WO1998023898A1 - Method and equipment for gasification and burning of solid waste - Google Patents

Method and equipment for gasification and burning of solid waste Download PDF

Info

Publication number
WO1998023898A1
WO1998023898A1 PCT/JP1997/004314 JP9704314W WO9823898A1 WO 1998023898 A1 WO1998023898 A1 WO 1998023898A1 JP 9704314 W JP9704314 W JP 9704314W WO 9823898 A1 WO9823898 A1 WO 9823898A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluidized bed
fluidized
furnace
gas
gasification
Prior art date
Application number
PCT/JP1997/004314
Other languages
French (fr)
Japanese (ja)
Inventor
Shosaku Fujinami
Kazuo Takano
Masaaki Irie
Tetsuhisa Hirose
Takahiro Oshita
Yasuo Makino
Original Assignee
Ebara Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corporation filed Critical Ebara Corporation
Priority to AU51916/98A priority Critical patent/AU5191698A/en
Publication of WO1998023898A1 publication Critical patent/WO1998023898A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/02Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment
    • F23G5/027Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment pyrolising or gasifying stage
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • C10J3/54Gasification of granular or pulverulent fuels by the Winkler technique, i.e. by fluidisation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/58Production of combustible gases containing carbon monoxide from solid carbonaceous fuels combined with pre-distillation of the fuel
    • C10J3/60Processes
    • C10J3/64Processes with decomposition of the distillation products
    • C10J3/66Processes with decomposition of the distillation products by introducing them into the gasification zone
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1003Waste materials
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/0946Waste, e.g. MSW, tires, glass, tar sand, peat, paper, lignite, oil shale
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0953Gasifying agents
    • C10J2300/0956Air or oxygen enriched air
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0953Gasifying agents
    • C10J2300/0963Ozone
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0953Gasifying agents
    • C10J2300/0973Water
    • C10J2300/0976Water as steam
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2201/00Pretreatment
    • F23G2201/40Gasification
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2202/00Combustion
    • F23G2202/20Combustion to temperatures melting waste
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Definitions

