JPH10128084A - Operation of membrane separator - Google Patents

Operation of membrane separator

Info

Publication number
JPH10128084A
JPH10128084A JP30125796A JP30125796A JPH10128084A JP H10128084 A JPH10128084 A JP H10128084A JP 30125796 A JP30125796 A JP 30125796A JP 30125796 A JP30125796 A JP 30125796A JP H10128084 A JPH10128084 A JP H10128084A
Authority
JP
Japan
Prior art keywords
membrane
water quality
filtrate
sewage
filtration flux
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30125796A
Other languages
Japanese (ja)
Inventor
Masashi Beppu
雅志 別府
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP30125796A priority Critical patent/JPH10128084A/en
Publication of JPH10128084A publication Critical patent/JPH10128084A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PROBLEM TO BE SOLVED: To sufficiently restrain an increase in a load to stably perform operation and to enable stable operation over a long time by detecting a change in water quality of original liquid and to adjust a filtration flux according to the water quality to restrain contamination of the membrane surface. SOLUTION: After sewage such as night soil is once stored in a storage tank, the sewage is fed to an original liquid treating tank 1 by a liquid transfer pump 52, and air is jetted from a diffusing pipe 3 by the drive of a blower 32. At the same time, membrane elements 2,... are evacuated on the filtrate flow passage side by the drive of a vacuum pump 41 to apply a prescribed inter-membrane differential pressure, and under contact with jetted air, organic matter in the sewage is adsorbed and decomposed metabolically by aerobic microorganisms while the aerobic microorganisms are propagated, water is made to permeate the membrane of the membrane elements 2,..., and the filtrate is taken out to a filtrate storage tank 42 through a filtrate takeoff piping 4. Therefore, in a membrane separating method, particularly a membrane separation active sludge treating method, operating conditions are adjusted according to water quality to restrain membrane contamination and enable long-term stable operation.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、し尿、下水、生活
排水、工場排水等の汚水処理に使用する膜分離装置の運
転方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for operating a membrane separation apparatus used for treating sewage such as human waste, sewage, domestic wastewater, and industrial wastewater.

【0002】[0002]

【従来の技術】近来、し尿、下水、家庭排水、工場排水
(以下、汚水と称する)の伝統的な処理方法である重力
分離活性汚泥処理法(曝気槽で微生物分解処理を行い、
この処理汚水を沈殿分離室に導き、活性汚泥を重力分離
により分離し、その分離汚泥の一部を曝気槽に返送する
方法)に代替する方法として、膜分離活性汚泥処理法が
注目されている。この処理法においては、固液分離を膜
モジュ−ルによる濾過で行い、濾過液を取出し、余剰汚
泥を直接曝気槽から引き抜いており、曝気槽のMLSS
(混合液浮遊性固形物)を重力分離法に較べて著しく高
くできるので、曝気槽を重力分離法の場合に較べて相当
に縮小でき、更に沈殿分離室が不要であるので、装置全
体を小型化できる、曝気槽内のMLSS濃度を高く維持で
きるので、重力分離法とは異なり、余剰汚泥処理に際し
ての脱水が不要である、運転エネルギ−の省力化を図
ることができる、等の利点がある。
2. Description of the Related Art Recently, a gravity separation activated sludge treatment method, which is a traditional treatment method for human waste, sewage, domestic wastewater, and industrial wastewater (hereinafter referred to as sewage) (microbial decomposition treatment in an aeration tank,
A membrane separation activated sludge treatment method is attracting attention as an alternative to the method of introducing the treated wastewater into a sedimentation separation chamber, separating the activated sludge by gravity separation, and returning a part of the separated sludge to an aeration tank. . In this treatment method, solid-liquid separation is performed by filtration using a membrane module, the filtrate is taken out, and excess sludge is directly drawn out of the aeration tank.
(Floating solids in the liquid mixture) can be significantly higher than in the gravity separation method, so that the aeration tank can be considerably reduced in comparison with the gravity separation method. Since the MLSS concentration in the aeration tank can be maintained at a high level, there are advantages that, unlike the gravity separation method, there is no need for dehydration at the time of treating excess sludge, and it is possible to save operating energy. .

【0003】本出願人においては、膜分離法による汚水
処理装置として、「散気装置を有し、膜面に沿い鉛直方
向通路を有する膜モジュ−ルを前記散気装置の直上に配
設し、該膜装置の膜体濾過側を負圧とするための手段を
設けた散気式曝気槽」を既に提案した(特公平4−70
958号、特許第1874881号)。この装置の膜モ
ジュ−ルには、平型の膜エレメントを相互間に鉛直方向
通路を保持するように積重ねたものを使用している。
[0003] In the present applicant, a sewage treatment apparatus using a membrane separation method is described as "a membrane module having an air diffuser and having a vertical passage along the membrane surface is disposed immediately above the air diffuser. And a diffuser-type aeration tank provided with means for reducing the pressure on the membrane filtration side of the membrane device ”(Japanese Patent Publication No. 4-70).
958, Patent No. 1874881). The membrane module of this device uses flat membrane elements stacked so as to maintain a vertical passage between each other.

