12-19 Ebara Corporation Swirling-type melting furnace and method for gasifying wastes by the swirling-type melting furnace
JP2002233854A (en) * 2001-02-07 2002-08-20 Ishikawajima Harima Heavy Ind Co Ltd Method and facilities for treating waste
WO2004079263A1 (en) * 2003-03-07 2004-09-16 E & E Corporation Burning and melting system of infection trash
JP2005270716A (en) * 2004-03-23 2005-10-06 Ishikawajima Harima Heavy Ind Co Ltd Method and apparatus for sewage sludge gasification
WO2009018543A1 (en) * 2007-08-01 2009-02-05 Virginia Tech Intellectual Properties, Inc. Thermochemical method for conversion of poultry litter
JP2010505026A (en) * 2006-09-29 2010-02-18 ケロッグ ブラウン アンド ルート エルエルシー Method of producing syngas
CN102125926A (en) * 2011-04-02 2011-07-20 江苏亿尔等离子体科技有限公司 High temperature and high pressure on-site treating device for medical solid wastes
JP2012504664A (en) * 2008-08-08 2012-02-23 コミュニティ パワー コーポレイション Conversion of biomass feedstock to hydrocarbon liquid transportation fuel

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6044391B2 (en) * 2013-02-28 2016-12-14 王子ホールディングス株式会社 Bag

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6161490A (en) * 1996-09-04 2000-12-19 Ebara Corporation Swirling-type melting furnace and method for gasifying wastes by the swirling-type melting furnace
US6283048B1 (en) 1996-09-04 2001-09-04 Ebara Corporation Swirling-type melting furnace and method for gasifying wastes by the swirling-type melting furnace
JP2000319671A (en) * 1999-03-11 2000-11-21 Ebara Corp Operation control method of two-stage waste gasification system waste
JP4660874B2 (en) * 1999-03-11 2011-03-30 宇部興産株式会社 Operation control method for waste two-stage gasification system
JP2002233854A (en) * 2001-02-07 2002-08-20 Ishikawajima Harima Heavy Ind Co Ltd Method and facilities for treating waste
WO2004079263A1 (en) * 2003-03-07 2004-09-16 E & E Corporation Burning and melting system of infection trash
JP2005270716A (en) * 2004-03-23 2005-10-06 Ishikawajima Harima Heavy Ind Co Ltd Method and apparatus for sewage sludge gasification
JP2010505026A (en) * 2006-09-29 2010-02-18 ケロッグ ブラウン アンド ルート エルエルシー Method of producing syngas
JP2014111768A (en) * 2006-09-29 2014-06-19 Kellogg Brown & Root Llc Methods for producing synthesis gas
WO2009018543A1 (en) * 2007-08-01 2009-02-05 Virginia Tech Intellectual Properties, Inc. Thermochemical method for conversion of poultry litter
JP2012504664A (en) * 2008-08-08 2012-02-23 コミュニティ パワー コーポレイション Conversion of biomass feedstock to hydrocarbon liquid transportation fuel
CN102125926A (en) * 2011-04-02 2011-07-20 江苏亿尔等离子体科技有限公司 High temperature and high pressure on-site treating device for medical solid wastes

Also Published As

Publication number Publication date
JP3079051B2 (en) 2000-08-21

Similar Documents

Publication Publication Date Title
KR100445363B1 (en) Waste treatment apparatus and method through vaporization
US5922090A (en) Method and apparatus for treating wastes by gasification
EP0803562B1 (en) Method and apparatus for treating wastes by gasification
US5980858A (en) Method for treating wastes by gasification
JP3916179B2 (en) High temperature gasification method and apparatus for waste
JP4454045B2 (en) Swivel melting furnace and two-stage gasifier
EP0846748A1 (en) Method and apparatus for recovering energy from wastes
WO1994003760A1 (en) Processes and means for waste resources utilization
JP3415748B2 (en) Method and apparatus for two-stage gasification of organic waste
US6902711B1 (en) Apparatus for treating wastes by gasification
JP3079051B2 (en) Gasification of waste
EP0979262B1 (en) Method and apparatus for treating wastes by gasification
CN113025388B (en) Method for co-resource utilization of urban solid waste and carbon dioxide
JP4222645B2 (en) Method and apparatus for recycling organic waste
JP3707754B2 (en) Waste treatment system and method and cement produced thereby
JP3938981B2 (en) Gas recycling method for waste gasification
JP4155507B2 (en) Biomass gasification method and gasification apparatus
JPH1081885A (en) Method and equipment for convering organic waste material into valuable material
JP2002371307A (en) Method for recycling organic or hydrocarbon waste, and blast furnace facility suitable for recycling
JP2005114197A (en) Waste gasification melting treatment method
JPH10132234A (en) Gas turbine composite power generating method
WO1998023898A1 (en) Method and equipment for gasification and burning of solid waste

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090616

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100616

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100616

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110616

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120616

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120616

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130616

Year of fee payment: 13

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term