  • the present invention gasifies and combusts solid waste such as municipal solid waste, solidified fuel, slurried fuel, waste plastic, waste FRP, biomass waste, automobile waste, low-grade coal, waste oil, etc.
  • the present invention also relates to a method and equipment for converting ash contained in waste into molten slag.
  • the solidified fuel includes what is referred to as RDF, which is obtained by crushing and sorting municipal solid waste, adding quicklime, etc., and compression-molding.
  • Slurried fuel includes municipal solid waste that has been crushed and turned into a water slurry, and turned into oil by hydrothermal decomposition under high pressure.
  • F R P stands for fiber reinforced plastic.
  • Biomass waste includes water and sewage waste (contaminants, sewage, sewage sludge), agricultural waste (rice husk, rice straw, surplus products), forest waste (sawdust, bark, thinned goods), and industry Includes waste (pulp chip dust) and construction waste.
  • Low-rank coal includes peat with a low degree of coalification, or the buttons generated during coal cleaning.
  • Ash in the waste is collected as harmless slag from which heavy metals do not elute. This will extend the life of the landfill and make it possible to use it for roadbed materials.
  • the development of “gasification combustion system” is ahead of the others, using a vertical furnace as the gasification furnace (vertical furnace method) and a method using a rotary furnace (rotary furnace method).
  • the drying and preheating zone 200 to 300 ° C
  • the pyrolysis zone 300 to 100 ° C
  • the combustion and melting zone (15 (Above 0 ° C) is formed in layers sequentially from the top, and the waste and coke introduced from the upper part of the furnace descend in the furnace while exchanging heat with the gas generated in the lower zone.
  • the generated gas that has risen inside the furnace is burned at about 900 ° C in the subsequent combustion furnace.
  • the carbide generated in the pyrolysis zone descends into the melting and combustion zone together with the charged coke, and is burned at a high temperature by the oxygen-enriched air supplied from the tuyere to melt the entire amount of incombustibles including metals.
  • waste is crushed and then supplied to a drum type rotary furnace externally heated by high-temperature air, where it is slowly pyrolyzed to gas at about 450 ° C.
  • the resulting char is discharged from the furnace and cooled to a temperature where it does not ignite. Thereafter, the carbide is finely pulverized and supplied to the subsequent rotary melting furnace, where it is burned at a high temperature of 130 ° C. together with the gas produced from the rotary furnace, and the ash is turned into molten slag.
  • the problems of these two methods are described.
  • the vertical furnace requires auxiliary materials such as coke and oxygen-enriched air because the melting zone reaching 170 to 180 ° C is located at the bottom of the gasification furnace, and the operating cost is high.
  • auxiliary materials such as coke and oxygen-enriched air
  • coke etc. increases the amount of carbon dioxide emissions.
  • the vertical furnace belongs to the type of fixed bed furnace as a gasification furnace, but it is stable because it stacks various types of waste in layers and has a combustion and melting zone at the bottom. Driving is difficult. In fixed-bed furnaces, it is important to ensure uniform air permeability.
  • the gasification furnace is an externally heated rotary furnace using high-temperature air, so the furnace size cannot be avoided.
  • the generated carbide is discharged from the rotary furnace, pulverized and then supplied to the melting and burning furnace, where it is combined with the gas supplied directly from the rotary furnace and melted and burned.
  • carbide handling equipment such as discharge, cooling, crushing, storage, and supply is required. During such handling, the loss of heat from the carbides due to cooling and heat dissipation is also undesirable for energy use. If the carbide is discharged outside without cooling, it is dangerous because it ignites in contact with air.
  • An object of the present invention is to solve the above-mentioned problems, and to provide a method and equipment for gasifying and burning solid waste, which is easy to operate, has excellent safety, is compact and has high thermal efficiency.
  • the present invention is based on the above-described rotary furnace system, and uses a fluidized-bed gasification furnace and a melt-burning furnace (fluidized-bed furnace system), and transfers solid waste to the fluidized-bed portion of the fluidized-bed gasification furnace. Pyrolysis gasification at 450-650 ° C, followed by melt-combustion at 1200-150 ° C in a subsequent melting and burning furnace to convert ash into molten slag gas In the combustion process.
  • one or more gases selected from oxygen, water vapor, and air are supplied to the fluidized bed, and the amount of oxygen in the gas supplied to the fluidized bed is calculated as 1% of the theoretical combustion oxygen.
  • the gasification combustion method of the present invention can include the following configuration.
  • Ml At least one gas selected from oxygen, water vapor, and air is supplied to the free-bed of the fluidized-bed gasifier, and the carbide and tar generated in the fluidized-bed are separated by the free-board.
  • the amount of oxygen in the gas to be pyrolyzed and gasified at 650 to 850 ° C and supplied to the free board unit is set to 0 to 20% of the theoretical combustion oxygen amount of solid waste.
  • M 2 An inclined wall is provided along the inner wall near the surface of the fluidized bed of the fluidized bed gasifier, and the upward flow of the fluidized medium at the periphery of the fluidized bed is turned to the center to promote the swirling motion of the fluidized medium. Let it.
  • the downward projected area of the inclined wall shall be 25 to 40% of the cross section of the fluidized bed, and the inclination angle of the inclined wall with respect to the horizontal plane shall be 30 to 60 °.
  • M 3 One or more gases selected from oxygen, water vapor, and air are supplied to the melting furnace.
  • the amount of oxygen in the gas supplied to the melting furnace should be 80 to 120% of the theoretical combustion oxygen amount.
  • the fluidized medium of the fluidized bed gasifier is sand, alumina, dolomite or limestone.
  • Fluidized bed gasifiers recover metals contained in solid waste from the furnace bottom in an unoxidized and clean state.
  • the smelting furnace is a swirling type melting furnace.
  • the present invention also provides a fluidized bed portion for pyrolyzing and solidifying solid waste at 450 to 65 ° C.
  • a gasification and combustion system provided with a fluidized bed gasification furnace provided with: and a melting and combustion furnace which is provided at a stage subsequent to the fluidized bed gasification furnace and melts and burns at 120 to 150 ° C to convert ash into molten slag. Be in the reserve.
  • the fluidized bed gasifier includes a fluidized gas supply having a supply port for supplying at least one gas selected from oxygen, water vapor, and air to the fluidized bed portion. It has a mechanism.
  • the fluidizing gas supply mechanism sets the oxygen amount in the gas supplied to the fluidized bed to 10 to 30% of the theoretical combustion oxygen amount, and sets the mass velocity of the fluidizing gas at the center of the furnace bottom to the minimum fluidization mass velocity.
  • a relatively slow fluidized bed was formed, which was 2 to 6 times larger than that of the fluidized gas, and the mass velocity of the fluidizing gas was 1.5 to 3 times the mass velocity of the fluidizing gas in the slow fluidized bed around the furnace bottom.
  • An active fluidized bed is formed, and the area ratio of the slow fluidized bed in the section of the fluidized bed is set to 40 to 60%, while the fluidized medium flows from the peripheral part to the central part at the upper part of the fluidized bed. It produces a swirling motion of the moving fluid medium.
  • the gasification combustion equipment of the present invention can have the following configuration.
  • S 1 One or more gases selected from oxygen, water vapor, and air are supplied to a free board of a fluidized bed gasifier, and carbides and tar generated in the fluidized bed section are collected in a free board section. Pyrolysis gasification at 0-850 ° C. The amount of oxygen in the gas supplied to the freeboard should be 0 to 20% of the theoretical combustion oxygen amount of solid waste c
  • S 2 Provide an inwardly inclined wall along the inner wall near the fluidized bed surface of the fluidized bed gasifier.
  • the inclined wall turns the upward flow in the peripheral part of the fluid medium to the center part and promotes the swirling motion of the fluid medium, and the downward projected area of the inclined wall is 25 to 40% of the cross section of the fluidized bed.
  • the inclination angle of the inclined wall with respect to the horizontal plane is 30 to 60 ° c
  • Fluidized bed gasification furnace fluid is sand, alumina, dolomite, or limestone.
  • the melting and burning furnace is a swirling type melting and burning furnace.
  • the solid waste is supplied to a fluidized-bed gasification furnace and pyrolyzed and gasified at 450 to 65 ° C. in a fluidized bed formed by a fluidized medium.
  • the solid carbide generated at this time is finely pulverized by the agitating motion of the fluidized medium, and supplied to the subsequent melting and combustion furnace together with the generated gas.
  • Solid carbides have a low burning rate, so less is desirable. Carbides are often generated at low gasification temperatures. If the gasification temperature is lower than 450 ° C, the rate of the gasification reaction becomes extremely slow and undecomposed Is deposited in the fluidized bed. Accordingly, in the present invention, the lower limit of the gasification temperature is set to 450 ° C. (preferably, 500 ° C.).
  • the present invention sets the upper limit of the gasification temperature at 65 ° C. (preferably, 600 ° C.).
  • the amount of heat required for pyrolysis gasification of waste is quickly supplied by an internal heat type, that is, partial combustion of waste.
  • Internally heated gasifiers are clearly superior to externally heated gasifiers in terms of compactness and thermal efficiency.
  • the gasification temperature is between 450 and 65 ° C
  • Tar and carbides have a slow burning rate, and can cause an increase in the volume of the subsequent melting furnace.
  • the products of the gasifier In order to make a melt-burning furnace compact, the products of the gasifier must be low in tar and carbides, and must be mainly composed of gas components.
  • the volume of the freeboard is used effectively, and oxygen-containing gas having substantially the same quality as the fluidizing gas is supplied to the freeboard of the gasification furnace.
  • the second stage pyrolysis gasification is performed at ⁇ 850 ° C to convert tar and carbide into low molecular weight gas.
  • the upper limit temperature of the second stage pyrolysis gasification in the freeboard is set at 850 ° C (preferably, 750 ° C) so that ash is not welded to the flue connecting the gasifier and the melting and burning furnace. C), and the lower limit temperature is set at 65 ° C. to promote the oxidative combustion of carbides.
  • the temperature of the melting and burning may be set to be 50 to 100 ° C higher than the melting temperature of the ash, but since the melting temperature of the ash varies depending on the type of waste, it is usually 1 500 ° C. In the fluidized bed furnace system of the present invention, 170 Since high temperatures of 0 to 180 ° C are not required, auxiliary materials such as coke are unnecessary.
  • the gas supplied to the pyrolysis gasification furnace and the melting combustion furnace is used by appropriately selecting from air, oxygen and steam according to the quality of the solid waste to be burned and the target gas properties (oxygen-rich activity). Including air).
  • the amount of oxygen in the supplied gas is 10 to 30% for the gas supplied to the pyrolysis gasification fluidized bed when expressed as a ratio to the theoretical amount of oxygen in the waste, that is, as an oxygen ratio.
  • the content is preferably 0 to 20%, and in the case of gas supplied to the melting and burning furnace, it is preferably 80 to 120%.
  • the combined oxygen ratio is preferably about 130%.
  • the present invention is to completely burn solid waste without secondary pollution by using an internal swirling type fluidized bed furnace and a melting and burning furnace.
  • An internal swirling fluidized bed reactor with a rectangular horizontal cross section was developed for the incineration of solid waste (Japanese Patent Application Laid-Open No. 57-124608, Japanese Patent Publication No. 62-5242). It is already in practical use.
  • the fluidized bed gasifier used in the present invention is an application of this, and forms a relatively slow fluidized bed in which the fluidized medium flows down while flowing in the fluidized bed at the center of the furnace bottom.
  • a relatively active fluidized bed is formed around the bottom of the furnace, where the fluidized medium rises while fluidizing in the fluidized bed, and the fluidized medium moves from the central part to the peripheral part at the lower part of the fluidized bed and moves to the upper part
  • the following features are provided by generating the swirling motion of the fluid medium so that the fluid medium moves while flowing from the peripheral part to the central part.
  • the generated carbide does not accumulate on the fluidized bed and is well and uniformly dispersed in the fluidized bed, and oxidation of the carbide is efficiently performed in the active fluidized bed.
  • the amount of heat generated by the oxidation of carbides is quickly transferred to the fluidized medium, and is effectively used as a heat source for pyrolysis gasification in the center.
  • the solid waste can be supplied to the gasifier in a state close to no pulverization due to the swallowing action accompanying the downward movement of the fluidized medium in the slow fluidized bed. For this reason, crushing equipment can be light or omitted, and crushing power can be saved. (4) Due to the swirling motion of the fluidized medium, coarse incombustibles in solid waste can be easily discharged.
  • the scale-up does not shift in one direction as in a rectangular shape, and it is possible to cope with the future theme of pressurization.
  • the fluidized medium is fluidized uniformly in the fluidized bed, but the dispersion in the lateral direction is unexpectedly poor. Therefore, in the above points (1) to (4), the internal swirl type fluidized bed is considered to be superior to the publishing fluidized bed.
  • the internal swirl type fluidized bed is considered to be superior to the publishing fluidized bed.
  • a bubbled fluidized bed if the input position of the waste is above the fluidized bed, there is a problem when undecomposed products accumulate on the fluidized bed due to poor swallowing of the waste into the fluidized bed. Supplying waste directly into the fluidized bed eliminates this problem, but causes problems such as sticking, abrasion, and corrosion of the input feeder and the necessity of gas sealing.
  • a pyrolysis gasification zone is formed in the vicinity of the waste input area, and a carbide oxidation zone is formed in other areas.Since the dispersion of the carbide in the fluidized bed is poor, unreacted oxygen is likely to be generated, There is a disadvantage that the flammable gas in the high-strength port generated in the cracking gasification zone is wastedly burned by the unreacted oxygen.
  • the specific gravity of the carbide generated by pyrolysis gasification is about 1, which is less than half the specific gravity of the sand in the fluidized medium.
  • a fluidized bed of the carbide is formed on the fluidized bed by segregation. You. Waste introduced from above the fluidized bed enters the fluidized bed of this carbide, but the heat conduction of the waste is slower because the heat conduction of the carbide is not as good as the sand of the fluidized medium. As a result, undecomposed substances are deposited in the fluidized bed of carbide, and the fluidized bed loses its original function. This is also a dangerous phenomenon, as it can sometimes lead to explosive gasification reactions.
  • the fluid medium moves on the dispersion plate, so that even large-sized incombustibles accumulate on the dispersion plate. It is discharged smoothly without performing.
  • the mass of the fluidized medium turned by the inclined walls collide violently at the center, so that carbide can be finely pulverized quickly. . In a normal bubbling fluidized bed, there is almost no such effect.
  • the present inventors Prior to the present invention, the present inventors have invented an internal swirling type fluidized bed gasification furnace having a rectangular horizontal cross section (Japanese Patent Laid-Open No. 2-147692). For the reasons (1), (2) and (5) to (7) above, it was determined that the circular cross section was superior. In particular, the efficient oxidation of carbides described in (1) is the most important function as a gasifier. In the two-stage gasification, two fluidized-bed furnaces are provided, and pyrolysis gasification of waste and oxidation of carbides are performed in separate furnaces.
  • FIG. 1 is a schematic vertical sectional view of one embodiment of a fluidized-bed gasification furnace used for carrying out the present invention.
  • FIG. 2 is a schematic vertical sectional view of another embodiment of the fluidized bed gasification furnace used for carrying out the present invention.
  • FIG. 3 is a schematic configuration diagram of an apparatus for performing the gasification combustion method of the present invention.
  • FIG. 1 is a schematic vertical sectional view of an embodiment of a fluidized-bed gasification furnace used for carrying out the present invention.
  • fluidized bed gasifier 2 has gas dispersion plate 3, free board 6, inclined wall 11, incombustible discharge chute 12, air chamber for active fluidized bed 13, air for slow fluidized bed.
  • Chamber 14 includes a slow fluidized bed 15 and an active fluidized bed 16.
  • Fluidized bed gasifier 2 is supplied with solid waste a, fluidized gas b for the activated fluidized bed, and fluidized gas b2 for the slow fluidized bed. Emission of synthetic gas e.
  • the fluidized-bed gasifier 2 shown in FIG. 1 is of an internal swirl type, and the air distribution plate 3 has an inverted conical shape in which the center is highest and inclined outward.
  • the fluidized bed on the air distribution plate 3 includes a slow fluidized bed 15 and an active fluidized bed 16.
  • the area occupied by the slow fluidized bed 15 is 40 to 60% in the horizontal section on the dispersion plate 3.
  • the relationship between the diameter 1 ⁇ of the entire fluidized bed and the diameter r 2 of the slow fluidized bed 15 is
  • r 2 (0.64 to 0.77) r, Region occupied by slow fluidized bed 15 and 50% in the horizontal section on the distribution plate 3, which is r 2 0. 7.
  • Table 1 shows the effect of the mass velocity G of the fluidized gas in the slow fluidized bed on clinker formation in a series of tests using a small test device (waste of 5 to 10 tons / day). , Waste plastic, scrap car shredder dust, municipal solid waste, etc.
  • the mass velocity of the fluidized gas in the active fluidized bed should be 1.5 to 3 times the mass velocity of the fluidized gas in the slow fluidized bed. I understood. Results of a series of tests, the mass velocity of the fluidizing gas is slow fluidized bed 4G mf, actively fluidized bed 8 G mf was optimal combination. In this case, the fluidized gas mass velocity in the active fluidized bed is twice that of the slow fluidized bed.
  • the inclined wall which inverts the fluid medium rising in the active fluidized bed to the center to promote the swirling motion of the fluidized medium, has a projected area below 25 to 40% of the cross section of the fluidized bed.
  • the diameter of the entire fluidized bed the smallest Ro ⁇ r 3!
  • the angle of inclination of the inclined wall with respect to the horizontal plane is 30 to 60 °.
  • the fluidizing medium of the gasification furnace of the present invention is selected from sand such as silica sand and olivine sand, or alumina, dolomite, limestone, etc., and the fluidized bed temperature is about 450 to 65 ° C.
  • the fluid medium is preferably silica sand which is hard and easily available. The reason why hard silica sand is good is that carbide can be finely pulverized while swirling and flowing.
  • the particle size of the silica sand used as the fluid medium is between 0.4 and 0.8 mm.
  • Valuable metals such as iron, copper and aluminum contained in solid waste are discharged from the furnace bottom together with other incombustibles and fluid medium in a non-oxidized and clean state because the entire fluidized bed is in a reducing atmosphere. Then, after sieving, it is divided into coarse incombustibles containing metals and fine fluidized media. The separated fluid medium is returned to the gasification furnace and reused, but it is necessary to minimize the heat radiation in order to increase the energy efficiency of the furnace. Almost all of the metals contained in the waste with melting points higher than the fluidized bed temperature can be extracted from the bottom of the gasification furnace. In order to recover aluminum, the fluidized bed temperature must be lower than 660 ° C, the melting point of alumina.
  • a swirling type melting furnace suitable for high-load combustion as a combustion furnace in which the generated gas is burned at a high temperature in the latter stage of the gasification furnace to melt ash into slag.
  • the furnace becomes compact due to high load combustion, and water cooling loss can be reduced.
  • the slag mist collection efficiency can be increased by the action of the swirling flow, and the residence time of the carbide can be increased, so that the unburned loss of carbon can be reduced to the utmost.
  • Some conventional incinerators do not have ash melting facilities or do not have ash melting facilities nearby, making it difficult to treat ash and fly ash discharged from incinerators and waste heat boilers. There is a place. By receiving such ash into this facility and treating it together with other solid waste, it will be possible to collect and use it as high-quality slag that does not contain unburned components.
  • the amount of oxygen in the fluidized gas is small and the amount of combustibles is large in the slow fluidized bed at the center of the furnace.
  • the process is similar to dry distillation, producing high-calorie flammable gas.
  • the carbide generated at this time is uniformly dispersed in the active fluidized bed around the hearth by the swirling motion of the fluidized medium. Therefore, the oxygen in the fluidized gas supplied to the active fluidized bed is efficiently consumed for the oxidative decomposition of carbides. If the active fluidized bed contains a lean portion of carbides, oxygen is not sufficiently consumed and passes through the fluidized bed in an unreacted state, and the already generated high calorie fuel gas is consumed by combustion. However, in the fluidized bed furnace used in the present invention, since the carbide concentration in the active fluidized bed is kept almost constant by the swirling motion of the fluidized medium, such a situation cannot occur. High calorie fuel gas can be efficiently recovered.
  • the method (fluidized bed furnace method) of the present invention in which the internal swirling type fluidized bed furnace is used as a gasification furnace has the following advantages: the ease of operation, the need for coke and other auxiliary materials, and the amount of carbon dioxide generated. It is superior to the vertical furnace system in that it does not increase and many metals can be recovered in an unoxidized state. Furthermore, the gasifier is extremely compact and has no moving parts. This is more advantageous than the rotary furnace method in that no equipment is required.
  • FIG. 2 is a schematic vertical sectional view of another embodiment of the fluidized bed gasification furnace used for carrying out the present invention.
  • the inclined wall 11 of the fluidized bed gasifier shown in Fig. 1 promotes the swirling motion of the fluidized medium, but does not prevent the waste from being swallowed into the fluidized bed and dispersing the char in the fluidized bed. If not, it can be omitted as in the embodiment of FIG. If the inclined wall is omitted, the swirling motion of the flowing medium becomes weaker, but the wear of the furnace material constituting the inclined wall can be reduced.
  • FIG. 3 is a schematic configuration diagram of equipment for performing the gasification combustion method of the present invention.
  • the equipment shown in FIG. 3 includes a gasifier 2 and a rotary melting furnace 7.
  • the gasification furnace 2 includes a quantitative supply device 1 for quantitatively supplying waste plastic waste a, a gas dispersion plate 3, a fluidized bed of silica sand 4, and a free board 6.
  • the gasifier 2 is supplied with waste a and air b and air c for pyrolysis gasification, and discharges non-combustibles d and generated gas e.
  • the revolving melting furnace 7 includes a primary combustion chamber 8, a secondary combustion chamber 9, a slag separation section 10, and temperature-raising parners 21 and 22.
  • the revolving melting furnace 7 is composed of the gas e from the gasification furnace 2 and the air for melting and combustion. i is supplied, and the flue gas g and slag h are discharged.
  • the gasifier 2 can be the internal swirling type fluidized bed gasifier of FIG. 1 or FIG.
  • Waste a is usually mainly composed of plastic, which is separated from municipal waste as unburnable waste. The waste a is subjected to pretreatment such as crushing and sorting as required, and then supplied to the gasification furnace 2 by the screw type quantitative supply device 1.
  • the air b is sent to the bottom of the gasifier 2 to form a fluidized bed 4 of silica sand on the gas dispersion plate 3.
  • Waste plastic a is injected above the fluidized bed 4, falls into the fluidized bed 4 maintained at 450 to 65 ° C, comes into contact with air b, and is quickly pyrolyzed to gas. .
  • the incombustibles d are discharged from the bottom of the gasifier 2 together with silica sand.
  • the incombustibles d contain metals, but by setting the temperature of the fluidized bed 4 to 500 to 600 ° C, valuable metals such as iron, copper, and aluminum are recovered in an unoxidized and clean state. .
  • gas, tar, and carbide are generated by pyrolysis gasification of the input waste a.
  • the carbides are refined by the disturbance motion of the fluidized bed 4 and the attack of oxygen.
  • Air c is blown into the free board 6 of the gasifier 2, and the second stage of pyrolysis gasification is performed at 65 to 85 ° C. In this way, gasification and decomposition of tar and carbide are promoted.
  • the generated gas e discharged from the upper part of the freeboard 6 is supplied to the primary combustion chamber 8 of the swirling melting furnace 7 while entraining fine carbides, and is mixed with the preheated air i in the swirling flow. It burns at a high temperature of 1200 to 1500 ° C. and moves to the secondary combustion chamber 9 while burning.
  • the ash in the carbide is melted by high temperature to become slag mist, and is captured by the molten slag phase on the furnace wall of the primary combustion chamber 8 by the centrifugal force of the swirling flow, flows down the furnace wall, and enters the secondary combustion chamber 7 It is discharged from the bottom of the slag separation section 10.
  • the flue gas g discharged from the rotary melting furnace 7 is discharged into the atmosphere through a heat recovery device such as a waste heat boiler, a economizer, and an air preheater and a dust removal device.
  • a heat recovery device such as a waste heat boiler, a economizer, and an air preheater and a dust removal device.
  • the primary combustion chamber 8 and the secondary combustion chamber 9 of the revolving melting furnace 7 are provided with oil pans 21 and 22 for starting.
  • the gasification and combustion equipment of the present invention is provided with a swirling fluidized bed furnace at the front stage and a melting combustion furnace at the rear stage.
  • Solid waste is pyrolyzed and gasified at 450-650 ° C in the fluidized bed part of the fluidized-bed furnace, and the second stage is carried out at 65-850 ° C in the freeboard part of the fluidized bed furnace.
  • Pyrolysis gasification is performed, and thereafter, it is melt-combusted at 1200 to 150 ° C. in a melt-burning furnace, and the ash in solid waste is efficiently turned into molten slag. Slagified ash is discharged from the furnace bottom.
  • the facility of the present invention is simple and compact, has excellent operability and safety, and can perform material recycling and energy recycling. Other effects or advantages of the present invention are as follows.
  • the solid waste gasification and combustion equipment of the present invention incorporates a dioxin treatment function and an ash melting function in the equipment, the entire equipment is compacted.
  • the construction cost of gasification and combustion equipment is also lower than adding their respective functions to conventional incineration equipment.
  • valuable metals such as iron, copper, and aluminum in solid waste can be recovered in a recyclable, unoxidized and clean state.
  • the solid waste gasification and combustion equipment of the present invention can easily be of a high efficiency power generation type. 1 Influence of slow fluidized bed fluidized gas mass velocity G on clinker formation
  • Clinker's ⁇ title has no force Flow Flow Same as above 5.0 ⁇ R ⁇ 6.0 The amount of scattering of the medium increases slightly. Fluid medium is scattered very much.

Abstract

A method and equipment for gasification and burning of solid waste in which the solid waste is subjected to thermal decomposition and gasification at 450°-650 °C in a fluidized bed of a fluidized bed gasification furnace, the resultant waste being subjected to melt combustion at 1200°-1500 °C in a melt combustion furnace in a subsequent stage, whereby the ash is turned into fused slag. At least one of oxygen, vapor and air is selected as a gas supplied to the fluidized bed in the fluidized bed gasification furnace. The quantity of oxygen in the gas supplied to the fluidized bed is set to 10-30 % of a quantity of theoretical combustion oxygen. The following whirling movements of a fluidized medium are generated. The fluidized medium flows down as it is fluidized in a slow fluidized bed in a central portion of a furnace bottom, flows up as it is fluidized in an active fluidized bed in a peripheral portion of the furnace bottom, flows from a central portion to a peripheral portion in a lower portion of the fluidized bed and from a peripheral portion to a central portion in an upper portion of the fluidized bed as the fluidized medium is fluidized, and flows from a central portion to a peripheral portion in the lower portion of the fluidized bed as the fluidized medium is fluidized. The melt combustion furnace is of a whirling flow type.