【0004】この散気式曝気槽を使用して汚水を処理す
るには、散気装置からの噴出エアのエア−リフト効果で
槽内原液を旋回させ、汚水中の有機物を空気との接触
下、好気性微生物により吸着・代謝分解させ、有機物を
減少させると共に好気性微生物を増殖させ、膜エレメン
トの膜面に沿う気液混合上昇流で膜面での汚泥ゲル層の
生成を抑制しつつ膜エレメントの濾過液側を減圧して膜
間差圧を発生させ、この膜間差圧下で活性汚泥液から水
を濾過により分離していく。
To treat sewage using this aeration type aeration tank, the undiluted solution in the tank is swirled by the air-lift effect of the air ejected from the aeration device, and the organic matter in the sewage is brought into contact with air. Adsorbed, metabolized and decomposed by aerobic microorganisms to reduce organic matter and proliferate aerobic microorganisms, and to suppress the generation of sludge gel layer on the membrane surface by gas-liquid mixed upflow along the membrane surface of the membrane element The filtrate side of the element is depressurized to generate a transmembrane pressure, and water is separated from the activated sludge by filtration under the transmembrane pressure.

【0005】この膜分離において、膜エレメント濾過液
側の減圧力、すなわち膜間差圧をΔP、膜自体の濾過抵
抗をR、膜面汚染による濾過抵抗の増大分をΔR、濾過
流束をIとすれば、 ΔP=I(R+ΔR) の関係が成立する。
[0005] In this membrane separation, the depressurizing force on the membrane element filtrate side, ie, the transmembrane pressure difference is ΔP, the filtration resistance of the membrane itself is R, the increase in filtration resistance due to membrane surface contamination is ΔR, and the filtration flux is I. Then, the relationship ΔP = I (R + ΔR) holds.

【0006】従来、膜分離装置の運転方法として、濾過
抵抗の増大ΔRのもとでΔPを一定とするために、ΔR
に応じて濾過流束Iを減少していき、濾過流束Iが下限
値に達すると運転を中断し膜を洗浄して濾過流束を回復
させ、次いで運転を再開する方法(定圧法)及び濾過抵
抗の増大ΔRのもとで濾過流束Iを一定とするために、
ΔRに応じてΔPを増加していき、ΔPが上限値に達す
ると運転を中断し膜を洗浄して濾過流束を回復させ、次
いで運転を再開する方法(定流量法)が知られている。
而るに、膜面の汚染速度、従って濾過抵抗の増大速度
は、原液の水質が悪いほど速く、水質が良いほど遅く、
上記定圧法での濾過流束Iの減少速度または定流量法で
のΔPの増加速度を水質に応じて設定することが公知で
ある。
Conventionally, as a method of operating a membrane separation apparatus, in order to keep ΔP constant under an increase ΔR in filtration resistance, ΔR
The filtration flux I is reduced in accordance with the following. When the filtration flux I reaches the lower limit, the operation is interrupted, the membrane is washed to recover the filtration flux, and then the operation is resumed (constant pressure method); In order to keep the filtration flux I constant under the increase ΔR of the filtration resistance,
A method is known in which ΔP is increased in accordance with ΔR, and when ΔP reaches an upper limit value, the operation is interrupted, the membrane is washed to recover the filtration flux, and then the operation is restarted (constant flow rate method). .
Therefore, the rate of contamination of the membrane surface, and thus the rate of increase of the filtration resistance, is higher as the water quality of the undiluted solution is worse, and slower as the water quality is better.
It is known to set the decreasing rate of the filtration flux I in the constant pressure method or the increasing rate of ΔP in the constant flow rate method according to the water quality.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、この手
段は膜面汚染、すなわち膜面への原液中懸濁物質の付着
を抑制するものではない。例えば、原液の水質が普通水
質後、悪水質になり、その後、再び普通水質に戻って
も、悪水質化直前の減圧値と同じ減圧値ではIを同じに
濾過流束に維持できないし(定流量法の場合)、悪水質
化直前の濾過流束と同じ濾過流束ではΔPを同じ減圧度
に維持できない(定圧法の場合)。これは、上記定圧法
での濾過流束Iの減少速度または定流量法でのΔPの増
加速度を水質に応じて設定しているにもかかわらず、膜
面への原液中懸濁物質の付着が相当に進行し、濾過抵抗
のかなりの増大が生じているからである。かかる膜汚染
の進行のもとでは長期安全運転はとうてい望めない。
However, this means does not suppress the contamination of the membrane surface, that is, the adhesion of the suspended substance in the stock solution to the membrane surface. For example, even if the water quality of the undiluted solution becomes bad water quality after normal water quality, and then returns to normal water quality again, I cannot maintain the same filtration flux at the same reduced pressure value as the reduced pressure value just before the poor water quality (constant). In the case of the flow rate method), ΔP cannot be maintained at the same degree of reduced pressure with the same filtration flux as that immediately before the deterioration of the water quality (in the case of the constant pressure method). This is because, despite the fact that the rate of decrease of the filtration flux I in the above constant pressure method or the rate of increase of ΔP in the constant flow rate method is set according to the water quality, the adhesion of suspended substances in the undiluted solution to the membrane surface. Has progressed considerably, and a considerable increase in filtration resistance has occurred. Under the progress of such membrane contamination, long-term safe driving cannot be expected at all.

【0008】本発明の目的は、膜分離法、特に膜分離活
性汚泥処理法において、水質に応じて運転条件を調整し
て膜汚染を抑制し、長期の安定運転を可能にすることに
ある。
An object of the present invention is to provide a membrane separation method, in particular, a membrane separation activated sludge treatment method, in which operating conditions are adjusted according to water quality to suppress membrane contamination and enable long-term stable operation.

【0009】[0009]

【課題を解決するための手段】本発明に係る膜分離装置
の運転方法は、内側を濾過液側とする膜エレメントを原
液中に浸漬し、散気手段により膜エレメントをエア−ス
クラビングしつつ膜エレメントの濾過液側を減圧して原
液を濾過処理する膜分離装置の運転方法において、原液
の水質変化を検出し、その水質に応じ濾過流束を調整し
て膜面汚染を抑制することを特徴とする構成であり、原
液の水質変化はTOC濃度で検出することが好適であ
り、濾過流束をTOC濃度30mg/リットル未満に対
し0.5m3/m2・day以上に、TOC濃度30〜50
mg/リットルに対し0.3〜0.5m3/m2・day
に、TOC濃度50mg/リットル以上に対し0.3m
3/m2・day以下に調整することが適切である。
A method of operating a membrane separation apparatus according to the present invention is characterized in that a membrane element having a filtrate side on the inside is immersed in a stock solution, and the membrane element is air-scrubbed by a diffuser. A method of operating a membrane separation device for filtering a stock solution by depressurizing the filtrate side of the element, wherein a change in water quality of the stock solution is detected, and a filtration flux is adjusted according to the water quality to suppress membrane surface contamination. The change in the water quality of the stock solution is preferably detected by the TOC concentration, and the filtration flux is set to 0.5 m 3 / m 2 · day or more for a TOC concentration of less than 30 mg / liter and a TOC concentration of 30 to 50
0.3~0.5m against mg / liter 3 / m 2 · day
0.3m for TOC concentration of 50mg / L or more
It is appropriate to adjust to 3 / m 2 · day or less.

【0010】[0010]

【発明の実施の形態】以下、図面を参照しつつ本発明の
実施の形態を説明する。図1は本発明において使用する
膜分離装置を示す説明図である。図1において、1は原
液処理槽であり、従来の活性汚泥方式による散気式曝気
槽の曝気槽本体を使用することができる。2,2…は原
液処理槽内に所定の間隔で配設した膜エレメントであ
り、内部に濾過液流路を有している。20は膜エレメン
ト2の濾過液集水管であり、エレメント内の濾過液流路
に連通され、膜を通過した濾過液が濾過液流路を経てこ
の濾過液集水管に集められる。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is an explanatory diagram showing a membrane separation device used in the present invention. In FIG. 1, reference numeral 1 denotes a stock solution treatment tank, which can use an aeration tank body of a conventional aeration-type aeration tank using an activated sludge method. Are membrane elements disposed at predetermined intervals in the undiluted solution treatment tank, and have a filtrate flow path therein. Reference numeral 20 denotes a filtrate collection pipe of the membrane element 2, which is connected to a filtrate flow path in the element, and the filtrate that has passed through the membrane is collected in the filtrate collection pipe via the filtrate flow path.

【0011】3,3…は膜エレメント2,…の下方に設
けた散気管であり、膜エレメント2,2間の間隙に原液
をエア−リフト効果により効率良く昇流させ得るように
配設してある。31は散気管3に接続した送気配管、3
2はブロワである。4は膜エレメント2,…の濾過液集
水管20,…に接続した濾過液取出し配管、41はこの
配管4に挿入した減圧ポンプ、42は濾過液貯槽であ
る。51は原液供給配管、52はこの配管51に挿入し
た液送ポンプである。
Numerals 3, 3,... Are air diffusers provided below the membrane elements 2,... Which are arranged in the gaps between the membrane elements 2, 2 so that the stock solution can be efficiently raised by the air-lift effect. It is. 31 is an air supply pipe connected to the air diffuser 3;
2 is a blower. Reference numeral 4 denotes a filtrate taking-out pipe connected to the filtrate collecting pipes 20, ... of the membrane elements 2, ..., 41 denotes a vacuum pump inserted into the pipe 4, and 42 denotes a filtrate storage tank. Reference numeral 51 denotes a stock solution supply pipe, and reference numeral 52 denotes a liquid feed pump inserted into the pipe 51.

【0012】6は原液の水質測定器であり、例えばTO
C濃度測定計(JIS K 0101工業用水試験方法記載の燃焼
酸化−赤外線式TOC分析法によるもの、燃焼酸化−赤
外線式TOC自動計測法によるもの等。何れにおいて
も、検水に酸を添加してPH3以下にしたのち、二酸化
炭素を含まない不活性ガスを通気して無機体炭素を除去
し、この検水を炭酸ガスと酸化剤との気液混合流中に定
量注入し、紫外線を照射して酸化し、酸化によって生成
した二酸化炭素量を赤外線分析計で測定する)、BOD
計測計、COD計測計等を使用でき、特に、TOC濃度
測定計の使用が短時間測定が可能であり、原水成分に影
響され難いので、好ましい。
Reference numeral 6 denotes an undiluted water quality measuring instrument, for example, TO
C concentration meter (combustion oxidation-infrared TOC analysis method described in JIS K 0101 Industrial Water Test Method, combustion oxidation-infrared TOC automatic measurement method, etc. In any case, acid is added to the test water After adjusting the pH to 3 or less, an inert gas containing no carbon dioxide is passed to remove inorganic carbon, and this sample is quantitatively injected into a gas-liquid mixed flow of carbon dioxide gas and an oxidizing agent, and irradiated with ultraviolet rays. Oxidized, and the amount of carbon dioxide generated by the oxidation is measured with an infrared spectrometer), BOD
A measuring instrument, a COD measuring instrument, or the like can be used. In particular, it is preferable to use a TOC concentration measuring instrument because it can measure in a short time and is hardly affected by raw water components.