Description

明 細 書  Specification
固形廃棄物のガス化燃焼方法及び設備  Gasification combustion method and equipment for solid waste
(技術分野)  (Technical field)
本発明は、 固形廃棄物、 特に、 都市ごみ、 固形化燃料、 スラリー化燃料、 廃プ ラスチック、 廃 F R P、 バイオマス廃棄物、 自動車廃棄物、 低品位炭、 廃油等の 固形廃棄物をガス化燃焼し、 廃棄物中に含有される灰分を溶融スラグ化する方法 及び設備に関するものである。 ここで固形化燃料は、 都市ごみを破砕選別後、 生 石灰等を添加して圧縮成形した R D Fと称するものを含む。 スラリー化燃料は、 都市ごみを破砕後水スラリー化し、 高圧下で水熱分解により油化したものを含む。 F R Pは、 繊維強化プラスチックのことである。 バイオマス廃棄物は、 上下水廃 棄物 (夾雑物、 し渣、 下水汚泥) 、 農産廃棄物 (もみがら、 稲わら、 余剰産物) 、 林産廃棄物 (のこくず、 バーク、 間伐財) 、 産業廃棄物 (パルプチップダスト) 、 建築廃材等を含む。 低品位炭は、 石炭化度の低い泥炭、 若しくは選炭時に出るボ タ等を含む。  The present invention gasifies and combusts solid waste such as municipal solid waste, solidified fuel, slurried fuel, waste plastic, waste FRP, biomass waste, automobile waste, low-grade coal, waste oil, etc. The present invention also relates to a method and equipment for converting ash contained in waste into molten slag. Here, the solidified fuel includes what is referred to as RDF, which is obtained by crushing and sorting municipal solid waste, adding quicklime, etc., and compression-molding. Slurried fuel includes municipal solid waste that has been crushed and turned into a water slurry, and turned into oil by hydrothermal decomposition under high pressure. F R P stands for fiber reinforced plastic. Biomass waste includes water and sewage waste (contaminants, sewage, sewage sludge), agricultural waste (rice husk, rice straw, surplus products), forest waste (sawdust, bark, thinned goods), and industry Includes waste (pulp chip dust) and construction waste. Low-rank coal includes peat with a low degree of coalification, or the buttons generated during coal cleaning.
(背景技術)  (Background technology)
従来の廃棄物焼却法に代わる新たな環境保全型の廃棄物処理技術として、 現在、 ガス化と高温燃焼を組み合わせた 「ガス化燃焼システム」 の開発が各社により競 われ、 既に実用域に達しているものもある。 こうした 「ガス化燃焼システム」 に 共通の特徴を挙げると以下のようになる。  At present, various companies are competing for the development of a `` gasification combustion system '' that combines gasification and high-temperature combustion as a new environmental conservation type waste treatment technology that replaces the conventional waste incineration method. Some are. The common features of these "gasification combustion systems" are as follows.
( i ) 低空気比燃焼により、 排ガス量が大幅に低減される。  (i) Exhaust gas volume is greatly reduced by low air ratio combustion.
( ii ) 高温燃焼により、 ダイォキシン類やフラン類がほとんど発生しない。 (ii) Dioxins and furans are hardly generated by high-temperature combustion.
(诅) 廃棄物中の灰分は、 重金属が溶出しない無害なスラグとして回収される これにより、 埋立地の延命化が図れ、 路盤材等への利用も可能となる。 (Ii) Ash in the waste is collected as harmless slag from which heavy metals do not elute. This will extend the life of the landfill and make it possible to use it for roadbed materials.
( iv ) ガス化で生成するガス、 タール、 炭化物の保有エネルギーを、 灰溶融の ための熱源に有効活用できる。  (iv) The energy held by the gas, tar, and carbides generated by gasification can be effectively used as a heat source for ash melting.
( V ) システム中にダイォキシン処理や灰溶融の機能が組み込まれることによ り、 システム全体がコンパク ト化され、 建設コストもそれぞれの機能を在来型の 焼却設備に付与したより安価になる。  (V) By incorporating dioxin treatment and ash melting functions into the system, the entire system is compacted and the construction cost is lower than if each function were added to conventional incineration equipment.
こうした技術が登場するに至った背景は、 次の通りである。 ( a ) ダイォキシンや灰溶融といった問題に個別に対応するのでは、 処理施設 の建設コストゃ運転コス卜が割高になることが避けられない。 The background to the emergence of these technologies is as follows. (a) Dealing individually with problems such as dioxin and ash melting will inevitably increase the construction cost of the treatment facility divided by the operating cost.
( b ) 近い将来予測されるダイォキシンの規制強化に対応し早急な解決が必要 し'めつ 。  (b) An urgent solution is needed in response to the tightening of dioxin regulations expected in the near future.
( c ) 払底逼迫する埋立地の延命化を図り、 灰を無害化しリサイクル利用する ため、 灰溶融のニーズが急速に高まってきた。  (c) The need for ash melting has rapidly increased in order to extend the life of landfills that are becoming increasingly scarce and to make ash harmless and recycle.
( d ) 廃棄物の保有するエネルギーを最大限に活用するようなシステム作りが 望まれるようになった。  (d) It has become desirable to create a system that maximizes the energy held by waste.
現在、 「ガス化燃焼システム」 において開発が先行しているものに、 ガス化炉 に竪型炉を用いる方式 (竪型炉方式) と回転炉を用いる方式 (回転炉方式) があ る。 竪型炉方式では、 ガス化炉内に乾燥 ·予熱ゾーン (2 0 0 ~ 3 0 0 °C) 、 燃 分解ゾーン ( 3 0 0 ~ 1 0 0 0 °C) 、 燃焼 ·溶融ゾーン (1 5 0 0 °C以上) が、 上から順に層状に形成され、 炉上部より投入された廃棄物とコークスは、 より下 方のゾーンで発生したガスと熱交換しながら炉内を下降する。 炉内を上昇した生 成ガスは、 後段の燃焼炉にて約 9 0 0 °Cで燃焼される。 熱分解ゾーンで生成した 炭化物は、 装入されたコークスと共に溶融 '燃焼ゾーンへ下降し、 羽口から供給 される酸素富活空気により高温燃焼され、 金属を含む不燃物の全量を溶融する。 回転炉方式では、 廃棄物は、 破砕後、 高温空気により外熱されたドラム型の回 転炉に供給され、 約 4 5 0 °Cでゆつく りと熱分解ガス化される。 生成された炭化 物は、 炉から排出され、 発火しない温度まで冷却される。 その後、 炭化物は、 微 粉砕され、 後段の旋回式溶融炉に供給され、 回転炉からの生成ガスと共に 1 3 0 0 °Cで高温燃焼され、 灰分が溶融スラグ化される。  At present, the development of “gasification combustion system” is ahead of the others, using a vertical furnace as the gasification furnace (vertical furnace method) and a method using a rotary furnace (rotary furnace method). In the vertical furnace method, the drying and preheating zone (200 to 300 ° C), the pyrolysis zone (300 to 100 ° C), the combustion and melting zone (15 (Above 0 ° C) is formed in layers sequentially from the top, and the waste and coke introduced from the upper part of the furnace descend in the furnace while exchanging heat with the gas generated in the lower zone. The generated gas that has risen inside the furnace is burned at about 900 ° C in the subsequent combustion furnace. The carbide generated in the pyrolysis zone descends into the melting and combustion zone together with the charged coke, and is burned at a high temperature by the oxygen-enriched air supplied from the tuyere to melt the entire amount of incombustibles including metals. In the rotary furnace method, waste is crushed and then supplied to a drum type rotary furnace externally heated by high-temperature air, where it is slowly pyrolyzed to gas at about 450 ° C. The resulting char is discharged from the furnace and cooled to a temperature where it does not ignite. Thereafter, the carbide is finely pulverized and supplied to the subsequent rotary melting furnace, where it is burned at a high temperature of 130 ° C. together with the gas produced from the rotary furnace, and the ash is turned into molten slag.
これらの 2つの方式の問題について述べる。 竪型炉は、 1 7 0 0〜 1 8 0 0 °C に達する溶融ゾーンがガス化炉底部に位置するため、 コークス等副資材や、 酸素 富活空気が必要であり、 運転費が高い。 またコークス等を使用するため、 二酸化 炭素の排出量が増えるという問題もある。 更に廃棄物中の金属のほぼ全量が溶融 されるため、 金属の種類毎に地金としてリサイクル利用することができない。 竪 型炉は、 ガス化炉としては、 固定床炉というタイプに属するが、 形状が様々な廃 棄物を層状に積み上げ、 しかも最下部に燃焼 ·溶融ゾーンを有するため、 安定し た運転が困難である。 固定床炉では、 均一な通気性を確保することが重要である 力、 廃棄物の場合、 形状の多様性からこれが難しく、 ガスの吹き抜けや偏流が起 きることが多い。 コークスの添加は、 均一な通気性の確保に有効であるが、 これ によっても、 固定床炉のガス流量の変動及び炉内圧の変動は、 抑え難い。 また熱 分解ゾ一ンで発生したダイォキシン類ゃフラン類及びその前駆体を含むガスは、 溶融 ·燃焼ゾーンを通過することなく竪型炉から排出される。 これらのダイォキ シンやフラン類及びその前駆体は、 後段の燃焼炉だけでは分解されにくい。 The problems of these two methods are described. The vertical furnace requires auxiliary materials such as coke and oxygen-enriched air because the melting zone reaching 170 to 180 ° C is located at the bottom of the gasification furnace, and the operating cost is high. There is also a problem that the use of coke etc. increases the amount of carbon dioxide emissions. Furthermore, since almost all of the metal in the waste is melted, it cannot be recycled as bullion for each type of metal. The vertical furnace belongs to the type of fixed bed furnace as a gasification furnace, but it is stable because it stacks various types of waste in layers and has a combustion and melting zone at the bottom. Driving is difficult. In fixed-bed furnaces, it is important to ensure uniform air permeability. In the case of forces and wastes, this is difficult due to the variety of shapes, and gas blow-through and drift often occur. Addition of coke is effective in ensuring uniform air permeability, but it is still difficult to suppress fluctuations in the gas flow rate in the fixed-bed furnace and fluctuations in the furnace pressure. Gases containing dioxins / furans and their precursors generated in the pyrolysis zone are discharged from the vertical furnace without passing through the melting / combustion zone. These dioxins, furans and their precursors are not easily decomposed only by the subsequent combustion furnace.
—方、 回転炉方式においては、 ガス化炉が高温空気を用いる外熱式の回転炉で あるため、 炉の大型化が避けられない。 また、 金属管を介した伝熱に問題があり、 熱分解により生じたタールや未分解物が伝熱面を覆うため、 伝熱が悪化するとい- た問題があった。 更に、 溶融燃焼炉排ガスと熱交換することにより約 6 0 0 °Cの 高温空気を得ることは、 熱交換器の材料上困難である。 生成した炭化物は、 回転 炉から排出後、 微粉砕してから溶融燃焼炉に供給され、 回転炉から直接供給され るガスに合流させて溶融燃焼される。 このため、 排出、 冷却、 粉砕、 貯留、 供給 といった炭化物用のハンドリング設備が必要である。 こうしたハンドリング中に 炭化物の保有する熱が冷却や放熱により失われることも、 エネルギー利用上好ま しくない。 炭化物を冷却しないまま外部に排出すると、 空気と接触して発火する ので危険である。  —On the other hand, in the rotary furnace system, the gasification furnace is an externally heated rotary furnace using high-temperature air, so the furnace size cannot be avoided. In addition, there is a problem in heat transfer through the metal pipe, and tar and undecomposed products generated by thermal decomposition cover the heat transfer surface, so that heat transfer is deteriorated. In addition, it is difficult to obtain high-temperature air at about 600 ° C by exchanging heat with the exhaust gas from the furnace. The generated carbide is discharged from the rotary furnace, pulverized and then supplied to the melting and burning furnace, where it is combined with the gas supplied directly from the rotary furnace and melted and burned. For this reason, carbide handling equipment such as discharge, cooling, crushing, storage, and supply is required. During such handling, the loss of heat from the carbides due to cooling and heat dissipation is also undesirable for energy use. If the carbide is discharged outside without cooling, it is dangerous because it ignites in contact with air.
竪型炉方式及び回転炉方式はいずれも、 実質的なガス化温度が低いので、 生成 ガス中に燃焼速度の遅いタール分が多くなることが避けられない。  In both the vertical furnace method and the rotary furnace method, since the substantial gasification temperature is low, it is inevitable that the tar content with a slow burning rate increases in the generated gas.
(発明の開示)  (Disclosure of the Invention)
本発明の目的は、 上記の問題を解決し、 運転操作が容易で安全性に優れ、 コン パク 卜でしかも熱効率の高い、 固形廃棄物をガス化燃焼する方法及び設備を提供 することである。 本発明のその他の目的及び利点は、 図面、 実施例の説明、 及び 添付の請求の範囲において明らかにされる。  An object of the present invention is to solve the above-mentioned problems, and to provide a method and equipment for gasifying and burning solid waste, which is easy to operate, has excellent safety, is compact and has high thermal efficiency. Other objects and advantages of the present invention will be apparent in the drawings, the description of the embodiments, and the appended claims.