【0013】図2の(イ)及び図2の(ロ)〔図2の
(イ)におけるロ−ロ断面図〕は、上記膜エレメント2
の一例を示し、濾過液集水管21を有する枠体20内に
濾過液流路材22(例えば、織布、不織布、ネット等)
を納め、枠体の両面に平膜23(精密濾過膜、限外濾過
膜等)を接着剤24で接着してあり、平膜23には、支
持基材上に膜を張り合わせたもの、膜に織布、不織布等
を埋め込んだもの等を使用できる。図3の(イ)及び図
3の(ロ)〔図3の(イ)におけるロ−ロ断面図〕は、
上記膜エレメントの別例を示し、プレ−ト20の両面に
濾過液通路溝201,…を形成し、プレ−ト20の一端
面に前記濾過液通路溝201,…に連通する濾過液取出
し孔202を設け、プレ−ト20の各面に順次に濾過液
通路用スペ−サ21及び平膜23を積層し、平膜23の
周囲部をプレ−ト各面に接着剤により封止してある。上
記膜エレメント2の寸法は、処理槽の寸法を、従来の散
気型曝気槽の曝気室の寸法にほぼ等しくする場合、通
常、高さ50cm〜150cm、巾20cm〜100c
m、厚み3mm〜6mmとされる。
FIG. 2 (a) and FIG. 2 (b) [a cross-sectional view taken along the roll line in FIG. 2 (a)]
And a filtrate flow path material 22 (for example, woven cloth, non-woven cloth, net, etc.) in a frame 20 having a filtrate collection pipe 21.
And a flat membrane 23 (microfiltration membrane, ultrafiltration membrane, etc.) is adhered to both sides of the frame with an adhesive 24. The flat membrane 23 is formed by laminating a membrane on a supporting substrate, Embedded with a woven fabric, a non-woven fabric or the like can be used. 3 (a) and 3 (b) [a cross-sectional view taken along a line in FIG. 3 (a)]
Another example of the above membrane element is shown. Filtrate passage grooves 201,... Are formed on both sides of the plate 20, and a filtrate outlet hole communicating with the filtrate passage grooves 201,. 202, a filtrate passage spacer 21 and a flat membrane 23 are sequentially laminated on each side of the plate 20, and the periphery of the flat membrane 23 is sealed on each side of the plate with an adhesive. is there. The dimensions of the membrane element 2 are generally 50 cm to 150 cm in height and 20 cm to 100 c in width when the dimensions of the treatment tank are made substantially equal to the dimensions of the aeration chamber of the conventional aeration type aeration tank.
m and a thickness of 3 mm to 6 mm.

【0014】上記膜エレメント2,…のモジュ−ル構造
には、図4に示すように、複数箇の膜エレメント2,…
を交互間に原液通路用の間隙を介して並設し、この並設
群をフレ−ム200内に納めたものを使用できる。上記
モジュ−ルは原液処理槽の底面に直接据置くか、同底面
に設置した架台上に載置するか、吊り下げ方式により原
液処理槽内に浸漬する等により配設される。
As shown in FIG. 4, the module structure of the membrane elements 2,.
Can be alternately arranged side by side through a gap for a stock solution passage, and a group in which the side-by-side group is accommodated in a frame 200 can be used. The module is placed directly on the bottom surface of the stock solution treatment tank, mounted on a gantry installed on the bottom surface, or immersed in the stock solution treatment tank in a suspended manner.

【0015】本発明により上記の膜分離装置を運転する
には、汚水(し尿、下水、生活排水、工場排水等)を貯
槽に一旦貯えたうえ、図1において、この汚水を液送ポ
ンプ52により原液処理槽1に供給し、ブロワ32の駆
動により散気管3から空気を噴出させ、同時に、減圧ポ
ンプ41の駆動により膜エレメント2,…の濾過液流路
側を減圧して所定の膜間差圧を作用させ、汚水中の有機
物を噴出空気との接触下、好気性微生物により吸着・代
謝分解させると共に好気性微生物を増殖させつつ、膜エ
レメント2,…の膜に水を透過させ、これを濾過液取出
し配管4を経て濾過液貯槽42に取出していく。
In order to operate the above-mentioned membrane separation apparatus according to the present invention, sewage (human waste, sewage, domestic wastewater, factory wastewater, etc.) is temporarily stored in a storage tank, and the wastewater is fed by a liquid feed pump 52 in FIG. Is supplied to the undiluted solution processing tank 1, air is blown out from the air diffuser 3 by driving the blower 32, and at the same time, the filtrate flow path side of the membrane elements 2,. To cause organic matter in sewage to be adsorbed and metabolized and decomposed by aerobic microorganisms under the contact with the jet air, and to allow the aerobic microorganisms to grow while allowing water to permeate through the membranes of the membrane elements 2 and ... The liquid is taken out to the filtrate storage tank 42 via the liquid take-out pipe 4.