本発明は、 前述の回転炉方式に検討を加え、 流動層ガス化炉及び溶融燃焼炉を 用いるもの (流動層炉方式) であり、 固形廃棄物を流動層ガス化炉の流動層部に て 4 5 0〜6 5 0 °Cで熱分解ガス化し、 次いで後段の溶融燃焼炉にて 1 2 0 0〜 1 5 0 0 °Cで溶融燃焼することにより灰分を溶融スラグ化する固形廃棄物のガス 化燃焼方法に存する。 本発明のガス化燃焼方法は、 酸素、 水蒸気、 及び空気から 選択した 1つ以上のガスを前記流動層部に供給し、 流動層部に供給するガス中の 酸素量を理論燃焼酸素量の 1 0〜3 0 %とし、 炉底中央部に流動層中を流動媒体 が流動化しつつ下降する比較的緩慢な緩慢流動層を形成し、 炉底周辺部に流動層 中を流動媒体が流動化しつつ上昇する比較的活発な活発流動層を形成し、 流動層 下部にて流動媒体が中央部から周辺部へ流動化しつつ移動し流動層上部にて流動 媒体が周辺部から中央部へ流動化しつつ移動するように流動媒体の旋回運動を生 せしめ、 流動層断面に占める緩慢流動層の面積割合を 4 0〜6 0 %とし、 緩慢流 動層における流動化ガスの質量速度を最小流動化質量速度の 2〜 6倍とし、 活発 流動層における流動化ガスの質量速度を緩慢流動層における流動化ガスの質量速 度の 1 . 5〜3倍とする工程を含む。 また、 本発明のガス化燃焼方法は、 次の構 成を含むことができる。 The present invention is based on the above-described rotary furnace system, and uses a fluidized-bed gasification furnace and a melt-burning furnace (fluidized-bed furnace system), and transfers solid waste to the fluidized-bed portion of the fluidized-bed gasification furnace. Pyrolysis gasification at 450-650 ° C, followed by melt-combustion at 1200-150 ° C in a subsequent melting and burning furnace to convert ash into molten slag gas In the combustion process. In the gasification combustion method of the present invention, one or more gases selected from oxygen, water vapor, and air are supplied to the fluidized bed, and the amount of oxygen in the gas supplied to the fluidized bed is calculated as 1% of the theoretical combustion oxygen. 0 to 30%, and a relatively slow fluidized bed is formed at the center of the furnace bottom, where the fluidized medium flows down while flowing in the fluidized bed. A relatively active and rising fluidized bed is formed, and the fluidized medium moves from the central part to the peripheral part while flowing at the lower part of the fluidized bed, and the fluidized medium moves from the peripheral part to the central part while flowing at the upper part of the fluidized bed. In this way, the swirling motion of the fluidized medium is generated so that the area ratio of the slow fluidized bed in the cross section of the fluidized bed is 40 to 60%, and the mass velocity of the fluidized gas in the slow fluidized bed is the minimum fluidized mass velocity. 2 to 6 times, and the mass velocity of the fluidizing gas in the Includes a step of 1.5 to 3 times the mass velocity of the fluidizing gas in the slow fluidized bed. Further, the gasification combustion method of the present invention can include the following configuration.
M l :酸素、 水蒸気、 及び空気から選択した 1つ以上のガスを流動層ガス化炉 のフリ一ボ一ドに供給し、 流動層部において生成された炭化物とタールをフリ一 ボード部にて 6 5 0〜8 5 0 °Cで熱分解ガス化し、 フリ一ボード部へ供給するガ ス中の酸素量を固形廃棄物の理論燃焼酸素量の 0〜2 0 %とする。  Ml: At least one gas selected from oxygen, water vapor, and air is supplied to the free-bed of the fluidized-bed gasifier, and the carbide and tar generated in the fluidized-bed are separated by the free-board. The amount of oxygen in the gas to be pyrolyzed and gasified at 650 to 850 ° C and supplied to the free board unit is set to 0 to 20% of the theoretical combustion oxygen amount of solid waste.
M 2 :流動層ガス化炉の流動層表面近傍の内壁沿いに傾斜した傾斜壁を設け、 流動層の周辺部における流動媒体の上向き流れを中央部へ転向して流動媒体の旋 回運動を促進させる。 傾斜壁の下方投影面積は、 流動層断面の 2 5 ~ 4 0 %とし、 傾斜壁の水平面に対する傾斜角度は、 3 0〜6 0 ° とする。  M 2: An inclined wall is provided along the inner wall near the surface of the fluidized bed of the fluidized bed gasifier, and the upward flow of the fluidized medium at the periphery of the fluidized bed is turned to the center to promote the swirling motion of the fluidized medium. Let it. The downward projected area of the inclined wall shall be 25 to 40% of the cross section of the fluidized bed, and the inclination angle of the inclined wall with respect to the horizontal plane shall be 30 to 60 °.
M 3 :酸素、 水蒸気、 及び空気から選択した 1つ以上のガスを溶融燃焼炉に供 給する。 溶融燃焼炉へ供給するガス中の酸素量は、 理論燃焼酸素量の 8 0〜1 2 0 %とする。  M 3: One or more gases selected from oxygen, water vapor, and air are supplied to the melting furnace. The amount of oxygen in the gas supplied to the melting furnace should be 80 to 120% of the theoretical combustion oxygen amount.
M 4 :流動層ガス化炉の流動媒体は、 砂、 アルミナ、 ドロマイ ト、 又は石灰石 とする。  M 4: The fluidized medium of the fluidized bed gasifier is sand, alumina, dolomite or limestone.
M 5 :流動層ガス化炉は、 炉底より固形廃棄物中に含有される金属を未酸化で クリーンな状態で回収する。  M5: Fluidized bed gasifiers recover metals contained in solid waste from the furnace bottom in an unoxidized and clean state.
M 6 :溶融燃焼炉は、 旋回式溶融燃焼炉とする。  M 6: The smelting furnace is a swirling type melting furnace.
本発明は、 また、 固形廃棄物を 4 5 0 ~ 6 5 0 °Cで熱分解ガス化する流動層部 を備える流動層ガス化炉、 及び流動層ガス化炉の後段に設けられ 1 2 0 0 ~ 1 5 0 o °cで溶融燃焼して灰分を溶融スラグ化する溶融燃焼炉を有するガス化燃焼設 備に存する。 本発明のガス化燃焼設備において、 流動層ガス化炉は、 酸素、 水蒸 気、 及び空気から選択された 1つ以上のガスを流動層部へ供給する供給口を有す る流動化ガス供給機構を備える。 流動化ガス供給機構は、 流動層部へ供給するガ ス中の酸素量を理論燃焼酸素量の 1 0〜3 0 %とし、 炉底中央部に流動化ガスの 質量速度を最小流動化質量速度の 2〜 6倍とした比較的緩慢な緩慢流動層を形成 し、 炉底周辺部に流動化ガスの質量速度を緩慢流動層における流動化ガスの質量 速度の 1 . 5〜3倍とした比較的活発な活発流動層を形成し、 流動層断面におけ る前記緩慢流動層の面積割合を 4 0〜6 0 %とし、 流動媒体が流動層上部にて周 辺部から中央部へ流動化しつつ移動するような流動媒体の旋回運動を生じるもの である。 本発明のガス化燃焼設備は、 次の構成を備えることができる。 The present invention also provides a fluidized bed portion for pyrolyzing and solidifying solid waste at 450 to 65 ° C. A gasification and combustion system provided with a fluidized bed gasification furnace provided with: and a melting and combustion furnace which is provided at a stage subsequent to the fluidized bed gasification furnace and melts and burns at 120 to 150 ° C to convert ash into molten slag. Be in the reserve. In the gasification and combustion equipment of the present invention, the fluidized bed gasifier includes a fluidized gas supply having a supply port for supplying at least one gas selected from oxygen, water vapor, and air to the fluidized bed portion. It has a mechanism. The fluidizing gas supply mechanism sets the oxygen amount in the gas supplied to the fluidized bed to 10 to 30% of the theoretical combustion oxygen amount, and sets the mass velocity of the fluidizing gas at the center of the furnace bottom to the minimum fluidization mass velocity. A relatively slow fluidized bed was formed, which was 2 to 6 times larger than that of the fluidized gas, and the mass velocity of the fluidizing gas was 1.5 to 3 times the mass velocity of the fluidizing gas in the slow fluidized bed around the furnace bottom. An active fluidized bed is formed, and the area ratio of the slow fluidized bed in the section of the fluidized bed is set to 40 to 60%, while the fluidized medium flows from the peripheral part to the central part at the upper part of the fluidized bed. It produces a swirling motion of the moving fluid medium. The gasification combustion equipment of the present invention can have the following configuration.
S 1 :酸素、 水蒸気、 及び空気から選択される 1つ以上のガスが流動層ガス化 炉のフリ一ボードに供給され、 流動層部において生成された炭化物とタールがフ リーボード部において 6 5 0〜8 5 0 °Cで熱分解ガス化される。 フリーボードに 供給されるガス中の酸素量は、 固形廃棄物の理論燃焼酸素量の 0〜2 0 %とする c S 1: One or more gases selected from oxygen, water vapor, and air are supplied to a free board of a fluidized bed gasifier, and carbides and tar generated in the fluidized bed section are collected in a free board section. Pyrolysis gasification at 0-850 ° C. The amount of oxygen in the gas supplied to the freeboard should be 0 to 20% of the theoretical combustion oxygen amount of solid waste c
S 2 :流動層ガス化炉の流動層表面近傍の内壁沿いに内側に傾斜した傾斜壁を 設ける。 傾斜壁は、 流動媒体の周辺部における上向き流れを中央部へ転向して、 流動媒体の旋回運動を促進するものであり、 傾斜壁の下方投影面積が流動層断面 の 2 5〜4 0 %であり、 傾斜壁の水平面に対する傾斜角度が 3 0〜6 0 ° である c S 2: Provide an inwardly inclined wall along the inner wall near the fluidized bed surface of the fluidized bed gasifier. The inclined wall turns the upward flow in the peripheral part of the fluid medium to the center part and promotes the swirling motion of the fluid medium, and the downward projected area of the inclined wall is 25 to 40% of the cross section of the fluidized bed. Yes, the inclination angle of the inclined wall with respect to the horizontal plane is 30 to 60 ° c
S 3 :流動層ガス化炉の流動媒体は、 砂、 アルミナ、 ドロマイ ト、 又は石灰石 である。 S3: Fluidized bed gasification furnace fluid is sand, alumina, dolomite, or limestone.
S 4 :溶融燃焼炉は、 旋回式溶融燃焼炉である。  S 4: The melting and burning furnace is a swirling type melting and burning furnace.
本発明において、 固形廃棄物は、 流動層ガス化炉に供給され、 流動媒体により 形成される流動層中にて、 4 5 0 ~ 6 5 0 °Cで熱分解ガス化される。 このとき生 成する固形炭化物は、 流動媒体の撹乱運動により微粉砕され、 生成したガスと一 緒に後段の溶融燃焼炉へ供給される。 固形炭化物は、 燃焼速度が遅いので、 少な い方が望ましい。 炭化物は、 ガス化温度が低いとき、 多く発生する。 また、 ガス 化温度が 4 5 0 °Cより低い場合、 ガス化反応の速度が著しく遅くなり、 未分解物 が流動層内に堆積する問題が生じる。 これにより、 本発明においては、 ガス化温 度の下限を 4 5 0 °C (好ましくは、 5 0 0 °C) と定めている。 In the present invention, the solid waste is supplied to a fluidized-bed gasification furnace and pyrolyzed and gasified at 450 to 65 ° C. in a fluidized bed formed by a fluidized medium. The solid carbide generated at this time is finely pulverized by the agitating motion of the fluidized medium, and supplied to the subsequent melting and combustion furnace together with the generated gas. Solid carbides have a low burning rate, so less is desirable. Carbides are often generated at low gasification temperatures. If the gasification temperature is lower than 450 ° C, the rate of the gasification reaction becomes extremely slow and undecomposed Is deposited in the fluidized bed. Accordingly, in the present invention, the lower limit of the gasification temperature is set to 450 ° C. (preferably, 500 ° C.).
ガス化温度が高くればなる程、 ガス化反応が速くなると共に、 炭化物の生成が 少なくなる。 しかしながら、 固形廃棄物が軽度の破砕処理を施した状態でガス化 炉に供給されるとき、 ガス化反応が速過ぎると、 廃棄物の供給量の変動が、 ガス 発生量ゃ炉内圧に変動をもたらし、 後段の溶融燃焼炉の運転に悪影響を及ぼす。 ガス発生量の変動は、 溶融燃焼炉の排ガス中の C 0濃度を突出させる原因となる。 また、 固形廃棄物は、 金属を含むものが多いが、 これらの金属を未酸化状態で回 収し、 種類毎に地金としてリサイクル利用することは、 本発明の重要なポイント である。 特にアルミニウムを回収するためには、 その融点が 6 6 0 °Cであるから、 ガス化温度は、 これより低くする必要がある。 これらの理由により、 本発明は、 ガス化温度の上限を 6 5 0 °C (好ましくは、 6 0 0 °C) と定めている。  The higher the gasification temperature, the faster the gasification reaction and the less the formation of carbides. However, when the solid waste is supplied to the gasifier with a slight crushing treatment, if the gasification reaction is too fast, the fluctuation in the supply of waste will fluctuate between the gas generation amount and the furnace pressure. And adversely affect the operation of the subsequent melting furnace. Fluctuations in the amount of gas generated cause the concentration of CO in the exhaust gas of the melting furnace to rise. In addition, many solid wastes contain metals, and it is an important point of the present invention to collect these metals in an unoxidized state and to recycle them as ingots by type. In particular, in order to recover aluminum, its melting point is 660 ° C, so the gasification temperature must be lower. For these reasons, the present invention sets the upper limit of the gasification temperature at 65 ° C. (preferably, 600 ° C.).
本発明において、 廃棄物の熱分解ガス化に必要な熱量は、 内熱式、 即ち、 廃棄 物の部分燃焼により迅速に供給される。 内熱式のガス化炉は、 コンパク ト性及び 熱効率の点において、 明らかに外熱式より優れている。  In the present invention, the amount of heat required for pyrolysis gasification of waste is quickly supplied by an internal heat type, that is, partial combustion of waste. Internally heated gasifiers are clearly superior to externally heated gasifiers in terms of compactness and thermal efficiency.