【0016】この場合、エア−スクラビングによる旋回
流速(平均流速)は、原液の液質や濃度や処理速度等に
よっても異なるが、通常0.01〜2.0m/sec、
好ましくは、0.02〜1.0m/secの範囲内とす
るように、ブロワ38の送風量が調整される。0.01
m/sec以下では、エア−スクラビングによる膜面の
洗浄効果を満足に行い難く、また、活性汚泥が沈殿して
微生物反応を促進させ難いし、2.0m/sec以上で
は、上記モジュ−ルの固定が困難となり、空気供給コス
トが高くなり過ぎる。
In this case, the swirling flow rate (average flow rate) by air scrubbing varies depending on the liquid quality and concentration of the stock solution, the processing speed, and the like, but is usually 0.01 to 2.0 m / sec.
Preferably, the air flow rate of the blower 38 is adjusted so as to be in the range of 0.02 to 1.0 m / sec. 0.01
At m / sec or less, it is difficult to satisfactorily perform the cleaning effect on the membrane surface by air-scrubbing, and it is difficult to precipitate activated sludge to promote microbial reaction. Fixing is difficult and air supply costs are too high.

【0017】上記膜エレメント2,2間の相互間隔は、
原液の水質等によっても異なるが、通常、5〜15mm
程度とされる。5mm以下では、エア−スクラビングに
よる膜エレメント間の原液上昇流に対する抵抗が高くな
り過ぎ、その流速を高速になし得ずに膜面洗浄効果が低
下し、15mm以上では、原液処理槽の容積に対する膜
面積が小となり過ぎ、膜分離装置の大型化が招来され
る。
The mutual spacing between the membrane elements 2, 2 is
Normally 5 to 15 mm
Degree. When the thickness is 5 mm or less, the resistance to the upward flow of the stock solution between the membrane elements due to air-scrubbing becomes too high, and the flow rate cannot be increased at a high speed, so that the membrane surface cleaning effect is reduced. The area becomes too small, which leads to an increase in the size of the membrane separation device.

【0018】図5のTは原液処理槽1に送られてくる汚
水の経時的な水質(TOC濃度)変化を示し、本発明に
係る運転方法おいては、この供給汚水の水質を一定の頻
度で測定し、通常、6時間から14日に一回の頻度、好
ましくは、1日から10日に1回の頻度で測定し、前回
の測定結果に対し所定の範囲以上の変動があれば、その
水質に適合した運転濾過流束に変更し、前回の測定結果
に対し所定の範囲以内の変動であれば、前回の設定運転
濾過流束を保持する。図5のIは、その運転濾過流束の
設定状況を示し、初期の良水質期間Iでは運転濾過流束
をi1に設定し、期間IIでは水質変化があるも良水質で
あるので運転濾過流束をi1のままとし、期間IIIでは中
水質に低下したので運転濾過流束をやや低いi2に設定
し、期間IVでは悪水質に低下したので運転濾過流束を極
めて低いi3に設定し、期間Vでは中水質に回復したので
運転濾過流束を前のi2に戻し、期間VIでは更に良水質
に回復したので運転濾過流束を以前のi1に戻してい
る。この間の膜間差圧△P、すなわち濾過液側の減圧度
は運転濾過流束の設定変化に対応して変化するが、時間
の経過があっても、例えば、期間IIと期間VIとの間のよ
うに、水質が同質であれば、膜間差圧が等しい、すなわ
ち、膜間差圧/濾過流束が等しく濾過抵抗が等しい、す
なわち、時間の経過があっても、濾過抵抗の増大がな
い、換言すれば、膜面汚染がないことが保証されてい
る。従来の運転方法、例えば、従来の定圧運転法でも、
水質に応じて濾過流束を調整することが知られている
が、時間の経過に伴う膜汚染の進行による濾過抵抗のか
なりの増大を回避できない。これに対して、本発明で
は、時間の経過に伴う膜汚染の進行を効果的に抑制でき
るように、汚染物の付着が生じやすい悪水質期間にに対
しては付着が生じ難い低濾過流束に設定し、汚染物の付
着が生じ難い良水質に対しては充分に高い濾過流束に設
定しており、TOC濃度30mg/リットル未満(良水
質)に対し0.5m3/m2・day以上に(好ましい範囲
は0.5m3/m2・day〜0.8m3/m2・day)、TO
C濃度30〜50mg/リットル(中水質)に対し0.
3〜0.5m3/m2・dayに、TOC濃度50mg/リ
ットル以上(悪水質)に対し0.3m3/m2・day以下
(好ましい範囲は0.3m3/m2・day〜0.2m3/m
2・day)に設定することにより、経時的な濾過抵抗の増
大を実質上排除でき、長期間にわたり安全運転できる。
T in FIG. 5 shows a temporal change in the water quality (TOC concentration) of the sewage sent to the stock solution treatment tank 1. In the operation method according to the present invention, the water quality of the supplied sewage is changed at a constant frequency. And is usually measured once every 6 hours to 14 days, preferably once every 1 to 10 days. If there is a variation of a predetermined range or more with respect to the previous measurement result, The operation filtration flux is changed to the one suitable for the water quality, and if the fluctuation is within a predetermined range with respect to the previous measurement result, the previous set operation filtration flux is held. I in Figure 5 shows the setting of the operating filtration flux, operation filtered set the initial good operating filtration flux in water quality period I to i 1, there is a change in water quality in the period II is also at good quality the flux was kept at i 1, the operating filtration flux since dropped to medium water in the period III set slightly lower i 2, the operating filtration flux since dropped to poor water quality in the period IV in extremely low i 3 set, since the recovered medium quality in the period V returns the operating filtration flux prior to i 2, returning the operating filtration flux to the previous i 1 so recovered to more good water quality in the period VI. During this time, the transmembrane pressure ΔP, that is, the degree of pressure reduction on the filtrate side, changes in accordance with the setting change of the operation filtration flux. However, even if time elapses, for example, between the period II and the period VI, If the water quality is the same, the transmembrane pressure is equal, i.e., the transmembrane pressure / filtration flux is equal and the filtration resistance is equal, i.e., even if time elapses, the filtration resistance increases. No, in other words, no film surface contamination is guaranteed. In the conventional operation method, for example, the conventional constant pressure operation method,
It is known to adjust the filtration flux according to the quality of the water, but a considerable increase in filtration resistance due to the progress of membrane fouling over time cannot be avoided. On the other hand, in the present invention, in order to effectively suppress the progress of membrane contamination with the passage of time, the low filtration flux which does not easily adhere during the poor water quality period in which the contamination is likely to adhere. , And a sufficiently high filtration flux is set for good water quality to which adhesion of contaminants hardly occurs, and 0.5 m 3 / m 2 · day for a TOC concentration of less than 30 mg / liter (good water quality). above (preferred range 0.5m 3 / m 2 · day~0.8m 3 / m 2 · day), tO
C concentration of 30 to 50 mg / liter (medium water quality)
The 3~0.5m 3 / m 2 · day, TOC concentration 50 mg / l or more (poor quality) to 0.3m 3 / m 2 · day or less (preferred range 0.3m 3 / m 2 · day~0 .2m 3 / m
By setting to 2 · day), an increase in filtration resistance over time can be substantially eliminated, and safe operation can be performed for a long period of time.