ガス化温度が 4 5 0 °C〜6 5 0 °Cの場合、 タールや炭化物の生成は、 避けられ ない。 タールや炭化物は、 燃焼速度が遅いため、 後段の溶融燃焼炉の容積を大き くする原因になる。 溶融燃焼炉をコンパク トにするには、 ガス化炉の生成物は、 タールや炭化物が少なく、 ガス成分が主体であることが必要である。 これらの理 由により本発明においては、 好ましくは、 フリーボードの容積を有効活用し、 ガ ス化炉のフリ一ボードへ流動化ガスとほぼ同質の含酸素ガスを供給し、 6 5 0 °C 〜8 5 0 °Cで第 2段階の熱分解ガス化を行い、 タール及び炭化物の低分子量ガス への変換を行うようにしている。 フリーボ一ドにおける第 2段階の熱分解ガス化 の上限温度は、 ガス化炉と溶融燃焼炉とをつなぐ煙道に灰を溶着させないように、 8 5 0 °C (好ましくは、 7 5 0 °C) とし、 下限温度は、 炭化物の酸化燃焼を促進 するため 6 5 0 °Cとしている。  When the gasification temperature is between 450 and 65 ° C, tar and carbide formation is inevitable. Tar and carbides have a slow burning rate, and can cause an increase in the volume of the subsequent melting furnace. In order to make a melt-burning furnace compact, the products of the gasifier must be low in tar and carbides, and must be mainly composed of gas components. For these reasons, in the present invention, preferably, the volume of the freeboard is used effectively, and oxygen-containing gas having substantially the same quality as the fluidizing gas is supplied to the freeboard of the gasification furnace. The second stage pyrolysis gasification is performed at ~ 850 ° C to convert tar and carbide into low molecular weight gas. The upper limit temperature of the second stage pyrolysis gasification in the freeboard is set at 850 ° C (preferably, 750 ° C) so that ash is not welded to the flue connecting the gasifier and the melting and burning furnace. C), and the lower limit temperature is set at 65 ° C. to promote the oxidative combustion of carbides.
溶融燃焼の温度は、 灰の溶融温度より 5 0〜1 0 0 °C高く設定すればよいが、 廃棄物の種類により灰の溶融温度に違いがあるので、 通常は、 1 2 0 0〜1 5 0 0 °Cとされる。 この発明の流動層炉方式では、 竪型炉方式におけるような 1 7 0 0〜1 8 0 0 °Cという高温は必要でないので、 コークス等の副資材は、 不要であ o The temperature of the melting and burning may be set to be 50 to 100 ° C higher than the melting temperature of the ash, but since the melting temperature of the ash varies depending on the type of waste, it is usually 1 500 ° C. In the fluidized bed furnace system of the present invention, 170 Since high temperatures of 0 to 180 ° C are not required, auxiliary materials such as coke are unnecessary.
熱分解ガス化炉及び溶融燃焼炉に供給されるガスは、 燃焼される固形廃棄物の 質、 目標とするガス性状に応じ、 空気、 酸素及び蒸気から適宜選択して使用され る (酸素富活空気を含む) 。 供給されるガス中の酸素量は、 廃棄物の理論燃焼酸 素量に対する比率、 即ち酸素比で表すと、 熱分解ガス化流動層へ供給されるガス の場合、 1 0〜3 0 %であり、 フリーボードへ供給されるガスの場合、 0〜2 0 %であり、 溶融燃焼炉に供給されるガスの場合、 8 0 ~ 1 2 0 %とすることが好 ましい。 これらを合わせた酸素比は、 1 3 0 %程度が好ましい。  The gas supplied to the pyrolysis gasification furnace and the melting combustion furnace is used by appropriately selecting from air, oxygen and steam according to the quality of the solid waste to be burned and the target gas properties (oxygen-rich activity). Including air). The amount of oxygen in the supplied gas is 10 to 30% for the gas supplied to the pyrolysis gasification fluidized bed when expressed as a ratio to the theoretical amount of oxygen in the waste, that is, as an oxygen ratio. In the case of gas supplied to the free board, the content is preferably 0 to 20%, and in the case of gas supplied to the melting and burning furnace, it is preferably 80 to 120%. The combined oxygen ratio is preferably about 130%.
本発明は、 内部旋回型流動層炉及び溶融燃焼炉を用いることにより、 固形廃棄 物を二次公害を出すことなく完全燃焼させるものである。 水平断面が矩形の内部 旋回型流動層炉は、 固形廃棄物の焼却用に開発され (特開昭 5 7— 1 2 4 6 0 8 号、 特公昭 6 2— 5 2 4 2号公報) 、 既に実用に供されている。 本発明に使用さ れる流動層ガス化炉は、 これを応用したものであり、 炉底中央部に流動層中を流 動媒体が流動化しつつ下降する比較的緩慢な緩慢流動層を形成し、 炉底周辺部に 流動層中を流動媒体が流動化しつつ上昇する比較的活発な活発流動層を形成し、 流動層下部にて流動媒体が中央部から周辺部へ流動化しつつ移動し流動層上部に て流動媒体が周辺部から中央部へ流動化しつつ移動するように流動媒体の旋回運 動を生ぜしめることにより、 次の特徴を備えている。  The present invention is to completely burn solid waste without secondary pollution by using an internal swirling type fluidized bed furnace and a melting and burning furnace. An internal swirling fluidized bed reactor with a rectangular horizontal cross section was developed for the incineration of solid waste (Japanese Patent Application Laid-Open No. 57-124608, Japanese Patent Publication No. 62-5242). It is already in practical use. The fluidized bed gasifier used in the present invention is an application of this, and forms a relatively slow fluidized bed in which the fluidized medium flows down while flowing in the fluidized bed at the center of the furnace bottom. A relatively active fluidized bed is formed around the bottom of the furnace, where the fluidized medium rises while fluidizing in the fluidized bed, and the fluidized medium moves from the central part to the peripheral part at the lower part of the fluidized bed and moves to the upper part In addition, the following features are provided by generating the swirling motion of the fluid medium so that the fluid medium moves while flowing from the peripheral part to the central part.
( 1 ) 生成した炭化物は、 流動層上に堆積せず、 流動層内に良好 ·均一に分散 され、 活発流動層において炭化物の酸化が効率よく行われる。 炭化物の酸化によ り発生する熱量は、 流動媒体に速やかに伝達され、 中央部における熱分解ガス化 の熱源として有効利用される。  (1) The generated carbide does not accumulate on the fluidized bed and is well and uniformly dispersed in the fluidized bed, and oxidation of the carbide is efficiently performed in the active fluidized bed. The amount of heat generated by the oxidation of carbides is quickly transferred to the fluidized medium, and is effectively used as a heat source for pyrolysis gasification in the center.
( 2 ) 流動層表面では、 傾斜壁によって上方向への運動を転向された流動媒体 が、 中央部で激しく衝突することにより、 炭化物の微粉砕が促進される。 流動媒 体として固い硅砂を用いると、 炭化物の微粉碎は、 更に促進される。  (2) On the surface of the fluidized bed, the fluid medium whose upward motion has been deflected by the inclined wall collides violently at the center, thereby promoting fine pulverization of carbides. When hard silica sand is used as the fluid medium, the fine grinding of carbides is further promoted.
( 3 ) 緩慢流動層における流動媒体の下降運動に伴う呑み込み作用により、 固 形廃棄物は、 無粉碎に近い状態でガス化炉へ供給することができる。 このため、 破砕設備を軽度のもの又は省略することができ、 破砕用電力を節減できる。 ( 4 ) 流動媒体の旋回運動により、 固形廃棄物中の粗大な不燃物も、 容易に排 出することができる。 (3) The solid waste can be supplied to the gasifier in a state close to no pulverization due to the swallowing action accompanying the downward movement of the fluidized medium in the slow fluidized bed. For this reason, crushing equipment can be light or omitted, and crushing power can be saved. (4) Due to the swirling motion of the fluidized medium, coarse incombustibles in solid waste can be easily discharged.
( 5 ) 流動層内全域にわたる流動媒体の旋回流動により、 発生熱量が拡散され、 焼結物ゃクリンカーの生成によるトラブルを回避することができる。  (5) The generated heat is diffused by the swirling flow of the fluidizing medium throughout the fluidized bed, and the trouble caused by the formation of the sintered product clinker can be avoided.
( 6 ) ガス化炉の水平断面を円形とすることにより、 矩形の場合よりガス化炉 の製作コス卜を安くできる。  (6) By making the horizontal cross section of the gasification furnace circular, the manufacturing cost of the gasification furnace can be reduced compared to the case of a rectangular shape.
( 7 ) ガス化炉の水平断面を円形とすることにより、 スケールアップが矩形の ように一方向に片寄ることがなく、 また将来的なテーマである加圧化にも対応す ることができる。  (7) By making the horizontal cross section of the gasification furnace circular, the scale-up does not shift in one direction as in a rectangular shape, and it is possible to cope with the future theme of pressurization.
通常のパブリング型流動層の場合、 流動媒体は、 流動層内を均一に流動化され るが、 横方向への分散は、 案外に良くない。 それ故、 上記 (1 ) ~ ( 4 ) の点に おいて、 内部旋回型流動層は、 パブリング流動層に優ると考えられる。 バブリン グ流動層では、 廃棄物の投入位置を流動層の上方とすると、 廃棄物の流動層中へ の呑み込みが悪いために、 未分解物が流動層上に堆積するといつた問題を生ずる。 廃棄物を流動層中へ直接供給すれば、 この問題は解消されるが、 投入フィーダに 付着、 磨耗、 腐食等が生じ、 ガスシールを行う必要がある等の問題が起きる。 ま た廃棄物の投入部付近に熱分解ガス化ゾーンが形成され、 その他の部分に炭化物 の酸化ゾーンが形成され、 炭化物の流動層内の分散が良くないため、 未反応酸素 を生じ易く、 熱分解ガス化ゾーンで生成した高力口リ一の可燃ガスが、 この未反 応酸素により無駄に燃焼されるという欠点を有する。  In the case of a normal publishing type fluidized bed, the fluidized medium is fluidized uniformly in the fluidized bed, but the dispersion in the lateral direction is unexpectedly poor. Therefore, in the above points (1) to (4), the internal swirl type fluidized bed is considered to be superior to the publishing fluidized bed. In the case of a bubbled fluidized bed, if the input position of the waste is above the fluidized bed, there is a problem when undecomposed products accumulate on the fluidized bed due to poor swallowing of the waste into the fluidized bed. Supplying waste directly into the fluidized bed eliminates this problem, but causes problems such as sticking, abrasion, and corrosion of the input feeder and the necessity of gas sealing. In addition, a pyrolysis gasification zone is formed in the vicinity of the waste input area, and a carbide oxidation zone is formed in other areas.Since the dispersion of the carbide in the fluidized bed is poor, unreacted oxygen is likely to be generated, There is a disadvantage that the flammable gas in the high-strength port generated in the cracking gasification zone is wastedly burned by the unreacted oxygen.
熱分解ガス化により生成した炭化物の比重は、 1程度であり、 流動媒体の砂の 比重の半分以下であるため、 パブリング流動層では、 偏析作用により流動層の上 に炭化物の流動層が形成される。 流動層の上方より投入された廃棄物は、 この炭 化物の流動層中へ入ることになるが、 流動媒体の砂に比べ炭化物の熱伝導は良く ないため、 廃棄物への熱伝導は遅くなり、 この結果、 未分解物が炭化物の流動層 中に堆積され、 流動層は本来の機能を失う。 また、 このことは、 時として爆発的 なガス化反応を招くため、 危険な現象でもある。 これに対し、 内部旋回型流動層 においては、 流動媒体の旋回運動により炭化物が層内に均一に分散されているた め、 投入された廃棄物が熱伝導性の良い流動媒体から熱分解に要する熱量を直接 受け取ることができ、 廃棄物は、 速やかに熱分解ガス化される。 The specific gravity of the carbide generated by pyrolysis gasification is about 1, which is less than half the specific gravity of the sand in the fluidized medium.In the publishing fluidized bed, a fluidized bed of the carbide is formed on the fluidized bed by segregation. You. Waste introduced from above the fluidized bed enters the fluidized bed of this carbide, but the heat conduction of the waste is slower because the heat conduction of the carbide is not as good as the sand of the fluidized medium. As a result, undecomposed substances are deposited in the fluidized bed of carbide, and the fluidized bed loses its original function. This is also a dangerous phenomenon, as it can sometimes lead to explosive gasification reactions. On the other hand, in the internal swirling type fluidized bed, since the carbides are uniformly dispersed in the bed due to the swirling motion of the fluidized medium, the input waste is required for thermal decomposition from the fluidized medium having good thermal conductivity. Calorie directly The waste will be pyrolized and gasified quickly.
本発明のガス分散板が炉中央部から周辺部へ外傾した内部旋回型流動層炉にお いては、 流動媒体が分散板上を移動するため、 大きなサイズの不燃物でも分散板 上に堆積することなく円滑に排出される。 また、 炉内全周に傾斜壁を設けた内部 旋回型流動層炉では、 傾斜壁により転向された流動媒体の塊が中央部で激しくぶ つかり合うため、 炭化物を速やかに微粉砕することができる。 通常のバブリング 型流動層には、 このような作用はほとんどない。  In the internal swirling type fluidized bed furnace in which the gas dispersion plate of the present invention is inclined outward from the center of the furnace to the periphery, the fluid medium moves on the dispersion plate, so that even large-sized incombustibles accumulate on the dispersion plate. It is discharged smoothly without performing. In addition, in an internal swirling type fluidized bed furnace with inclined walls all around the furnace, the mass of the fluidized medium turned by the inclined walls collide violently at the center, so that carbide can be finely pulverized quickly. . In a normal bubbling fluidized bed, there is almost no such effect.
本発明者等は、 本発明に先立ち、 水平断面が矩形の内部旋回型流動層ガス化炉 の発明を行った (特開平 2— 1 4 7 6 9 2号公報) 。 し力、し、 前述の (1 )、 ( 2 ) 、 (5 )〜 (7 ) の理由により、 円形断面の方が優っていると判断するに 至った。 特に (1 ) で述べた炭化物の効率的な酸化は、 ガス化炉として最も重要 な機能である。 2段ガス化は、 流動層炉を 2炉設け、 廃棄物の熱分解ガス化及び 炭化物の酸化を別々の炉で行うものであるが、 本発明の内部旋回型流動層ガス化 炉は、 中央部の緩慢流動層において主に固形廃棄物の熱分解ガス化を行い、 ここ で生成する炭化物を周辺部の活発流動層で酸化する、 2段ガス化に匹敵する機能 を有しているため、 効率の良いガス化を行うことができる。  Prior to the present invention, the present inventors have invented an internal swirling type fluidized bed gasification furnace having a rectangular horizontal cross section (Japanese Patent Laid-Open No. 2-147692). For the reasons (1), (2) and (5) to (7) above, it was determined that the circular cross section was superior. In particular, the efficient oxidation of carbides described in (1) is the most important function as a gasifier. In the two-stage gasification, two fluidized-bed furnaces are provided, and pyrolysis gasification of waste and oxidation of carbides are performed in separate furnaces. It has a function equivalent to two-stage gasification, in which pyrolysis gasification of solid waste is mainly performed in the slow fluidized bed in the part, and the generated carbon is oxidized in the active fluidized bed in the surrounding part. Efficient gasification can be performed.
(図面の簡単な説明)  (Brief description of drawings)
図 1は、 本発明の実施に用いられる流動層ガス化炉の 1実施例の図解的な垂直 断面図である。  FIG. 1 is a schematic vertical sectional view of one embodiment of a fluidized-bed gasification furnace used for carrying out the present invention.
図 2は、 本発明の実施に用いられる流動層ガス化炉の別の実施例の図解的な垂 直断面図である。  FIG. 2 is a schematic vertical sectional view of another embodiment of the fluidized bed gasification furnace used for carrying out the present invention.
図 3は、 本発明のガス化燃焼方法を実施する装置の概略構成図である。  FIG. 3 is a schematic configuration diagram of an apparatus for performing the gasification combustion method of the present invention.
(発明の実施の形態)  (Embodiment of the invention)
以下、 本発明の実施の形態を図面に基づいて説明する。 図 1は、 本発明の実施 に用いられる流動層ガス化炉の実施例の図解的な垂直断面図である。 図 1におい て、 流動層ガス化炉 2は、 ガス分散板 3、 フリーボード 6、 傾斜壁 1 1、 不燃物 排出シュート 1 2、 活発流動層用の空気室 1 3、 緩慢流動層用の空気室 1 4、 緩 慢流動層 1 5、 活発流動層 1 6を含む。 流動層ガス化炉 2は、 固形廃棄物 a、 活 発流動層用の流動化ガス b 及び緩慢流動層用の流動化ガス b 2を供給され、 生 成ガス eを排出する。 図 1の流動層ガス化炉 2は、 内部旋回型であり、 空気分散 板 3は、 中央部が最も高く外側へ向かって傾斜する逆円錐状である。 空気分散板 3上の流動層は、 緩慢流動層 15及び活発流動層 16を含む。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a schematic vertical sectional view of an embodiment of a fluidized-bed gasification furnace used for carrying out the present invention. In Fig. 1, fluidized bed gasifier 2 has gas dispersion plate 3, free board 6, inclined wall 11, incombustible discharge chute 12, air chamber for active fluidized bed 13, air for slow fluidized bed. Chamber 14 includes a slow fluidized bed 15 and an active fluidized bed 16. Fluidized bed gasifier 2 is supplied with solid waste a, fluidized gas b for the activated fluidized bed, and fluidized gas b2 for the slow fluidized bed. Emission of synthetic gas e. The fluidized-bed gasifier 2 shown in FIG. 1 is of an internal swirl type, and the air distribution plate 3 has an inverted conical shape in which the center is highest and inclined outward. The fluidized bed on the air distribution plate 3 includes a slow fluidized bed 15 and an active fluidized bed 16.
緩慢流動層 15の占める領域は、 分散板 3上の水平断面において、 40〜60 %である。 流動層全体の径1^と緩慢流動層 15の径 r 2の関係は、 The area occupied by the slow fluidized bed 15 is 40 to 60% in the horizontal section on the dispersion plate 3. The relationship between the diameter 1 ^ of the entire fluidized bed and the diameter r 2 of the slow fluidized bed 15 is
r2= (0. 64〜0. 77) r ,で表される。 緩慢流動層 15の占める領域が、 分散板 3上の水平断面において 50%の場合、 r2 0. 7 である。 r 2 = (0.64 to 0.77) r, Region occupied by slow fluidized bed 15 and 50% in the horizontal section on the distribution plate 3, which is r 2 0. 7.
流動化ガスが流動媒体を流動化し始める最小流動化質量速度 Gmfを用いると、 緩慢流動層 15における流動化ガスの質量速度は、 2〜6Gmf (好ましくは、 3 〜5 Gmf) である。 通常の焼却の場合の 0. 5〜3Gmf (好ましくは、 1〜2. 5 Gmf) を用いると、 クリンカーができ易いことが、 テストにより判明している c クリンカーのでき易い原因は、 流動層全体が炭化物リツチになる中での流動化不 良と考えられる。 With minimum fluidization mass velocity G mf of fluidizing gas begins to fluidize the fluidized medium, the mass velocity of the fluidizing gas in the slow fluidized bed 15, 2 to 6 g mf (preferably, 3 to 5 G mf) is . For (preferably, 1~2. 5 G mf) of 0. 5~3G mf conventional incineration With it easily can clinker, is easy cause can of c clinker has been found by tests, flow It is considered that the fluidization was poor while the entire bed became carbide rich.
表 1は、 クリンカー生成に及ぼす緩慢流動層流動化ガス質量速度 Gの影響を、 小型試験装置 (廃棄物 5~10トンノ日) を使用し一連のテストにより求めたも のであり、 原料廃棄物は、 廃プラスチック、 廃車シュレッダーダスト、 都市ごみ 等である。 表 1の結果から、 質量速度 Gの対 Gmf比 R = GZGmfは、 2〜6が適 当である。 Table 1 shows the effect of the mass velocity G of the fluidized gas in the slow fluidized bed on clinker formation in a series of tests using a small test device (waste of 5 to 10 tons / day). , Waste plastic, scrap car shredder dust, municipal solid waste, etc. The results in Table 1, to-G mf ratio R = GZG mf of mass velocity G is a 2 to 6 suitable equivalents.
また、 流動媒体のスムーズな旋回運動を得るためには、 活発流動層における流 動化ガスの質量速度は、 緩慢流動層における流動化ガス質量速度の 1. 5〜3倍 とするのが良いことが判った。 一連のテストの結果、 流動化ガスの質量速度は、 緩慢流動層が 4Gmf、 活発流動層が 8 Gmfが最適な組合せであった。 この場合、 活発流動層における流動化ガス質量速度は、 緩慢流動層の 2倍である。 In order to obtain a smooth swirling motion of the fluidized medium, the mass velocity of the fluidized gas in the active fluidized bed should be 1.5 to 3 times the mass velocity of the fluidized gas in the slow fluidized bed. I understood. Results of a series of tests, the mass velocity of the fluidizing gas is slow fluidized bed 4G mf, actively fluidized bed 8 G mf was optimal combination. In this case, the fluidized gas mass velocity in the active fluidized bed is twice that of the slow fluidized bed.
活発流動層内を上昇する流動媒体を中心部へ反転せしめて流動媒体の旋回運動 を促進する傾斜壁は、 その下方投影面積が流動層断面の 25〜40%であること が望ましい。 図 1において、 最も小さい炉径 r 3と流動層全体の径!^との関係は、 r3= (0. マ Ί〜0· 87) r!で表される。 傾斜壁をこれ以上大きく しても、 流動媒体を反転する作用はほとんど変わらない。 むしろ、 流動層上方の狭い部分 においてガス速度が増すため、 固形廃棄物の流動層への落下を妨げる弊害が大き くなる。 なお、 傾斜壁の水平面に対する傾斜角度 0は、 3 0〜6 0 ° が効果的で ある。 It is desirable that the inclined wall, which inverts the fluid medium rising in the active fluidized bed to the center to promote the swirling motion of the fluidized medium, has a projected area below 25 to 40% of the cross section of the fluidized bed. In Figure 1, the diameter of the entire fluidized bed the smallest Ro径r 3! The relationship with ^ is r 3 = (0. Ί ~ 0 · 87) r! It is represented by Increasing the sloped wall further increases the effect of reversing the flowing medium. Rather, the gas velocity increases in a narrow area above the fluidized bed, which has a serious adverse effect on solid waste falling into the fluidized bed. It becomes. It is effective that the angle of inclination of the inclined wall with respect to the horizontal plane is 30 to 60 °.
本発明のガス化炉の流動媒体は、 硅砂ゃオリビン砂等の砂、 或いはアルミナ、 ドロマイ ト、 石灰石等の中から選択されるが、 流動層温度が 4 5 0〜6 5 0 °C程 度と低いので、 流動化ガスの質量速度を上述の範囲とすれば、 クリンカー生成の 問題はない。 それ故、 流動媒体は、 硬く しかも入手の容易な硅砂が好適である。 硬い硅砂が良い理由は、 旋回流動させつつ炭化物の微粉砕が出来るからである。 流動媒体に用いる硅砂の粒度は、 平均粒径 0 . 4〜0. 8 mmとしている。 固形廃棄物に含有される鉄、 銅、 アルミニウム等の有価金属は、 流動層内全体 が還元雰囲気であるため、 炉底から未酸化でしかもクリーンな状態で、 他の不燃 物や流動媒体と共に排出され、 しかる後に篩分けするを施すことにより、 金属を 含む粗大な不燃物と細かな流動媒体とに分けられる。 分別された流動媒体は、 ガ ス化炉に戻されて再使用されるが、 炉のエネルギー効率を高めるために、 放熱を できるだけ抑えることが必要である。 廃棄物に含まれる金属のうち、 融点が流動 層温度より高いものは、 ほぼ全量をガス化炉の炉底より取り出すことができる。 アルミニウムの回収のためには、 流動層温度をアルミナの融点である 6 6 0 °Cよ り低くする必要がある。  The fluidizing medium of the gasification furnace of the present invention is selected from sand such as silica sand and olivine sand, or alumina, dolomite, limestone, etc., and the fluidized bed temperature is about 450 to 65 ° C. As long as the mass velocity of the fluidizing gas is within the above range, there is no problem of clinker formation. Therefore, the fluid medium is preferably silica sand which is hard and easily available. The reason why hard silica sand is good is that carbide can be finely pulverized while swirling and flowing. The particle size of the silica sand used as the fluid medium is between 0.4 and 0.8 mm. Valuable metals such as iron, copper and aluminum contained in solid waste are discharged from the furnace bottom together with other incombustibles and fluid medium in a non-oxidized and clean state because the entire fluidized bed is in a reducing atmosphere. Then, after sieving, it is divided into coarse incombustibles containing metals and fine fluidized media. The separated fluid medium is returned to the gasification furnace and reused, but it is necessary to minimize the heat radiation in order to increase the energy efficiency of the furnace. Almost all of the metals contained in the waste with melting points higher than the fluidized bed temperature can be extracted from the bottom of the gasification furnace. In order to recover aluminum, the fluidized bed temperature must be lower than 660 ° C, the melting point of alumina.
ガス化炉の後段において生成ガスを高温燃焼して灰を溶融スラグ化する燃焼炉 には、 高負荷燃焼に適した旋回式溶融炉を用いるのがよい。 高負荷燃焼により炉 がコンパク トになり、 水冷損失を減らすことができるからである。 また、 旋回流 の作用により、 スラグミス卜の捕集効率を高くとれ、 しかも、 炭化物の滞留時間 を長くとれるため、 カーボンの未燃損失を極限まで減らすことが可能である。 従来型の焼却設備の中には、 灰溶融設備を保有しないか或いは近隣に灰溶融設 備がないために、 焼却炉や廃熱ボイラから排出される炉下灰や飛灰の処理に困窮 している所がある。 こうした灰を本設備に受け入れ、 他の固形廃棄物とともに一 括して処理することにより、 未燃分を含まない良質なスラグとして、 回収利用す ることが可能となる。  It is recommended to use a swirling type melting furnace suitable for high-load combustion as a combustion furnace in which the generated gas is burned at a high temperature in the latter stage of the gasification furnace to melt ash into slag. This is because the furnace becomes compact due to high load combustion, and water cooling loss can be reduced. In addition, the slag mist collection efficiency can be increased by the action of the swirling flow, and the residence time of the carbide can be increased, so that the unburned loss of carbon can be reduced to the utmost. Some conventional incinerators do not have ash melting facilities or do not have ash melting facilities nearby, making it difficult to treat ash and fly ash discharged from incinerators and waste heat boilers. There is a place. By receiving such ash into this facility and treating it together with other solid waste, it will be possible to collect and use it as high-quality slag that does not contain unburned components.
本発明に使用される内部旋回型流動層ガス化炉において、 炉中央部の緩慢流動 層では、 流動化ガス中の酸素量が少なく可燃物量が多いので、 中央部におけるガ ス化は、 乾留に近くなり、 高カロリーの可燃性ガスが発生する。 この時に生成さ れる炭化物は、 流動媒体の旋回運動により、 炉底周辺部の活発流動層に均一に分 散される。 従って、 活発流動層に供給される流動化ガス中の酸素は、 炭化物の酸 化分解のために効率的に消費される。 もし活発流動層内に炭化物の希薄な部分が 存在すると、 酸素が十分消費されず未反応のまま流動層を通過し、 すでに生成し た高カロリーの燃料ガスを燃焼により消費してしまう。 しカヽし、 本発明において 使用される流動層炉は、 流動媒体の旋回運動により活発流動層内における炭化物 濃度がほぼ一定に保たれるので、 このようなことは起こり得ず、 ガス化炉により 高カロリ一の燃料ガスを効率的に回収することができる。 In the internal swirling type fluidized bed gasification furnace used in the present invention, the amount of oxygen in the fluidized gas is small and the amount of combustibles is large in the slow fluidized bed at the center of the furnace. The process is similar to dry distillation, producing high-calorie flammable gas. The carbide generated at this time is uniformly dispersed in the active fluidized bed around the hearth by the swirling motion of the fluidized medium. Therefore, the oxygen in the fluidized gas supplied to the active fluidized bed is efficiently consumed for the oxidative decomposition of carbides. If the active fluidized bed contains a lean portion of carbides, oxygen is not sufficiently consumed and passes through the fluidized bed in an unreacted state, and the already generated high calorie fuel gas is consumed by combustion. However, in the fluidized bed furnace used in the present invention, since the carbide concentration in the active fluidized bed is kept almost constant by the swirling motion of the fluidized medium, such a situation cannot occur. High calorie fuel gas can be efficiently recovered.