【0019】[0019]

【実施例】【Example】

〔実施例1〕膜エレメントには図2に示すものを使用
し、枠体20の寸法は、縦570mm、横(巾)450
mm、厚み5mmとし、膜23には公称孔径0.4μ
m、膜面積0.3m2のポリオレフィン系限外濾過膜を
使用した。モジュ−ルには、図4に示したものを使用
し、膜エレメント2の枚数は15枚とし、膜エレメント
相互間の間隔を15mmとした。膜分離装置には図1に
示したものを使用した。原液には初期MLSS濃度14,2
00mg/リットル、初期TOC濃度4.5mg/リッ
トルの活性汚泥溶液を使用し、その供給活性汚泥溶液の
経時的水質変化は図6の通りである。減圧ポンプは8分
運転−2分停止の繰返しの間歇運転とし、散気流量は汚
水旋回流速をほぼ0.5m/secとするように設定し
た。1回/2日の頻度でTOC濃度を測定し、TOC濃
度30mg/リットル以下に対しては運転濾過流束を
0.5m3/m2・dayに、TOC濃度30mg/リット
ル〜50mg/リットルの範囲に対しては運転濾過流束
を0.3m3/m2・dayに設定する基準にて、図6のI
で示すように、運転濾過流束の調整を行った。この間の
膜エレメントの濾過液側の減圧度は図6の△Pで示す通
りであり、設定運転濾過流束が共に0.5m3/m2・da
yである期間Iと期間IIIとの減圧度に実質上差がないこ
とから、濾過抵抗の増加がなく、膜汚染が進行していな
いことが明らかである。
Example 1 The membrane element shown in FIG. 2 was used, and the dimensions of the frame 20 were 570 mm in length and 450 mm in width (width).
mm, thickness 5 mm, and the membrane 23 has a nominal pore size of 0.4 μm.
m, a polyolefin-based ultrafiltration membrane having a membrane area of 0.3 m 2 was used. The module shown in FIG. 4 was used, the number of the membrane elements 2 was 15, and the interval between the membrane elements was 15 mm. The membrane separation device shown in FIG. 1 was used. Initial MLSS concentration 14,2 in stock solution
An activated sludge solution having an initial TOC concentration of 4.5 mg / liter was used at 00 mg / liter, and the water quality change over time of the supplied activated sludge solution is as shown in FIG. The decompression pump was set to an intermittent operation in which the operation was repeated for 8 minutes and stopped for 2 minutes, and the amount of diffused air was set such that the sewage swirl velocity was approximately 0.5 m / sec. The TOC concentration was measured once every two days, and for a TOC concentration of 30 mg / liter or less, the operation filtration flux was set to 0.5 m 3 / m 2 · day, and the TOC concentration was 30 mg / liter to 50 mg / liter. For the range, on the basis of setting the operation filtration flux to 0.3 m 3 / m 2 · day, I in FIG.
As shown by, the operation filtration flux was adjusted. During this time, the degree of pressure reduction on the filtrate side of the membrane element is as shown by ΔP in FIG. 6, and the set operation filtration flux is both 0.5 m 3 / m 2 · da.
Since there is substantially no difference in the degree of pressure reduction between the period I and the period III, which is y, it is clear that there is no increase in filtration resistance and no membrane contamination has progressed.

【0020】〔実施例2〕原液に初期MLSS濃度10,5
00mg/リットル、初期TOC濃度38mg/リット
ルの活性汚泥溶液を使用し、その供給活性汚泥溶液の経
時的水質変化が図7の通りである。使用膜分離装置、減
圧ポンプの間歇運転、汚水旋回流速等を実施例1と同じ
とした。1回/7日の頻度でTOC濃度を測定し、実施
例1と同様のTOC濃度30mg/リットル以下に対し
ては運転濾過流束を0.5m3/m2・dayに、TOC濃
度30mg/リットル〜50mg/リットルの範囲に対
しては運転濾過流束を0.3m3/m2・dayに設定する
基準にて、図7のIで示すように、運転濾過流束の調整
を行った。この間の膜エレメントの濾過液側の減圧度は
図7の△Pで示す通りであり、設定運転濾過流束が等し
い期間(期間IとIIIとVまたは期間IIとIV)では減圧度に
実質上差がないことから、濾過抵抗の増加がなく、膜汚
染が進行していないことが明らかである。
Example 2 Initial MLSS concentration of 10,5 in stock solution
FIG. 7 shows the change in water quality over time of the activated sludge solution supplied using an activated sludge solution having an initial TOC concentration of 38 mg / liter. The membrane separator used, the intermittent operation of the vacuum pump, the sewage swirling flow rate, and the like were the same as in Example 1. The TOC concentration was measured once every 7 days. For the same TOC concentration of 30 mg / L or less as in Example 1, the operation filtration flux was set to 0.5 m 3 / m 2 · day, and the TOC concentration was set to 30 mg / L. The operation filtration flux was adjusted as shown by I in FIG. 7 on the basis of setting the operation filtration flux to 0.3 m 3 / m 2 · day in the range of 1 to 50 mg / liter. . During this period, the degree of pressure reduction on the filtrate side of the membrane element is as shown by ΔP in FIG. Since there is no difference, it is clear that there is no increase in filtration resistance and no membrane contamination has progressed.

【0021】〔比較例1〕実施例2で使用した図7に示
す経時的水質変化の活性汚泥溶液を、使用膜分離装置、
減圧ポンプの間歇運転、汚水旋回流速等は実施例1,2
と同じとし、図8のIで示すように、設定濾過流束0.
5mg/リットルにて定流量運転した。減圧度の経時的
変動は図8の△Pで示す通りであり、経時的濾過抵抗の
増大が激しく膜汚染の進行が顕著であることが明らかで
ある。
[Comparative Example 1] The activated sludge solution having a temporal change in water quality shown in FIG.
The intermittent operation of the pressure reducing pump, the sewage swirl flow rate, etc.
8 and as shown by I in FIG.
The operation was performed at a constant flow rate of 5 mg / liter. The time-dependent fluctuation of the degree of decompression is as shown by ΔP in FIG. 8, and it is clear that the filtration resistance is significantly increased with time and the progress of membrane contamination is remarkable.

【0022】〔比較例2〕実施例2に対し、期間IIIで
の運転濾過流束の設定変更を行わなかった以外、実施例
2に同じとした。図9のIで示すように、期間Vで運転
濾過流束を上記基準に基づき0.3m3/m2・dayに設
定変更したが、期間IIIでは設定変更を行わずに同基準
に背反したために、減圧度を回復させ得ず、相当の膜汚
染、すなわち濾過抵抗の増大があったことが明らかであ
る。
Comparative Example 2 Example 2 was the same as Example 2 except that the setting of the operation filtration flux in period III was not changed. As shown by I in FIG. 9, the operation filtration flux was changed to 0.3 m 3 / m 2 · day based on the above-mentioned standard in the period V. It is clear that the degree of pressure reduction could not be recovered and there was considerable membrane fouling, that is, an increase in filtration resistance.

【0023】[0023]

【発明の効果】本発明に係る膜分離装置の運転方法によ
れば、汚水の処理、特に膜分離活性汚泥法において、膜
分離装置を膜汚染をよく抑制して負荷の増加を充分に抑
えて安定に運転でき、長期間にわたり安定運転が可能に
なる。
According to the method of operating a membrane separation apparatus according to the present invention, in the treatment of sewage, in particular, the membrane separation activated sludge method, the membrane separation apparatus can sufficiently suppress the membrane contamination and sufficiently increase the load. Stable operation is possible, and stable operation is possible for a long period of time.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明において使用する膜分離装置の一例を示
す説明図である。
FIG. 1 is an explanatory diagram showing an example of a membrane separation device used in the present invention.

【図2】図1の膜分離装置における膜エレメントの一例
を示す説明図である。
FIG. 2 is an explanatory diagram showing an example of a membrane element in the membrane separation device of FIG.

【図3】図1の膜分離装置における膜エレメントの別例
を示す説明図である。
FIG. 3 is an explanatory view showing another example of the membrane element in the membrane separation device of FIG.

【図4】図1の膜分離装置における膜モジュ−ルの一例
を示す説明図である。
FIG. 4 is an explanatory diagram showing an example of a membrane module in the membrane separation device of FIG.

【図5】本発明における一般的な濾過流束の調整方法を
示す説明図である。
FIG. 5 is an explanatory diagram showing a general method of adjusting a filtration flux in the present invention.

【図6】実施例1における濾過流束の調整方法を示す説
明図である。
FIG. 6 is an explanatory diagram illustrating a method of adjusting a filtration flux in the first embodiment.

【図7】実施例1における濾過流束の調整方法を示す説
明図である。
FIG. 7 is an explanatory diagram showing a method of adjusting a filtration flux in the first embodiment.

【図8】比較例1における濾過流束の調整方法を示す説
明図である。
FIG. 8 is an explanatory diagram showing a method of adjusting a filtration flux in Comparative Example 1.

【図9】比較例1における濾過流束の調整方法を示す説
明図である。
FIG. 9 is an explanatory diagram showing a method of adjusting a filtration flux in Comparative Example 1.

【符号の説明】[Explanation of symbols]

1 原液処理槽 2 膜エレメント 3 散気管 6 水質測定計 Reference Signs List 1 stock solution treatment tank 2 membrane element 3 diffuser 6 water quality meter

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】内側を濾過液側とする膜エレメントを原液
中に浸漬し、散気手段により膜エレメントをエア−スク
ラビングしつつ膜エレメントの濾過液側を減圧して原液
を濾過処理する膜分離装置の運転方法において、原液の
水質変化を検出し、その水質に応じ濾過流束を調整して
膜面汚染を抑制することを特徴とする膜分離装置の運転
方法。
1. A membrane separation method comprising immersing a membrane element having a filtrate side on the inner side in a stock solution and filtering the stock solution by depressurizing the filtrate side of the membrane element while air-scrubbing the membrane element by a diffuser. A method for operating a membrane separation device, comprising detecting a change in water quality of a stock solution and adjusting a filtration flux according to the water quality to suppress membrane surface contamination.
【請求項2】原液の水質変化をTOC濃度で検出する請
求項1記載の膜分離装置の運転方法。
2. The method for operating a membrane separation apparatus according to claim 1, wherein a change in water quality of the stock solution is detected by a TOC concentration.
【請求項3】濾過流束をTOC濃度30mg/リットル
未満に対し0.5m3/m2・day以上に、TOC濃度3
0〜50mg/リットルに対し0.3〜0.5m3/m2
・dayに、TOC濃度50mg/リットル以上に対し
0.3m3/m2・day以下に調整する請求項2記載の膜
分離装置の運転方法。
3. The method according to claim 3, wherein the filtration flux is set to 0.5 m 3 / m 2 · day or more for a TOC concentration of less than 30 mg / liter,
0.3 to 0.5 m 3 / m 2 for 0 to 50 mg / l
3. The method for operating a membrane separation device according to claim 2, wherein the TOC concentration is adjusted to not more than 0.3 m 3 / m 2 · day for a TOC concentration of 50 mg / liter or more on day.
JP30125796A 1996-10-25 1996-10-25 Operation of membrane separator Pending JPH10128084A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30125796A JPH10128084A (en) 1996-10-25 1996-10-25 Operation of membrane separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30125796A JPH10128084A (en) 1996-10-25 1996-10-25 Operation of membrane separator

Publications (1)

Publication Number Publication Date
JPH10128084A true JPH10128084A (en) 1998-05-19

Family

ID=17894651

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30125796A Pending JPH10128084A (en) 1996-10-25 1996-10-25 Operation of membrane separator

Country Status (1)

Country Link
JP (1) JPH10128084A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000093753A (en) * 1998-07-22 2000-04-04 Toray Ind Inc Method for operating filter membrane module device and filter membrane module device
JP2014180594A (en) * 2013-03-18 2014-09-29 Kurita Water Ind Ltd Kraft pulp wastewater treatment method and apparatus
WO2023276882A1 (en) * 2021-06-28 2023-01-05 東レ株式会社 Method for operating membrane-separation activated sludge treatment device, and membrane-separation activated sludge treatment device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000093753A (en) * 1998-07-22 2000-04-04 Toray Ind Inc Method for operating filter membrane module device and filter membrane module device
JP2014180594A (en) * 2013-03-18 2014-09-29 Kurita Water Ind Ltd Kraft pulp wastewater treatment method and apparatus
WO2023276882A1 (en) * 2021-06-28 2023-01-05 東レ株式会社 Method for operating membrane-separation activated sludge treatment device, and membrane-separation activated sludge treatment device
JP7260067B1 (en) * 2021-06-28 2023-04-18 東レ株式会社 OPERATING METHOD OF MEMBRANE ACTIVATED SLUDGE TREATMENT APPARATUS AND MEMBRANE ACTIVATED SLUDGE TREATMENT APPARATUS

Similar Documents

Publication Publication Date Title
US7288197B2 (en) Biological membrane filtration system for water treatment and a water treatment process
US7087170B2 (en) Method and system for treating wastewater containing organic compounds
JPH04265128A (en) Membrane separation equipment
JPH0470958B2 (en)
WO2012079288A1 (en) Process, apparatus and membrane bioreactor for wastewater treatment
JPH07256281A (en) Waste water purifying method and tank
JPH07251043A (en) Filtering method and filter device
JP4859170B2 (en) Nitrogen-containing organic wastewater treatment system
JPH10128084A (en) Operation of membrane separator
JP3167242B2 (en) Septic tank combined with membrane separation
JPH09308883A (en) Apparatus for biological treatment of water
JPH0957289A (en) Biological treating device of fluidized bed type
JPH10314791A (en) Waste water treating device
JPH09117794A (en) Biological denitrification device
JP3496115B2 (en) Filtration membrane cleaning method in membrane filtration type water purification equipment
JPH10296252A (en) Aeration tank immersed membrane separation activated sludge apparatus
JPH08281080A (en) Membrane separation device
KR100383385B1 (en) Apparatus for filtering water in a membraned-combining type
JPH10244262A (en) Filtration method for wastewater
JPH07227526A (en) Separating treatment of water suspension
JP4104806B2 (en) Solid-liquid separation method and apparatus for organic wastewater treatment
JP3345732B2 (en) Water purification equipment
Terada et al. Fibrous support stabilizes nitrification performance of a membrane-aerated biofilm: The effect of liquid flow perturbation
JPH08257378A (en) Membrane separator
JP3642921B2 (en) Operation method of membrane separator