以上の通り、 内部旋回型流動層炉をガス化炉とした本発明の方法 (流動層炉方 式) は、 運転操作の容易さ、 コークス等副資材が不要の点、 二酸化炭素の発生量 を増やさない点、 更に、 多くの金属が未酸化の状態で回収できる点において竪型 炉方式に優り、 またガス化炉が極めてコンパク 卜でしかも可動部が存在しない点、 炭化物の微粉砕等のハンドリング設備が不要な点において回転炉方式より有利で ある。  As described above, the method (fluidized bed furnace method) of the present invention in which the internal swirling type fluidized bed furnace is used as a gasification furnace has the following advantages: the ease of operation, the need for coke and other auxiliary materials, and the amount of carbon dioxide generated. It is superior to the vertical furnace system in that it does not increase and many metals can be recovered in an unoxidized state.Moreover, the gasifier is extremely compact and has no moving parts. This is more advantageous than the rotary furnace method in that no equipment is required.
図 2は、 本発明の実施に用いられる流動層ガス化炉の別の実施例の図解的な垂 直断面図である。 図 2の流動層ガス化炉において、 図 1と同様の部材は、 同様の 符号を付され、 重複した説明は省略される。 図 1の流動層ガス化炉の傾斜壁 1 1 は、 流動媒体の旋回運動を促進するものであるが、 廃棄物の流動層中への呑み込 み、 流動層内におけるチヤ一分散に支障がない場合、 図 2の実施例のように、 省 略することができる。 傾斜壁を省くと、 流動媒体の旋回運動は弱くなるが、 傾斜 壁を構成する炉材の損耗を減らすことができる。  FIG. 2 is a schematic vertical sectional view of another embodiment of the fluidized bed gasification furnace used for carrying out the present invention. In the fluidized-bed gasification furnace shown in FIG. 2, the same members as those in FIG. 1 are denoted by the same reference numerals, and the repeated description will be omitted. The inclined wall 11 of the fluidized bed gasifier shown in Fig. 1 promotes the swirling motion of the fluidized medium, but does not prevent the waste from being swallowed into the fluidized bed and dispersing the char in the fluidized bed. If not, it can be omitted as in the embodiment of FIG. If the inclined wall is omitted, the swirling motion of the flowing medium becomes weaker, but the wear of the furnace material constituting the inclined wall can be reduced.
図 3は、 本発明のガス化燃焼方法を実施する設備の概略構成図である。 図 3の 設備は、 ガス化炉 2及び旋回式溶融炉 7を含む。 ガス化炉 2は、 廃プラスチック の廃棄物 aを定量供給する定量供給装置 1、 ガス分散板 3、 硅砂の流動層 4、 フ リーボード 6を備える。 ガス化炉 2は、 廃棄物 a、 並びに熱分解ガス化用の空気 b及び空気 cを供給され、 不燃物 d及び生成ガス eを排出する。 旋回式溶融炉 7 は、一次燃焼室 8、 二次燃焼室 9、 スラグ分離部 1 0、 昇温用パーナ 2 1、 2 2 を備える。 旋回式溶融炉 7は、 ガス化炉 2からの生成ガス e、 溶融燃焼用の空気 iを供給され、 燃焼排ガス g及びスラグ hを排出する。 ガス化炉 2は、 図 1又は 図 2の内部旋回型流動層ガス化炉とすることができる。 廃棄物 aは、 通常、 都市 ごみの中で燃焼不適ごみとして分別収集されたプラスチック主体のものである。 廃棄物 aは、 必要に応じて破砕、 選別等の前処理を施した後、 スクリュー式の 定量供給装置 1により、 ガス化炉 2へ供給される。 空気 bが、 ガス化炉 2の炉底 へ送入され、 ガス分散板 3上に硅砂の流動層 4を形成する。 廃プラスチック aは、 流動層 4の上方へ投入され、 4 5 0 ~ 6 5 0 °Cに保持された流動層 4内に落下さ れ、 空気 bと接触し、 速やかに熱分解ガス化される。 不燃物 dは、 ガス化炉 2の 炉底から硅砂と一緒に排出される。 不燃物 dは、 金属を含むが、 流動層 4の温度 を 5 0 0 ~ 6 0 0 °Cとすることにより、 鉄、 銅、 アルミといった有価金属は、 未 酸化でクリーンな状態で回収される。 FIG. 3 is a schematic configuration diagram of equipment for performing the gasification combustion method of the present invention. The equipment shown in FIG. 3 includes a gasifier 2 and a rotary melting furnace 7. The gasification furnace 2 includes a quantitative supply device 1 for quantitatively supplying waste plastic waste a, a gas dispersion plate 3, a fluidized bed of silica sand 4, and a free board 6. The gasifier 2 is supplied with waste a and air b and air c for pyrolysis gasification, and discharges non-combustibles d and generated gas e. The revolving melting furnace 7 includes a primary combustion chamber 8, a secondary combustion chamber 9, a slag separation section 10, and temperature-raising parners 21 and 22. The revolving melting furnace 7 is composed of the gas e from the gasification furnace 2 and the air for melting and combustion. i is supplied, and the flue gas g and slag h are discharged. The gasifier 2 can be the internal swirling type fluidized bed gasifier of FIG. 1 or FIG. Waste a is usually mainly composed of plastic, which is separated from municipal waste as unburnable waste. The waste a is subjected to pretreatment such as crushing and sorting as required, and then supplied to the gasification furnace 2 by the screw type quantitative supply device 1. The air b is sent to the bottom of the gasifier 2 to form a fluidized bed 4 of silica sand on the gas dispersion plate 3. Waste plastic a is injected above the fluidized bed 4, falls into the fluidized bed 4 maintained at 450 to 65 ° C, comes into contact with air b, and is quickly pyrolyzed to gas. . The incombustibles d are discharged from the bottom of the gasifier 2 together with silica sand. The incombustibles d contain metals, but by setting the temperature of the fluidized bed 4 to 500 to 600 ° C, valuable metals such as iron, copper, and aluminum are recovered in an unoxidized and clean state. .
ガス化炉 2において、 投入された廃棄物 aの熱分解ガス化により、 ガス、 ター ル、 炭化物が生成される。 炭化物は、 流動層 4の撹乱運動と酸素のアタックによ り微細化される。 ガス化炉 2のフリーボード 6は、 空気 cが吹き込まれ、 6 5 0 〜8 5 0 °Cにて第 2段階の熱分解ガス化が行われる。 こうして、 タール、 炭化物 のガス化分解が促進される。  In the gasifier 2, gas, tar, and carbide are generated by pyrolysis gasification of the input waste a. The carbides are refined by the disturbance motion of the fluidized bed 4 and the attack of oxygen. Air c is blown into the free board 6 of the gasifier 2, and the second stage of pyrolysis gasification is performed at 65 to 85 ° C. In this way, gasification and decomposition of tar and carbide are promoted.
フリーボ一ド 6上部から排出された生成ガス eは、 微細化した炭化物を同伴し つつ、 旋回式溶融炉 7の一次燃焼室 8へ供給され、 予熱された空気 iと旋回流中 で混合されながら、 1 2 0 0〜1 5 0 0 °Cで高温燃焼し、 燃焼しながら二次燃焼 室 9へ移動する。 炭化物中の灰分は、 高温により溶融されてスラグミストとなり、 旋回流の遠心力により一次燃焼室 8の炉壁上の溶融スラグ相に捕捉され、 炉壁を 流下し、 二次燃焼室 7へ入り、 スラグ分離部 1 0の底部より排出される。 旋回式 溶融炉 7から排出される燃焼排ガス gは、 廃熱ボイラ、 節炭器、 空気予熱器等の 熱回収装置と脱塵装置を経て、 大気中へ放出される。 旋回式溶融炉 7の一次燃焼 室 8及び二次燃焼室 9は、 始動用のオイルパーナ 2 1、 2 2を備える。  The generated gas e discharged from the upper part of the freeboard 6 is supplied to the primary combustion chamber 8 of the swirling melting furnace 7 while entraining fine carbides, and is mixed with the preheated air i in the swirling flow. It burns at a high temperature of 1200 to 1500 ° C. and moves to the secondary combustion chamber 9 while burning. The ash in the carbide is melted by high temperature to become slag mist, and is captured by the molten slag phase on the furnace wall of the primary combustion chamber 8 by the centrifugal force of the swirling flow, flows down the furnace wall, and enters the secondary combustion chamber 7 It is discharged from the bottom of the slag separation section 10. The flue gas g discharged from the rotary melting furnace 7 is discharged into the atmosphere through a heat recovery device such as a waste heat boiler, a economizer, and an air preheater and a dust removal device. The primary combustion chamber 8 and the secondary combustion chamber 9 of the revolving melting furnace 7 are provided with oil pans 21 and 22 for starting.
(発明の効果)  (The invention's effect)
本発明のガス化燃焼設備は、 前段に旋回式流動層炉を備え、 後段に溶融燃焼炉 を備える。 流動層炉の流動層部において固形廃棄物が 4 5 0〜6 5 0 °Cで熱分解 ガス化され、 流動層炉のフリーボ一ド部において 6 5 0〜8 5 0 °Cで第 2段階の 熱分解ガス化が行われ、 その後、 溶融燃焼炉において 1 2 0 0〜1 5 0 0 °Cで溶 融燃焼され、 固形廃棄物中の灰分が効率よく溶融スラグ化される。 スラグ化した 灰分は、 炉底から排出される。 本発明設備は、 シンプルで且つコンパク トであり、 運転容易性及び安全性に優れており、 またマテリアルリサイクル及びエネルギー リサイクルを行うことができる。 本発明のその他の効果又は利点は、 以下の通り である。 The gasification and combustion equipment of the present invention is provided with a swirling fluidized bed furnace at the front stage and a melting combustion furnace at the rear stage. Solid waste is pyrolyzed and gasified at 450-650 ° C in the fluidized bed part of the fluidized-bed furnace, and the second stage is carried out at 65-850 ° C in the freeboard part of the fluidized bed furnace. of Pyrolysis gasification is performed, and thereafter, it is melt-combusted at 1200 to 150 ° C. in a melt-burning furnace, and the ash in solid waste is efficiently turned into molten slag. Slagified ash is discharged from the furnace bottom. The facility of the present invention is simple and compact, has excellent operability and safety, and can perform material recycling and energy recycling. Other effects or advantages of the present invention are as follows.
( 1 ) 固形廃棄物の燃焼が、 固体燃焼でなく気体燃焼となるため、 空気比が 1. 3程度の低空気比燃焼が実現され、 排ガス量が大幅に低減される。  (1) Since solid waste combustion is gaseous combustion instead of solid combustion, low air ratio combustion with an air ratio of about 1.3 is realized, and the amount of exhaust gas is significantly reduced.
( 2 ) 旋回式溶融炉において高温燃焼が行われるため、 ダイォキシン類ゃフラ ン類は、 ほとんど発生しない。  (2) Dioxins and furans hardly occur because high-temperature combustion is performed in a rotary melting furnace.
( 3 ) 固形廃棄物中の灰分は、 高温により熔融されマスの小さなスラグとなる ため、 灰分の埋立地の延命化を図ることができ、 また、 灰分は、 重金属の溶出し ない無害なスラグとして回収される故に、 路盤材等への利用も可能である。  (3) The ash in the solid waste is melted by high temperature and becomes small slag with a small mass, so the life of the ash landfill can be extended, and the ash is converted as harmless slag from which heavy metals do not elute. Because it is collected, it can be used for roadbed materials.
( 4 ) ガス化炉で生成されるガス、 タール、 炭化物のエネルギーは、 灰溶融の ための熱源として有効活用される。  (4) The energy of gas, tar, and carbide generated in the gasifier is effectively used as a heat source for ash melting.
( 5 ) 本発明の固形廃棄物のガス化燃焼設備は、 設備中にダイォキシン処理機 能及び灰溶融機能が組み込まれるため、 設備全体がコンパク ト化される。 ガス化 燃焼設備の建設コストもそれぞれの機能を在来型の焼却設備に付加するより安価 となる。  (5) Since the solid waste gasification and combustion equipment of the present invention incorporates a dioxin treatment function and an ash melting function in the equipment, the entire equipment is compacted. The construction cost of gasification and combustion equipment is also lower than adding their respective functions to conventional incineration equipment.
( 6 ) 本発明において、 固形廃棄物中の鉄、 銅、 アルミ等の有価金属は、 リサ ィクル可能な未酸化でクリーンな状態で回収できる。  (6) In the present invention, valuable metals such as iron, copper, and aluminum in solid waste can be recovered in a recyclable, unoxidized and clean state.
( 7 ) 本発明の固形廃棄物のガス化燃焼設備は、 容易に高効率発電型とするこ とができる。 1 ク リ ンカー生成に及ぼす緩慢流動層流動化ガス質量速度 Gの影響 (7) The solid waste gasification and combustion equipment of the present invention can easily be of a high efficiency power generation type. 1 Influence of slow fluidized bed fluidized gas mass velocity G on clinker formation
(原料廃棄物:廃プラスチッ ク、 廃車シュ レツダーダス ト、 都市ごみ等) 流動層温度 質量速度 Gの対 Gm,比 テス ト結果 (Raw material waste: waste plastic, scrap car shredder dust, municipal solid waste, etc.) Fluidized bed temperature Mass velocity G vs. G m , Ratio test result
IN- — (j / U m f  IN- — (j / U m f
R < n ΐϊΙ^Β arΙi始□後 Λ^ί.短 rSL睹間 1 n Jでク リ ンカ一が vv、 ^χ,  R <n ΐϊΙ ^ Β after arΙi start Λ ^ ί.short rSL n 1 n J and the linker is vv, ^ χ,
成。 流動不良を発生。  Success. Poor flow occurs.
ク リ ンカーの小片は時々排出される 同上 ,リ I\ ^ O. U 、ヽ £Ιϋ¾ί t¾ V 土 *<^» C ΛΐΐϊΊ^·  Small pieces of clinker are sometimes discharged Same as above, I \ ^ O.U, ヽ £ Ιϋ¾ί t¾ V Sat * <^ »C ΛΐΐϊΊ ^ ·
比の高い廃棄物に対して、 若干不安が 残る。  There is some concern about high ratio waste.
7—のパ、 ί÷*·Λお 1 fi } A r y 同上 3.0<R≤5.0 もない。 あらゆる廃棄物に対して、 全く問題なし。 7-Pa, ί ÷ * · Λ お1 fi} A ry Same as above 3.0 <R≤5.0. No problem for any waste.
ク リ ンカーの Ρα題は全く ない力 流動 同上 5.0<R≤6.0 媒体の飛散量が若干多くなる。 流動媒体の飛散量が非常に多くなる 同上 6.0<R ため、 流動媒体の補充が頻繁に必要  Clinker's Ρα title has no force Flow Flow Same as above 5.0 <R≤6.0 The amount of scattering of the medium increases slightly. Fluid medium is scattered very much.
となる。  Becomes

Claims

請 求 の 範 囲 The scope of the claims
1 . 固形廃棄物を流動層ガス化炉の流動層部にて 4 5 0〜6 5 0 °Cで熱分解ガ ス化し、 次いで後段の溶融燃焼炉にて 1 2 0 0〜1 5 0 0 °Cで溶融燃焼すること により灰分を溶融スラグ化する固形廃棄物のガス化燃焼方法において、  1. The solid waste is pyrolyzed to gas at 450-650 ° C in the fluidized bed of the fluidized-bed gasification furnace, and then in the latter stage of the melting and combustion furnace at 1200-150 ° C. In the gasification and combustion method of solid waste, which melts and burns ash by melting and burning at ° C,
酸素、 水蒸気、 及び空気から選択した 1つ以上のガスを前記流動層部に供給し、 流動層部に供給するガス中の酸素量を理論燃焼酸素量の 1 0〜3 0 %とし、 炉底 中央部に流動層中を流動媒体が流動化しつつ下降する比較的緩慢な緩慢流動層を 形成し、 炉底周辺部に流動層中を流動媒体が流動化しつつ上昇する比較的活発な 活発流動層を形成し、 流動層下部にて流動媒体が中央部から周辺部へ流動化しつ つ移動し流動層上部にて流動媒体が周辺部から中央部へ流動化しつつ移動するよ うに流動媒体の旋回運動を生ぜしめ、 流動層断面における前記緩慢流動層の面積 割合を 4 0 ~ 6 0 %とし、 前記緩慢流動層における流動化ガスの質量速度を最小 流動化質量速度の 2〜 6倍とし、 活発流動層における流動化ガスの質量速度を緩 慢流動層における流動化ガスの質量速度の 1 . 5〜3倍とすることを特徴とする 方法。  At least one gas selected from oxygen, water vapor, and air is supplied to the fluidized bed portion, and the amount of oxygen in the gas supplied to the fluidized bed portion is set to 10 to 30% of the theoretical combustion oxygen amount. A relatively slow fluidized bed in which the fluidized medium flows down while flowing in the fluidized bed is formed in the center, and a relatively active active fluidized bed in which the fluidized medium rises while flowing in the fluidized bed near the hearth bottom. The swirling motion of the fluid medium is such that the fluid medium flows and moves from the central part to the peripheral part at the lower part of the fluidized bed while moving at the upper part of the fluidized bed while flowing from the peripheral part to the central part. The area ratio of the slow fluidized bed in the section of the fluidized bed is set to 40 to 60%, the mass velocity of the fluidized gas in the slow fluidized bed is set to 2 to 6 times the minimum fluidized mass velocity, and active fluidization is performed. The mass velocity of fluidized gas in the bed Method characterized in that a 1.5 to 3 times the mass velocity of whether gas.
2. 酸素、 水蒸気、 及び空気から選択した 1つ以上のガスを前記流動層ガス化 炉のフリ一ボードに供給し、 前記流動層部において生成された炭化物とタールを フリーボード部にて 6 5 0〜8 5 0 °Cで熱分解ガス化し、 該フリーボ一ド部へ供 給するガス中の酸素量を固形廃棄物の理論燃焼酸素量の 0〜 2 0 %とすることを 特徴とする請求項 1の方法。  2. At least one gas selected from oxygen, water vapor, and air is supplied to the free board of the fluidized bed gasifier, and the carbides and tar generated in the fluidized bed section are supplied to the free board section. Wherein the amount of oxygen in the gas supplied to the freeboard portion is 0 to 20% of the theoretical combustion oxygen amount of solid waste at 0 to 850 ° C. Item 1 method.
3 . 前記流動層ガス化炉の流動層表面近傍の内壁沿いに傾斜した傾斜壁を設け、 流動層の周辺部における流動媒体の上向き流れを中央部へ転向して前記流動媒体 の旋回運動を促進し、 傾斜壁の下方投影面積を流動層断面の 2 5〜 4 0 %とし、 傾斜壁の水平面に対する傾斜角度を 3 0〜6 0 ° とすることを特徴とする請求項 1の方法。  3. An inclined wall is provided along the inner wall near the surface of the fluidized bed of the fluidized bed gasifier, and the upward flow of the fluidized medium at the periphery of the fluidized bed is turned to the center to promote the swirling motion of the fluidized medium. The method according to claim 1, wherein the downward projected area of the inclined wall is 25 to 40% of the cross section of the fluidized bed, and the inclined angle of the inclined wall with respect to the horizontal plane is 30 to 60 °.
4. 酸素、 水蒸気、 及び空気から選択した 1つ以上のガスを前記溶融燃焼炉に 供給し、 溶融燃焼炉へ供給するガス中の酸素量を理論燃焼酸素量の 8 0〜1 2 0 %とすることを特徴とする請求項 1の方法。  4. Supply at least one gas selected from oxygen, water vapor, and air to the melting and burning furnace, and set the oxygen amount in the gas to be supplied to the melting and burning furnace to 80 to 120% of the theoretical combustion oxygen amount. The method of claim 1, wherein the method comprises:
5 . 前記流動層ガス化炉の流動媒体は、 砂、 アルミナ、 ドロマイ ト、 又は石灰 石であることを特徴とする請求項 1の方法。 5. The fluidized medium of the fluidized bed gasifier is sand, alumina, dolomite, or lime. The method of claim 1, wherein the method is a stone.
6 . 前記流動層ガス化炉は、 炉底より固形廃棄物中に含有される金属を未酸化 でクリーンな状態で回収するものであることを特徴とする請求項 1の方法。  6. The method according to claim 1, wherein the fluidized-bed gasification furnace is for recovering metal contained in solid waste from the furnace bottom in an unoxidized and clean state.
7. 前記溶融燃焼炉は、 旋回式溶融燃焼炉であることを特徴とする請求項 1の 方法。  7. The method according to claim 1, wherein the melting and burning furnace is a rotary melting and burning furnace.
8 . 固形廃棄物を 4 5 0〜6 5 0 °Cで熱分解ガス化する流動層部を備える流動 層ガス化炉、 及び流動層ガス化炉の後段に設けられ 1 2 0 0 ~ 1 5 0 0 °Cで溶融 燃焼し灰分を溶融スラグ化する溶融燃焼炉を有するガス化燃焼設備において、 流動層ガス化炉は、 酸素、 水蒸気、 及び空気から選択された 1つ以上のガスを 流動層部へ供給する供給口を有する流動化ガス供給機構を備え、  8. Fluidized bed gasifier equipped with a fluidized bed for pyrolyzing and gasifying solid waste at 450 to 65 ° C, and provided at the latter stage of the fluidized bed gasifier, 120 to 150 In a gasification combustion facility that has a melting combustion furnace that melts and burns at 0 ° C to convert ash into molten slag, a fluidized bed gasification furnace is used to convert one or more gases selected from oxygen, steam, and air into a fluidized bed. A fluidizing gas supply mechanism having a supply port for supplying to the section,
流動化ガス供給機構は、 流動層部へ供給するガス中の酸素量を理論燃焼酸素量 の 1 0〜 3 0 %とし、 炉底中央部に流動化ガスの質量速度を最小流動化質量速度 の 2〜6倍とした比較的緩慢な緩慢流動層を形成し、 炉底周辺部に流動化ガスの 質量速度を緩慢流動層における流動化ガスの質量速度の 1 . 5〜3倍とした比較 的活発な活発流動層を形成し、 流動層断面における前記緩慢流動層の面積割合を • 4 0 ~ 6 0 %とし、 流動媒体が流動層上部にて周辺部から中央部へ流動化しつつ 移動し、 流動層下部にて中央部から周辺部へ流動化しつつ移動するような流動媒 体の旋回運動を生じるものであることを特徴とするガス化燃焼設備。  The fluidized gas supply mechanism sets the amount of oxygen in the gas supplied to the fluidized bed to 10 to 30% of the theoretical combustion oxygen amount, and sets the mass velocity of the fluidized gas at the center of the furnace bottom to the minimum fluidized mass velocity. A relatively slow fluidized bed was formed, which was 2 to 6 times, and the mass velocity of the fluidizing gas around the furnace bottom was 1.5 to 3 times the mass velocity of the fluidizing gas in the slow fluidized bed. An active fluidized bed is formed, and the area ratio of the slow fluidized bed in the section of the fluidized bed is set to 40 to 60%, and the fluidized medium moves while flowing from the peripheral part to the central part at the upper part of the fluidized bed, A gasification combustion facility characterized in that a swirling motion of a fluid medium is generated at a lower part of a fluidized bed while moving from a central part to a peripheral part while moving.
9. 酸素、 水蒸気、 及び空気から選択される 1つ以上のガスが流動層ガス化炉 のフリーボードに供給され、 前記流動層部において生成された炭化物とタールが 該フリ一ボード部において 6 5 0〜8 5 0 °Cで熱分解ガス化され、 フリ一ボード に供給されるガス中の酸素量が前記固形廃棄物の理論燃焼酸素量の 0〜2 0 %で ある請求項 8のガス化燃焼設備。  9. At least one gas selected from oxygen, water vapor, and air is supplied to a free board of the fluidized bed gasifier, and the carbides and tar generated in the fluidized bed section are cooled in the free board section. The gasification according to claim 8, wherein the amount of oxygen in the gas pyrolyzed at 0 to 850 ° C and supplied to the free board is 0 to 20% of the theoretical combustion oxygen amount of the solid waste. Combustion equipment.
1 0. 前記流動層ガス化炉の流動層表面近傍の内壁沿いに内側に傾斜した傾斜 壁が設けられ、 該傾斜壁は、 流動媒体の周辺部における上向き流れを中央部へ転 向して、 前記流動媒体の旋回運動を促進するものであり、 該傾斜壁の下方投影面 積が流動層断面の 2 5〜4 0 %であり、 該傾斜壁の水平面に対する傾斜角度が 3 0〜6 0 ° である請求項 8のガス化燃焼設備。  10. An inclined wall which is inclined inward is provided along an inner wall near the fluidized bed surface of the fluidized bed gasifier, and the inclined wall turns the upward flow in the peripheral portion of the fluidized medium to the central portion, The swirling motion of the fluidized medium is promoted, the downward projected area of the inclined wall is 25 to 40% of the cross section of the fluidized bed, and the inclined angle of the inclined wall with respect to the horizontal plane is 30 to 60 °. 9. The gasification and combustion facility according to claim 8, wherein
PCT/JP1997/004314 1996-11-26 1997-11-26 Method and equipment for gasification and burning of solid waste WO1998023898A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU51916/98A AU5191698A (en) 1996-11-26 1997-11-26 Method and equipment for gasification and burning of solid waste

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP8329079A JPH10160141A (en) 1996-11-26 1996-11-26 Method and apparatus for gasifying and combusting solid waste
JP8/329079 1996-11-26

Publications (1)

Publication Number Publication Date
WO1998023898A1 true WO1998023898A1 (en) 1998-06-04

Family

ID=18217396

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1997/004314 WO1998023898A1 (en) 1996-11-26 1997-11-26 Method and equipment for gasification and burning of solid waste

Country Status (3)

Country Link
JP (1) JPH10160141A (en)
AU (1) AU5191698A (en)
WO (1) WO1998023898A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115013816A (en) * 2022-05-27 2022-09-06 中国船舶重工集团公司第七一一研究所 Solid waste treatment device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2501841C (en) 2004-03-23 2012-07-10 Central Research Institute Of Electric Power Industry Carbonization and gasification of biomass and power generation system
KR20210085419A (en) * 2019-12-30 2021-07-08 에스케이이노베이션 주식회사 Fluidized bed reactor and method of recycling active metal of lithium secondary battery utilizing the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0587314A (en) * 1991-09-27 1993-04-06 Ishikawajima Harima Heavy Ind Co Ltd Waste incinerator
JPH05223226A (en) * 1992-02-06 1993-08-31 Ishikawajima Harima Heavy Ind Co Ltd Waste incinerator
JPH07332614A (en) * 1994-03-10 1995-12-22 Ebara Corp Method for fluidized bed gasification and melting combustion as well as its apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0587314A (en) * 1991-09-27 1993-04-06 Ishikawajima Harima Heavy Ind Co Ltd Waste incinerator
JPH05223226A (en) * 1992-02-06 1993-08-31 Ishikawajima Harima Heavy Ind Co Ltd Waste incinerator
JPH07332614A (en) * 1994-03-10 1995-12-22 Ebara Corp Method for fluidized bed gasification and melting combustion as well as its apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115013816A (en) * 2022-05-27 2022-09-06 中国船舶重工集团公司第七一一研究所 Solid waste treatment device

Also Published As

Publication number Publication date
JPH10160141A (en) 1998-06-19
AU5191698A (en) 1998-06-22

Similar Documents

Publication Publication Date Title
EP0776962B1 (en) Method and apparatus for treating wastes by gasification
US5922090A (en) Method and apparatus for treating wastes by gasification
JP4076233B2 (en) Method and apparatus for gasification and melting treatment of solid waste
Arena Process and technological aspects of municipal solid waste gasification. A review
EP1111304B1 (en) Method of and apparatus for fluidized-bed gasification and melt combustion
JP4454045B2 (en) Swivel melting furnace and two-stage gasifier
US6286443B1 (en) Method for treating combustibles by slagging combustion
JP3916179B2 (en) High temperature gasification method and apparatus for waste
JP3079051B2 (en) Gasification of waste
JP3938981B2 (en) Gas recycling method for waste gasification
JP3707754B2 (en) Waste treatment system and method and cement produced thereby
WO1998023898A1 (en) Method and equipment for gasification and burning of solid waste
JP2007309642A (en) Swirling-type melting furnace, and method of gasifying waste using the same
JP3938980B2 (en) Waste gasification apparatus and furnace wall self-coating method
JP2006170609A (en) Gasification and gasification combustion method of solid waste
JPH11173523A (en) Method and device for treating waste through combustion
JPH09145031A (en) Method for incinerating solid waste
JPH09236220A (en) Method for gasifying and igniting solid waste material
JP3941196B2 (en) Waste gasification method and apparatus
JPH1133519A (en) Gasification treatment of waste
JP2005308390A (en) Method and facility for gasifying and combusting solid waste
JP3791853B2 (en) Gasification of solid waste and gasification combustion method
JP2001201022A (en) Method of fusing waste matter
JPH1143680A (en) Method and equipment for gasifying waste material
JP2004264017A (en) Municipal waste gasification furnace and method

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AU AZ BA BB BG BR BY CA CN CU CZ EE GE GH HU ID IL IS JP KE KG KR KZ LC LK LR LS LT LV MD MG MK MN MW MX NO NZ PL RO RU SD SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZW AM AZ BY KG KZ MD RU TJ TM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH KE LS MW SD SZ UG ZW AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase