JPH10127602A - Superconducting magnetic device - Google Patents

Superconducting magnetic device

Info

Publication number
JPH10127602A
JPH10127602A JP8303966A JP30396696A JPH10127602A JP H10127602 A JPH10127602 A JP H10127602A JP 8303966 A JP8303966 A JP 8303966A JP 30396696 A JP30396696 A JP 30396696A JP H10127602 A JPH10127602 A JP H10127602A
Authority
JP
Japan
Prior art keywords
superconducting magnet
magnetic shield
superconducting
magnetic
magnet device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8303966A
Other languages
Japanese (ja)
Inventor
Takeshi Yao
武 八尾
Takao Honna
孝男 本名
Hajime Tanabe
肇 田邊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Healthcare Manufacturing Ltd
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Hitachi Medical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp, Hitachi Medical Corp filed Critical Mitsubishi Electric Corp
Priority to JP8303966A priority Critical patent/JPH10127602A/en
Priority to US09/101,048 priority patent/US6437672B1/en
Priority to DE69739151T priority patent/DE69739151D1/en
Priority to EP05028764A priority patent/EP1647831B1/en
Priority to DE69738995T priority patent/DE69738995D1/en
Priority to PCT/JP1997/003934 priority patent/WO1998019317A1/en
Priority to EP97909678A priority patent/EP0883143B1/en
Publication of JPH10127602A publication Critical patent/JPH10127602A/en
Priority to US10/191,466 priority patent/US6781492B2/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

PROBLEM TO BE SOLVED: To divide the yoke part of a magnetic shield into small parts and to easily insert a superconducting magnet after assembling the magnetic shield at a site by enabling to incorporate the assembling structure of the super conductive magnet in the magnetic field after assembling. SOLUTION: The superconducting magnet A which generates a uniform magnetic field in a measuring space 3 through the use of superconducting characteristic and is cooled to a temperature showing superconducting characteristic within a cooling container is provided with the magnetic shield B for suppressing the spreading of a leaked magnetic field distributed in its peripheral and external part. At this time the magnetic shield B is constituted of disassembleable iron board 5 and iron yokes 6 to insert the magnet A through between two iron yokes 6 after assembling. The iron yokes 6 are arranged at symmetrical positions at four corners. It is possible that an iron yoke on this side 6A is provided with a small diameter and arranged at a long interval but the iron yoke 6B on a deep side is provided with a large diameter and arranged at a little shorter interval.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、磁気共鳴イメ−ジ
ング装置(以下、MRI装置という)用超電導磁石装置
に係り、特に、超電導磁石および磁気シ−ルドの構造の
改良を行い、病院診療所等の使用場所への搬入後の組み
立てが容易で、かつ精度良く行うことができる超電導磁
石装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a superconducting magnet device for a magnetic resonance imaging device (hereinafter, referred to as an MRI device), and more particularly to a superconducting magnet and a magnetic shield for improving the structure of a superconducting magnet and magnetic shield. The present invention relates to a superconducting magnet device that can be easily assembled with high accuracy after being brought into a use place.

【0002】[0002]

【従来の技術】鉄による磁気シ−ルドを用いたMRI装
置用超電導磁石装置の従来例としては米国特許第5,1
94,810号に開示されたものがある。その構造を図
14、図15に示す。図14は全体斜視図、図15は計
測空間における横断面図である。この超電導磁石装置
は、上下に対向して配置した超電導コイル1により、計
測空間3に上下方向の均一磁場を発生させる。この超電
導コイル1は通常冷却容器2に収納され、超電導特性を
示す温度にまで冷却され保持されている。この上下の冷
却容器2は間隔を保持して支持体4にて支持される(冷
却容器を支持体で支持した構造体を以下超電導磁石とい
う)。さらに、上下に配置した超電導コイル1が発生す
る磁束の帰路として、鉄板5と鉄ヨ−ク6とからなる磁
気シ−ルドが設けられている。また、鉄ヨ−ク6は、磁
束の帰路の役割とともに上下の構造体を機械的に支持す
る働きもしている。また、鉄板5の計測空間(均一磁場
領域)3に面した側の、超電導コイル1の内側には、計
測空間3の磁場分布の均一度を補正するために、環状の
磁場分布補正用強磁性片7が配置されている。
2. Description of the Related Art A conventional example of a superconducting magnet apparatus for an MRI apparatus using a magnetic shield made of iron is disclosed in U.S. Pat.
No. 94,810. The structure is shown in FIGS. FIG. 14 is an overall perspective view, and FIG. 15 is a transverse sectional view in a measurement space. In this superconducting magnet device, a uniform magnetic field in the vertical direction is generated in the measurement space 3 by the superconducting coils 1 arranged vertically facing each other. The superconducting coil 1 is usually housed in a cooling vessel 2 and is cooled and held at a temperature exhibiting superconducting characteristics. The upper and lower cooling containers 2 are supported by a support 4 while maintaining an interval (a structure in which the cooling container is supported by the support is hereinafter referred to as a superconducting magnet). Further, a magnetic shield including an iron plate 5 and an iron yoke 6 is provided as a return path of the magnetic flux generated by the superconducting coils 1 arranged vertically. The iron yoke 6 also functions to return the magnetic flux and mechanically support the upper and lower structures. On the side facing the measurement space (uniform magnetic field region) 3 of the iron plate 5 and inside the superconducting coil 1, in order to correct the uniformity of the magnetic field distribution in the measurement space 3, an annular magnetic field distribution correcting ferromagnetic material is used. A piece 7 is arranged.

【0003】このような構造をしたMRI装置用超電導
磁石装置は、磁場強度の増大に伴い大型化、重量化の傾
向にある。このため、超電導磁石装置を病院等に納入す
るためには、先ず工場にて装置を分解可能な範囲で分解
し、現地にて組み立てを行う必要がある。次に、超電導
磁石装置を組み立てて、設置に適するように建物を増改
築するか、もしくは建物の入り口、通路を通過できる程
度にまで超電導磁石装置を分割して搬入して、シ−ルド
ル−ム内で組み立てを行う、などする。コスト的に見れ
ば、後者の分割搬入、組み立てを行う方が有利となる。
しかし、分割搬入、組み立てを行う方法を採用した場合
は、搬入のしやすさ、組み立ての容易さ、高い組み立て
精度が要求される。
[0003] The superconducting magnet device for an MRI device having such a structure tends to be larger and heavier as the magnetic field intensity increases. Therefore, in order to deliver a superconducting magnet device to a hospital or the like, it is necessary to disassemble the device at a factory to the extent that it can be disassembled, and to assemble the device on site. Next, the superconducting magnet device is assembled and the building is extended or remodeled so as to be suitable for installation, or the superconducting magnet device is divided and transported to such an extent that the superconducting magnet device can pass through the entrance and the passage of the building. Do assembling in the inside, etc. From the viewpoint of cost, it is more advantageous to carry out the latter divisional loading and assembly.
However, in the case of adopting the method of performing the divided carrying-in and the assembling, easy carrying-in, easy assembling, and high assembling accuracy are required.

【0004】この要求を前提として、上記の従来装置に
ついて、搬入、組み立て方法を考えてみると、先ず、鉄
ヨ−ク6の間隔が超電導磁石の直径より狭いため、磁気
シ−ルド組み立て後に横方向から超電導磁石を挿入する
ことは不可能である。従って、装置の組み立て時には、
(a)下側の鉄板5を組み立てた上に超電導磁石を載
せ、その後鉄ヨ−ク6および上側の鉄板5を組み立て
る、もしくは(b)下側の鉄板5および鉄ヨ−ク6を組
み立てた状態にて、上から超電導磁石を挿入し、上側の
鉄板5を載せる、などの方法が考えられる。
[0004] Considering this requirement, a method of carrying in and assembling the above-mentioned conventional apparatus is as follows. First, since the interval between the iron yokes 6 is smaller than the diameter of the superconducting magnet, the iron yoke 6 has to be laterally assembled after assembling the magnetic shield. It is impossible to insert the superconducting magnet from the direction. Therefore, when assembling the device,
(A) The superconducting magnet is mounted on the lower iron plate 5 assembled, and then the iron yoke 6 and the upper iron plate 5 are assembled, or (b) the lower iron plate 5 and the iron yoke 6 are assembled. In this state, a method of inserting a superconducting magnet from above and placing the upper iron plate 5 thereon can be considered.

【0005】また、この従来例では、計測空間3におけ
る磁場分布の補正を目的として環状の磁場分布補正用強
磁性片7が磁気シ−ルドの鉄板5の計測空間3に面した
側に固定されている。このため、超電導磁石を磁気シ−
ルド内に挿入し固定した後に、これらの磁場分布補正用
強磁性片7を固定しなければならず、作業性が非常に悪
い。
In this conventional example, an annular magnetic field distribution correcting ferromagnetic piece 7 is fixed to the side of the iron plate 5 of the magnetic shield facing the measurement space 3 for the purpose of correcting the magnetic field distribution in the measurement space 3. ing. For this reason, the superconducting magnet is magnetically shielded.
After the magnetic field distribution correcting ferromagnetic piece 7 must be fixed after being inserted into the field and fixed, the workability is very poor.

【0006】[0006]

【発明が解決しようとする課題】上記の従来の技術で説
明した如く、最近のMRI装置用超電導磁石装置は大型
化、重量化が進んでいるため、それを病院等の使用場所
へ納入するためには、分割して製作し、現地にて組み立
てることが当然のこととなりつつある。しかしながら、
分割搬入、現地組み立ての方法においては、磁気シ−ル
ドを幾つかに分割したとしても、磁気シ−ルドを組み立
てて、その中に超電導磁石を組み込み、しかる後に、上
側の鉄板5もしくは鉄ヨ−ク6を組み込む必要があっ
た。この方法による組み立ては、大型化した磁気シ−ル
ドに対しては容易な作業ではなく、強度的に弱い超電導
磁石を組み立てるのと平行して、重量物である磁気シ−
ルドを組み立てなければならない。また、超電導磁石を
分解して現地で組み立てることは、工場における磁場調
整の再現性が保たれず、現地にて細かな調整が必要であ
った。
As described in the above prior art, recent superconducting magnet devices for MRI devices are becoming larger and heavier, and are therefore required to be delivered to places of use such as hospitals. , It is becoming a matter of course to make the parts separately and assemble them locally. However,
In the method of divided loading and assembling on site, even if the magnetic shield is divided into several parts, the magnetic shield is assembled, a superconducting magnet is incorporated therein, and then the upper iron plate 5 or iron yoke is assembled. It was necessary to incorporate the tool 6. Assembling by this method is not an easy operation for a large-sized magnetic shield, and is in parallel with assembling a superconducting magnet having a weak strength, and is a heavy magnetic shield.
Have to assemble the field. In addition, disassembling the superconducting magnet and assembling it on site did not maintain the reproducibility of the magnetic field adjustment in the factory, and required fine adjustment on site.

【0007】このような問題を解決するため、本発明で
は、磁気シ−ルドの継鉄部を小さく分割するとともに、
現地にて磁気シ−ルドの組み立てを行った後に、その中
に超電導磁石を容易に挿入できる超電導磁石装置を提供
することを目的とする。
In order to solve such a problem, according to the present invention, the yoke portion of the magnetic shield is divided into small parts.
It is an object of the present invention to provide a superconducting magnet device that can easily insert a superconducting magnet into a magnetic shield after assembling the magnetic shield on site.

【0008】[0008]

【課題を解決するための手段】上記目的を達成する本発
明の超電導磁石装置は、超電導特性を有する物質から構
成され、有限の領域において第1の方向に向かう均一磁
場を発生させる磁場発生源と、該磁場発生源を収納し超
電導特性を示す温度にまで冷却し保持する冷却手段と、
該冷却手段を支持する支持手段とを備えた超電導磁石
と、該超電導磁石の周囲を包囲するように上下に配置さ
れた板状強磁性体と該板状強磁性体を磁気的に接続しか
つ支持する複数個の柱状強磁性体とによって形成される
磁気シ−ルドとを組み合せた超電導磁石装置において、
前記磁気シ−ルドを組み立てた後に、その内部に前記超
電導磁石の組立構造体を挿入し組み込むことを可能にし
たものである(請求項1)。
A superconducting magnet device according to the present invention, which achieves the above object, comprises a magnetic field source which is made of a material having superconducting characteristics and generates a uniform magnetic field in a finite region in a first direction. Cooling means for housing the magnetic field source, cooling and maintaining the temperature to a temperature exhibiting superconductivity,
A superconducting magnet comprising a supporting means for supporting the cooling means, a plate-shaped ferromagnetic body disposed vertically so as to surround the superconducting magnet, and a magnetic connection between the plate-shaped ferromagnetic substance and In a superconducting magnet device combining a magnetic shield formed by a plurality of columnar ferromagnetic materials to be supported,
After assembling the magnetic shield, the superconducting magnet assembly structure can be inserted and incorporated therein (Claim 1).

【0009】この構成では、超電導磁石装置が超電導磁
石と磁気シ−ルドから構成され、磁気シ−ルドを組み立
てた後に、その内部に超電導磁石を挿入し組み込むこと
ができる。このため、超電導磁石装置を病院等へ納入す
る場合に、工場で超電導磁石装置を組み立て、調整した
後、超電導磁石の組立構造体と、磁気シ−ルドの構成要
素に分割し、現地搬入後に磁気シ−ルドの組み立てを行
い、その中に超電導磁石の組立構造体を挿入して、装置
全体の組み立て、調整を行うことができる。この結果、
分割搬入、現地組み立てが可能となり、コストの低減も
図ることができる。
In this configuration, the superconducting magnet device is composed of a superconducting magnet and a magnetic shield, and after assembling the magnetic shield, the superconducting magnet can be inserted and incorporated therein. For this reason, when delivering a superconducting magnet device to a hospital, etc., the superconducting magnet device is assembled and adjusted at a factory, then divided into a superconducting magnet assembly structure and components of a magnetic shield. By assembling the shield and inserting the superconducting magnet assembly into the shield, the entire apparatus can be assembled and adjusted. As a result,
Split delivery and on-site assembly are possible, and costs can be reduced.

【0010】また、本発明の超電導磁石装置では、前記
超電導磁石の組立構造体を前記磁気シ−ルド内に挿入す
るときの前記超電導磁石の組立構造体の挿入軌跡と重な
らないように、前記柱状強磁性体が配置されている(請
求項2)。この構成では、超電導磁石の組み立て構造体
を磁気シ−ルド内へ挿入する通路には柱状強磁性体が存
在しないので、超電導磁石の組み立て構造体の挿入をス
ム−ズに行うことができる。
Further, in the superconducting magnet device of the present invention, the columnar shape of the superconducting magnet assembly is not overlapped with the insertion locus of the superconducting magnet assembly when the superconducting magnet assembly is inserted into the magnetic shield. A ferromagnetic material is provided (claim 2). In this configuration, since the columnar ferromagnetic material does not exist in the passage for inserting the assembly structure of the superconducting magnet into the magnetic shield, the assembly structure of the superconducting magnet can be inserted smoothly.

【0011】また、本発明の超電導磁石装置では、前記
柱状強磁性体のうちの少なくとも2個の柱状強磁性体の
間の間隙が、前記超電導磁石の組立構造体を前記磁気シ
−ルド内部に挿入できる寸法以上になっている(請求項
3)。この構成では、超電導磁石の組み立て構造体は磁
気シ−ルドの2本の柱状強磁性体の間を通して、磁気シ
−ルド内に挿入することができる。
Further, in the superconducting magnet device of the present invention, the gap between at least two of the columnar ferromagnetic bodies is such that the assembly structure of the superconducting magnet is located inside the magnetic shield. It is larger than the dimension that can be inserted (claim 3). In this configuration, the assembled structure of the superconducting magnet can be inserted into the magnetic shield by passing between the two columnar ferromagnetic materials of the magnetic shield.

【0012】また、本発明の超電導磁石装置では、前記
超電導磁石の挿入方向における前記超電導磁石と前記磁
気シ−ルドとの接触面に、前記超電導磁石を前記磁気シ
−ルド内に挿入するためのガイド手段を設けている(請
求項4)。この構成では、超電導磁石を磁気シ−ルド内
に挿入するためのガイド手段が、超電導磁石と磁気シ−
ルドとの接触面に設けられているので、このガイド手段
によって超電導磁石を磁気シ−ルド内の適正な位置に挿
入することができる。
Further, in the superconducting magnet device of the present invention, the superconducting magnet is inserted into the magnetic shield at a contact surface between the superconducting magnet and the magnetic shield in the insertion direction of the superconducting magnet. Guide means are provided (claim 4). In this configuration, the guide means for inserting the superconducting magnet into the magnetic shield includes the superconducting magnet and the magnetic shield.
Since the superconducting magnet is provided on the contact surface with the shield, the guide means can insert the superconducting magnet into an appropriate position in the magnetic shield.

【0013】前記ガイド手段1の態様として前記超電導
磁石と前記磁気シ−ルドとの接触面に、互いに他の接触
面と嵌合する凹凸面が前記超電導磁石の挿入方向と平行
に設けられている(請求項5)。更に、前記ガイド手段
の他の態様として、前記超電導磁石と前記磁気シ−ルド
との接触面の一方の面または両方の面に、1個以上の溝
が前記超電導磁石の挿入方向と平行に設けられている
(請求項6)。
As an embodiment of the guide means 1, a contact surface between the superconducting magnet and the magnetic shield is provided with an uneven surface which fits with another contact surface in parallel with the insertion direction of the superconducting magnet. (Claim 5). Further, as another aspect of the guide means, at least one groove is provided on one or both of the contact surfaces between the superconducting magnet and the magnetic shield in parallel with the insertion direction of the superconducting magnet. (Claim 6).

【0014】また、本発明の超電導磁石装置では、前記
超電導磁石を前記磁気シ−ルド内に挿入した後に、前記
溝に強磁性体を内包する固形または液状物体を埋設され
ている(請求項7)。この構成では、超電導磁石の挿入
のガイド手段として使用した溝を、強磁性体を含む物体
で埋設することにより、超電導磁石と磁気シ−ルドとの
密着性が向上し、かつ、計測空間における磁場分布の補
正を行うことができる。
In the superconducting magnet device according to the present invention, after the superconducting magnet is inserted into the magnetic shield, a solid or liquid body containing a ferromagnetic material is embedded in the groove. ). In this configuration, the groove used as the guide means for inserting the superconducting magnet is buried with an object containing a ferromagnetic material, so that the adhesion between the superconducting magnet and the magnetic shield is improved, and the magnetic field in the measurement space is improved. The distribution can be corrected.

【0015】また、本発明の超電導磁石装置では、前記
超電導磁石と前記磁気シ−ルドとの接触部に1個以上の
間隙部を設け、該間隙部に強磁性体を内包する固形また
は液状物体が配されている(請求項8)。この構成の場
合にも、請求項7と同様な効果が得られる。
Further, in the superconducting magnet device of the present invention, at least one gap is provided at a contact portion between the superconducting magnet and the magnetic shield, and a solid or liquid object containing a ferromagnetic material is provided in the gap. (Claim 8). Also in this case, the same effect as that of the seventh aspect can be obtained.

【0016】また、本発明の超電導磁石装置では、前記
超電導磁石の前記磁気シ−ルドに接する部分に磁場分布
補正用の強磁性片を付加して一体とし、該強磁性片を付
加した超電導磁石を前記磁気シ−ルド内に挿入する(請
求項9)。この構成では、予め磁場分布補正用の強磁性
片を超電導磁石に付加して一体化した超電導磁石を磁気
シ−ルドに組み込むことができるので、現地での組み立
ておよび磁場分布補正のための調整が容易になる。
Further, in the superconducting magnet device of the present invention, a superconducting magnet to which a ferromagnetic piece for correcting a magnetic field distribution is added and integrated with a portion of the superconducting magnet in contact with the magnetic shield, and the ferromagnetic piece is added thereto Is inserted into the magnetic shield (claim 9). In this configuration, a superconducting magnet integrated by adding a ferromagnetic piece for magnetic field distribution correction to the superconducting magnet in advance can be incorporated into the magnetic shield, so that on-site assembly and adjustment for magnetic field distribution correction can be performed. It will be easier.

【0017】また、本発明では、上記構成の超電導磁石
装置をMRI装置の静磁場発生装置として適用している
(請求項10)。
Further, in the present invention, the superconducting magnet device having the above configuration is applied as a static magnetic field generator of an MRI apparatus.

【0018】[0018]

【発明の実施の形態】以下、本発明の実施例を添付図面
に従って説明する。本発明の第1の実施例を図1および
図2に示す。本実施例の対象であるMRI装置用超電導
磁石装置の主な構成要素は従来技術で説明したものと基
本的に同一であるので、この部分については図15、図
16を用いて説明する。
Embodiments of the present invention will be described below with reference to the accompanying drawings. 1 and 2 show a first embodiment of the present invention. The main components of the superconducting magnet device for an MRI device, which is the object of the present embodiment, are basically the same as those described in the related art, so this portion will be described with reference to FIGS.

【0019】本実施例の超電導磁石装置は、超電導の性
質を利用して計測空間3に均一な磁場を発生させる幾つ
かの超電導コイル1と、この超電導コイル1を収納し超
電導特性を示す温度にまで冷却し保持する冷却容器2
と、この冷却容器2を支持する連結管4とを備えた超電
導磁石Aと、この超電導磁石Aの周辺外部に分布する漏
洩磁場の広がりを抑えるための磁気シ−ルドBとからな
る。この磁気シ−ルドBは鉄板5と鉄ヨ−ク6とからな
り、これらは分解可能で、かつ、組み立て後に2本の鉄
ヨ−ク6の間を通して超電導磁石Aを挿入できるような
構造になっている。
The superconducting magnet device of this embodiment uses several superconducting coils 1 for generating a uniform magnetic field in the measurement space 3 by utilizing the properties of superconductivity, and a temperature at which the superconducting coils 1 are housed and exhibit superconducting characteristics. Cooling container 2 that cools and holds until
A superconducting magnet A having a connecting pipe 4 for supporting the cooling vessel 2, and a magnetic shield B for suppressing the spread of a leakage magnetic field distributed around the superconducting magnet A. The magnetic shield B is composed of an iron plate 5 and an iron yoke 6, which can be disassembled and have such a structure that the superconducting magnet A can be inserted between the two iron yokes 6 after assembly. Has become.

【0020】超電導コイル1の配置は、基本的には従来
例と同じで、超電導コイル1は装置中央の均一磁場発生
領域(計測空間)3を挾んで上下対称に設置されてい
る。それに応じて、両超電導コイル1を収納した上下の
冷却容器2は、その間にある連結管4によって所定の距
離を保持して支持される。この連結管4は、機械的に上
下の冷却容器2を支える働きをしているが、必要によっ
ては、上下の冷却容器2を熱的に接続する働きを持たせ
てもよい。そうすることで、冷凍機を上下の冷却容器2
ごとに1台ずつ設ける必要がなくなり、システムに1台
の冷凍機で間にあわせることができる。また、連結管4
の本数は片側2本ずつに限定されることはなく、片側1
本ずつでも、あるいは3本、4本と増やすこともでき
る。
The arrangement of the superconducting coil 1 is basically the same as that of the conventional example. The superconducting coil 1 is vertically symmetrical with respect to a uniform magnetic field generation area (measurement space) 3 at the center of the apparatus. Accordingly, the upper and lower cooling containers 2 containing both superconducting coils 1 are supported at a predetermined distance by the connecting pipe 4 therebetween. The connecting pipe 4 has a function of mechanically supporting the upper and lower cooling containers 2, but may have a function of thermally connecting the upper and lower cooling containers 2 if necessary. By doing so, the refrigerator can be moved to the upper and lower cooling containers 2
There is no need to provide one unit for each unit, and a single refrigerator can be used for the system. In addition, connecting pipe 4
Is not limited to two on each side, but one on each side.
The number can be increased by three or four.

【0021】一方、超電導コイル1によって発生された
磁束による漏洩磁場を低減するために、装置の外周部に
鉄による磁気シ−ルドBを設けている。この磁気シ−ル
ドBは、上下の超電導コイル1を収納した冷却容器2の
上下を鉄板5で囲み、さらに上下の鉄板5を鉄ヨ−ク6
によって磁気的に接続している。また、この鉄ヨ−ク6
は上下の鉄板5を支持する働きもしている。このように
磁場発生源である超電導コイル1の周囲を強磁性体(本
実施例では鉄)で囲むことで、超電導磁石Aの外部に発
生する磁束について磁路が形成され、漏洩磁場が遠方ま
で広がることを抑制できる。
On the other hand, in order to reduce the leakage magnetic field due to the magnetic flux generated by the superconducting coil 1, a magnetic shield B made of iron is provided on the outer periphery of the device. In the magnetic shield B, the upper and lower sides of the cooling vessel 2 containing the upper and lower superconducting coils 1 are surrounded by iron plates 5, and the upper and lower iron plates 5 are further iron-yoke 6.
Are connected magnetically. This iron yoke 6
Also serves to support the upper and lower iron plates 5. By surrounding the superconducting coil 1 which is the magnetic field generating source with a ferromagnetic material (iron in this embodiment), a magnetic path is formed for the magnetic flux generated outside the superconducting magnet A, and the leakage magnetic field is extended to a distant place. Spreading can be suppressed.

【0022】また、ここで用いる強磁性体としては、磁
気的特性、コスト、機械的強度を考慮すると、一般には
鉄の使用が望ましい。このため、本実施例においては磁
気シ−ルドBを構成する要素として鉄板5、鉄ヨ−ク6
を用いたが、磁気的に強磁性を示すものであれば鉄以外
の材質も選択可能であり、本発明ではこの強磁性体とし
て鉄に限定するものではない。
As the ferromagnetic material used here, iron is generally desirable in view of magnetic properties, cost and mechanical strength. Therefore, in the present embodiment, the iron plate 5 and the iron yoke 6
However, a material other than iron can be selected as long as the material shows magnetic ferromagnetism, and the present invention does not limit the ferromagnetic material to iron.

【0023】また、今後の説明のため、超電導磁石Aの
中心部分、すなわち、均一磁場を発生させる空間(計測
空間)3に中心点を持つ3次元直交座標系を定義する。
この座標系は、上下方向にZ軸を持ち、図1の横方向に
X軸を、前記2軸に直交する方向にY軸を持っている。
テ−ブル(図示せず)に載せられた被検者は、一般にY
軸方向に沿って超電導磁石装置の中に挿入される。
For the sake of explanation in the future, a three-dimensional orthogonal coordinate system having a center point in the center of the superconducting magnet A, that is, a space (measurement space) 3 for generating a uniform magnetic field is defined.
This coordinate system has a Z axis in the vertical direction, an X axis in the horizontal direction in FIG. 1, and a Y axis in a direction orthogonal to the two axes.
A subject placed on a table (not shown) is generally Y
It is inserted into the superconducting magnet device along the axial direction.

【0024】本実施例において、超電導磁石AはY軸に
沿って2本の鉄ヨ−ク6の間を通して挿入される。図1
および図2は本実施例の計測空間における横断面図で、
超電導磁石Aと磁気シ−ルドBとの関係を示したもので
ある。図1の場合は磁気シ−ルドBの鉄ヨ−ク6が対称
に配置されたもの、図2の場合は鉄ヨ−ク6が前後非対
称に配置されたものである。すなわち、図1において
は、鉄ヨ−ク6は長方形の鉄板5の四隅の対称の位置に
配置されているが、図2においては、手前側の鉄ヨ−ク
6Aは外径が細く、X軸の近くに間隔を広くして配置さ
れているのに対し、奥側の鉄ヨ−ク6Bは外径が太く、
X軸から離れて間隔を少し狭くして配置されている。図
において、超電導磁石AはY軸に沿って手前側から奥側
に挿入される。その挿入の軌跡を複数個の円形の連鎖で
示している。本実施例では、磁気シ−ルドBを構成する
手前側の2本の鉄ヨ−ク6または6Aの間の最短距離が
超電導磁石Aの外径より大きく設定されているので、超
電導磁石Aはこの2本の鉄ヨ−ク6または6Aの間を通
して鉄板5の中央部に容易に挿入することができる。ま
た、図2の構成では、鉄ヨ−ク6を非対称に配置してい
ることから、超電導磁石Aの挿入口である手前側におい
て広い空間が得られている。
In this embodiment, the superconducting magnet A is inserted between two iron yokes 6 along the Y axis. FIG.
And FIG. 2 is a cross-sectional view of the measurement space of the present embodiment,
3 shows a relationship between a superconducting magnet A and a magnetic shield B. In the case of FIG. 1, the iron yoke 6 of the magnetic shield B is arranged symmetrically, and in the case of FIG. 2, the iron yoke 6 is arranged asymmetrically. That is, in FIG. 1, the iron yoke 6 is arranged at the four corners of the rectangular iron plate 5 symmetrically, but in FIG. 2, the iron yoke 6A on the near side has a small outer diameter and X While the iron yoke 6B on the far side has a large outside diameter,
It is arranged away from the X-axis at a slightly smaller interval. In the figure, a superconducting magnet A is inserted from the near side to the far side along the Y axis. The locus of the insertion is shown by a plurality of circular chains. In this embodiment, the shortest distance between the two iron yokes 6 or 6A on the near side constituting the magnetic shield B is set to be larger than the outer diameter of the superconducting magnet A. It can be easily inserted into the central part of the iron plate 5 through between the two iron yokes 6 or 6A. Further, in the configuration of FIG. 2, since the iron yoke 6 is asymmetrically arranged, a wide space is obtained on the near side, which is the insertion opening of the superconducting magnet A.

【0025】図1または図2のように磁気シ−ルドBの
鉄ヨ−ク6を配置することにより、磁気シ−ルドBを組
み立てた後に、超電導磁石Aを挿入することが可能とな
るので、磁気シ−ルドBと超電導磁石Aを別々に組み立
てることが可能となる。全体の組み立て手順としては、
先ず、分割した磁気シ−ルドBの構成要素をシ−ルドル
−ム内で組み立てて磁気シ−ルドBを作り、その後工場
で調整した超電導磁石Aを磁気シ−ルドB内に挿入す
る。
By arranging the iron yoke 6 of the magnetic shield B as shown in FIG. 1 or 2, it becomes possible to insert the superconducting magnet A after assembling the magnetic shield B. , The magnetic shield B and the superconducting magnet A can be assembled separately. As a whole assembly procedure,
First, the components of the divided magnetic shield B are assembled in a shield room to form a magnetic shield B, and then a superconducting magnet A adjusted at a factory is inserted into the magnetic shield B.

【0026】また、本実施例において、鉄板5と超電導
磁石Aとの接触面を互いに凸部を持たない平面とするこ
とで、互いの密着度を犠牲にすることなく、横方向(Y
軸方向)から超電導磁石Aを挿入することができる。そ
の結果、磁気シ−ルドBと超電導磁石Aとの固定の構造
が簡単になり、製造も容易になるので、コスト的にも安
価になる。また、本実施例のように鉄板5と超電導磁石
Aとの接触面を互いに凸部を持たない平面とすること
は、製造原価低減のためにも非常に有効である。
Further, in this embodiment, the contact surface between the iron plate 5 and the superconducting magnet A is a flat surface having no convex portions, so that the horizontal direction (Y
The superconducting magnet A can be inserted from the axial direction). As a result, the structure for fixing the magnetic shield B and the superconducting magnet A is simplified, and the manufacturing is facilitated, so that the cost is reduced. Further, it is very effective to reduce the manufacturing cost if the contact surface between the iron plate 5 and the superconducting magnet A as a flat surface having no convex portions as in this embodiment.

【0027】本発明の第2の実施例を図3〜図5に示
す。図3は全体斜視図、図4は正面図、図5は超電導磁
石Aの磁気シ−ルドB内への挿入を示す図である。本発
明の第2の実施例は、鉄ヨ−ク6を2本とし、さらに鉄
ヨ−ク6を計測空間3の上下方向の中心軸(Z軸)より
も奥側に配置したものである。この構成では、鉄板5A
の形状も前後方向で非対称となり、磁気シ−ルドBとし
ては前方に開けたものとなる。本実施例では、図5に示
す如く、超電導磁石Aを挿入するときの通路となる挿入
軌跡上には鉄ヨ−ク6が存在しないので、超電導磁石A
の磁気シ−ルドB内への挿入にあたっての障害は全くな
くなり、超電導磁石Aの磁気シ−ルドB内への挿入が非
常に容易になる。また、計測空間3に入った被検者にと
って大きな開放感も得られ、さらに検査時に被検者への
側方からのアクセスも容易になる。従って、現地での装
置の組み立て時において良好な作業性が得られるので、
強度的に弱い超電導磁石Aの磁気シ−ルドB内への挿入
作業が、より安全、確実なものとなる。つまり、現地作
業における効率を向上させることが可能となる。
A second embodiment of the present invention is shown in FIGS. 3 is an overall perspective view, FIG. 4 is a front view, and FIG. 5 is a view showing insertion of a superconducting magnet A into a magnetic shield B. In the second embodiment of the present invention, the number of the iron yokes 6 is two, and the iron yoke 6 is further disposed behind the center axis (Z axis) in the vertical direction of the measurement space 3. . In this configuration, the iron plate 5A
Is also asymmetric in the front-rear direction, and the magnetic shield B is opened forward. In this embodiment, as shown in FIG. 5, since the iron yoke 6 does not exist on the insertion trajectory serving as a passage for inserting the superconducting magnet A, the superconducting magnet A
No obstruction is caused when the superconducting magnet A is inserted into the magnetic shield B, and the superconducting magnet A can be easily inserted into the magnetic shield B. In addition, a great sense of openness is obtained for the subject who has entered the measurement space 3, and the subject can be easily accessed from the side during the examination. Therefore, good workability can be obtained when assembling the equipment on site,
The work of inserting the superconducting magnet A, which is weak in strength, into the magnetic shield B becomes safer and more reliable. That is, efficiency in on-site work can be improved.

【0028】本発明の第3の実施例を図6および図7に
示す。図6は全体斜視図、図7は超電導磁石Aの磁気シ
−ルドB内への挿入を示す図である。本実施例では装置
全体が前後方向に対称な構造になっている。磁気シ−ル
ドBは、計測空間3の上下に配置された鉄板5Bと、計
測空間3の両側方に配置され、鉄板5Bを支持すると共
に磁気的に接続されたコの字形の鉄ヨ−ク6Cとから構
成されている。鉄ヨ−ク6Cの断面は長方形で、2本の
鉄ヨ−ク6Cの間隔はその間に超電導磁石Aを挿入でき
る寸法になっている。磁気シ−ルドBをこのように構成
することにより、超電導磁石AをY軸方向から磁気シ−
ルドBに容易に挿入することができる。また、鉄ヨ−ク
6Cを前後対称に配置したことにより、計測空間3に相
当する均一磁場発生領域も前後対称となり、磁場分布の
補正が容易になる。また、断面が直線の組み合わせから
なる鉄ヨ−ク6Cを用いると、製作精度が上げられるの
で、磁気シ−ルドBの分割搬入、組み立てにあたって
は、精度の良い組み立てを行うことができる。
FIGS. 6 and 7 show a third embodiment of the present invention. FIG. 6 is an overall perspective view, and FIG. 7 is a view showing insertion of the superconducting magnet A into the magnetic shield B. In this embodiment, the entire apparatus has a structure symmetrical in the front-rear direction. The magnetic shield B is provided with iron plates 5B arranged above and below the measurement space 3 and U-shaped iron yokes arranged on both sides of the measurement space 3 to support the iron plate 5B and to be magnetically connected. 6C. The cross section of the iron yoke 6C is rectangular, and the distance between the two iron yokes 6C is such that the superconducting magnet A can be inserted therebetween. By configuring the magnetic shield B in this manner, the superconducting magnet A can be moved from the Y-axis direction to the magnetic shield.
Field B can be easily inserted. Further, by arranging the iron yoke 6C symmetrically in the front-rear direction, the uniform magnetic field generation region corresponding to the measurement space 3 is also symmetrical in the front-rear direction, and the magnetic field distribution can be easily corrected. In addition, if the iron yoke 6C having a cross section composed of a combination of straight lines is used, the manufacturing accuracy can be increased, so that the magnetic shield B can be assembled with high accuracy when dividedly carried in and assembled.

【0029】以上の本発明の実施例の説明では、鉄ヨ−
ク6として円柱もしくは四角形のものを例示してきた
が、本発明は鉄ヨ−ク6の形状をこれらに限定するもの
ではなく、長方形、楕円形、多角形等にあってもよい。
また、Z軸方向の位置によって鉄ヨ−ク6の断面形状が
異なってもよく、例えば、超電導磁石Aの各部の幅寸法
に合わせて鉄ヨ−ク6の対応部分の断面寸法を変えるこ
とにより、または鉄ヨ−ク6の配置を変えることによ
り、磁気シ−ルドBの組み立て後に超電導磁石Aを容易
に挿入することができる。
In the above description of the embodiment of the present invention, the iron
Although a cylinder or a square has been illustrated as the arc 6, the present invention is not limited to the shape of the iron yoke 6, but may be a rectangle, an ellipse, a polygon, or the like.
The sectional shape of the iron yoke 6 may be different depending on the position in the Z-axis direction. For example, by changing the sectional size of the corresponding portion of the iron yoke 6 according to the width of each part of the superconducting magnet A. Alternatively, by changing the arrangement of the iron yoke 6, the superconducting magnet A can be easily inserted after assembling the magnetic shield B.

【0030】本発明の第1〜第3の実施例において、鉄
ヨ−ク6の本数を2本または4本としたが、本発明では
鉄ヨ−ク6の本数はこれに限定されることはなく、3本
もしくは5本以上の鉄ヨ−ク6を持つ場合であってもよ
い。しかし、3本以上の鉄ヨ−ク6を持つ場合には、超
電導磁石Aを磁気シ−ルドB内に挿入できるように、超
電導磁石Aが挿入される部分の両側に配置された2本の
鉄ヨ−ク6の間の最短距離は、超電導磁石Aの最大直径
より大きくなるように構成されていることが必要であ
る。そのように鉄ヨ−ク6が配置されていることによ
り、磁気シ−ルドBの組み立て後に、超電導磁石Aをス
ム−ズに挿入できることになる。
In the first to third embodiments of the present invention, the number of iron yokes 6 is two or four. However, in the present invention, the number of iron yokes 6 is not limited to this. However, there may be a case where three or five or more iron yokes 6 are provided. However, when three or more iron yokes 6 are provided, two superconducting magnets A are inserted into the magnetic shield B so that two superconducting magnets A are inserted on both sides of the portion where the superconducting magnets A are inserted. It is necessary that the shortest distance between the iron yokes 6 is configured to be larger than the maximum diameter of the superconducting magnet A. By arranging the iron yoke 6 in such a manner, the superconducting magnet A can be smoothly inserted after the magnetic shield B is assembled.

【0031】本発明の第4の実施例を図8および図9に
示す。図8は第4の実施例の全体斜視図、図9は正面図
である。本実施例では、超電導磁石Aと磁気シ−ルドB
の接触面、つまり、超電導磁石Aの上面と上側鉄板5の
下面との接触面および超電導磁石Aの下面と下側鉄板5
の上面との接触面において、互いに嵌合し合うような断
面形状の嵌合部を形成することにより、磁気シ−ルドB
と超電導磁石Aとを互いに密着させながら、上記嵌合し
合うような断面と垂直な方向に、上記の嵌合部をガイド
として超電導磁石Aを磁気シ−ルドB内に挿入できるよ
うにしたものである。図8および図9に示したものは2
本の鉄ヨ−ク6を前後非対称に配置した場合の例である
が、他の鉄ヨ−ク6の配置の場合でも同様に適用するこ
とができる。図8において、超電導磁石AはY軸方向に
挿入することができる。従って、互いに嵌合し合う断面
はX軸方向に沿って形成されている。超電導磁石Aの冷
却容器2と磁気シ−ルドBの鉄板5Aの接触する面にそ
れぞれ凹凸面8A、8B、8Cと9A、9B、9Cとを
形成し、対応する凸面部と凹面部とを嵌合させている。
図8では嵌合する凹凸面を上下それぞれ5箇所ずつ設け
てあるが、少なくとも上下1個所ずつあればよい。ま
た、凹凸面の形状は、図示の四角形状のものに限らず、
三角形や半円形のものであってもよい。これらの凹凸面
は、互いに密着して嵌合すると共に、超電導磁石Aの挿
入時のガイドになればよい。
FIG. 8 and FIG. 9 show a fourth embodiment of the present invention. FIG. 8 is an overall perspective view of the fourth embodiment, and FIG. 9 is a front view. In this embodiment, the superconducting magnet A and the magnetic shield B
, That is, the contact surface between the upper surface of the superconducting magnet A and the lower surface of the upper iron plate 5 and the lower surface of the superconducting magnet A and the lower iron plate 5
A magnetic shield B is formed by forming a fitting portion having a cross-sectional shape so as to fit each other on the contact surface with the upper surface of the magnetic shield B.
And the superconducting magnet A can be inserted into the magnetic shield B by using the fitting portion as a guide in a direction perpendicular to the cross section where the fitting is performed while the superconducting magnet A and the superconducting magnet A are in close contact with each other. It is. The one shown in FIG. 8 and FIG.
Although this is an example in which the iron yokes 6 are arranged asymmetrically in the front-rear direction, the present invention can be similarly applied to other iron yoke 6 arrangements. In FIG. 8, the superconducting magnet A can be inserted in the Y-axis direction. Therefore, the cross sections that fit each other are formed along the X-axis direction. Irregular surfaces 8A, 8B, 8C and 9A, 9B, 9C are formed on the surfaces of the superconducting magnet A where the cooling container 2 and the iron plate 5A of the magnetic shield B are in contact with each other, and the corresponding convex and concave portions are fitted. Have been combined.
In FIG. 8, five mating concave and convex surfaces are provided at each of the upper and lower positions. Also, the shape of the uneven surface is not limited to the square shape shown in the figure,
It may be triangular or semicircular. These uneven surfaces may be fitted to each other in close contact with each other and serve as a guide when the superconducting magnet A is inserted.

【0032】以上説明したように超電導磁石Aと磁気シ
−ルドBの接触面を形成することにより、超電導磁石A
の磁気シ−ルドBへの挿入方向は1方向(図8ではY軸
方向)に限定され、すなわち、確実に1方向へ超電導磁
石Aを挿入することができ、磁気シ−ルドB内の目標と
する位置へ容易かつ確実に挿入することができる。
By forming the contact surface between the superconducting magnet A and the magnetic shield B as described above, the superconducting magnet A
The direction in which the superconducting magnet A is inserted into the magnetic shield B is limited to one direction (the Y-axis direction in FIG. 8), that is, the superconducting magnet A can be reliably inserted in one direction. Can be easily and reliably inserted into the position.

【0033】本発明の第5の実施例を図10および図1
1に示す。図10は第5の実施例の全体斜視図、図11
は正面図である。本実施例では、超電導磁石Aと磁気シ
−ルドBの接触面の部分に、角柱状の固形物体が挿入で
きるような間隙が設けられ、この間隙を超電導磁石Aを
磁気シ−ルドBに挿入するときのガイドとして用いら
れ、超電導磁石Aの挿入後には、上記の間隙に角柱状の
固形物体を挿入することにより、超電導磁石Aと磁気シ
−ルドAとの密着性の向上を図るものである。図10に
おいて、磁気シ−ルドBの鉄板5Aの、超電導磁石Aの
冷却容器2に接触する部分に角形の溝9Dが設けられて
いる。この角形の溝9Dは、超電導磁石Aを磁気シ−ル
ドB内に挿入するときは、冷却容器2の接触面の溝9D
に対向する部分に取り付けられた角形棒(図示せず)と
嵌合して、超電導磁石Aの挿入のためのガイドの役目を
果たす。図10では、溝9Dは鉄板5の側にのみ設けら
れているが、対向する冷却容器2の面にのみ設けられて
もよく、または鉄板5と冷却容器2の両側にまたがって
設けられてもよい。このときは、前記の角形棒は、鉄板
5の側に取り付ければよい。超電導磁石Aの挿入後は、
上記角形棒を取り除き、溝9Dに戻す。その後で、溝9
Dには角柱状の固形物体10を挿入し、埋め込むことに
より、超電導磁石Aと磁気シ−ルドBの密着性を向上さ
せる。
FIG. 10 and FIG. 1 show a fifth embodiment of the present invention.
It is shown in FIG. FIG. 10 is an overall perspective view of the fifth embodiment, and FIG.
Is a front view. In the present embodiment, a gap is provided at the contact surface between the superconducting magnet A and the magnetic shield B so that a prismatic solid object can be inserted. This gap is inserted into the superconducting magnet A into the magnetic shield B. After the superconducting magnet A is inserted, a solid object in the form of a prism is inserted into the gap to improve the adhesion between the superconducting magnet A and the magnetic shield A. is there. In FIG. 10, a rectangular groove 9D is provided in a portion of the iron plate 5A of the magnetic shield B in contact with the cooling container 2 of the superconducting magnet A. When the superconducting magnet A is inserted into the magnetic shield B, the rectangular groove 9D is formed in the groove 9D on the contact surface of the cooling vessel 2.
Mating with a square rod (not shown) attached to a portion opposed to, serves as a guide for insertion of superconducting magnet A. In FIG. 10, the groove 9 </ b> D is provided only on the side of the iron plate 5. However, the groove 9 </ b> D may be provided only on the opposite surface of the cooling container 2, or may be provided on both sides of the iron plate 5 and the cooling container 2. Good. In this case, the square rod may be attached to the iron plate 5 side. After inserting the superconducting magnet A,
Remove the square rod and return to the groove 9D. After that, groove 9
By inserting and embedding a solid object 10 in the form of a prism in D, the adhesion between the superconducting magnet A and the magnetic shield B is improved.

【0034】本実施例において、溝9Dの間隙を埋める
物体としては、角柱状の固形物体に限定されるものでは
なく、この間隙部に挿入するのに適した形状の固形物
体、もしくは接着剤等の液体物体も利用できる。この
時、間隙へ挿入する物体を磁気シ−ルドの一部にしよう
とする場合には、磁気シ−ルドBと同一の物質もしくは
それに近い磁気的特性を示す物質が望ましい。さらに
は、非磁性体と強磁性体とを組み合わせた構造体を溝9
Dに挿入することにより、磁気シ−ルドBの磁気的特性
を補正することができるので、計測空間3の磁場均一度
を高めるために積極的この溝9Dを利用することができ
る。
In the present embodiment, the object filling the gap of the groove 9D is not limited to a prismatic solid object, but a solid object having a shape suitable for being inserted into the gap, an adhesive or the like. Liquid objects can also be used. At this time, if the object to be inserted into the gap is to be a part of the magnetic shield, it is desirable that the magnetic shield B be made of the same material or a material exhibiting magnetic properties close thereto. Further, a structure in which a non-magnetic material and a ferromagnetic material are combined is used to form a groove 9.
By inserting the groove D, the magnetic characteristics of the magnetic shield B can be corrected, so that the groove 9D can be positively used to increase the uniformity of the magnetic field in the measurement space 3.

【0035】図12には、磁気シ−ルドの磁気的特性を
補正するために、超電導磁石Aと磁気シ−ルドBの接触
面の部分に設けた間隙を利用する本発明の第6の実施例
を示す。図12は本実施例の縦断面図の右下の部分を示
したものである。この実施例では、超電導磁石Aと磁気
シ−ルドBとの間の間隙部に、その間隙部と同等な厚さ
を持つ円盤状または棒状の非磁性体11を挿入し、その
非磁性体11の中に幾つかの強磁性体12を適当に分散
して配置することにより、計測空間3の磁場均一度の補
正を行っている。
FIG. 12 shows a sixth embodiment of the present invention utilizing a gap provided at the contact surface between superconducting magnet A and magnetic shield B in order to correct the magnetic characteristics of the magnetic shield. Here is an example. FIG. 12 shows the lower right part of the vertical sectional view of this embodiment. In this embodiment, a disc-shaped or rod-shaped non-magnetic material 11 having a thickness equivalent to that of the gap is inserted into a gap between the superconducting magnet A and the magnetic shield B. Correction of the magnetic field uniformity of the measurement space 3 is performed by appropriately dispersing and arranging some of the ferromagnetic materials 12 in.

【0036】第5の実施例や第6の実施例では、超電導
磁石Aと磁気シ−ルドBの接触部に適当な間隙部を設け
て、その間隙部に強磁性体を付加した非磁性体を挿入す
ることにより計測空間3の磁場均一度の調整を行ってい
るが、第1〜第3の実施例の場合でも、超電導磁石Aを
磁気シ−ルドB内に挿入した後で、超電導磁石Aと磁気
シ−ルドBとの接触部に間隙がある場合には、その間隙
に非磁性体または強磁性体を付加した非磁性体(固体ま
たは液体)を埋め込むことができる。
In the fifth and sixth embodiments, an appropriate gap is provided at the contact portion between the superconducting magnet A and the magnetic shield B, and a non-magnetic material in which a ferromagnetic material is added to the gap. Is inserted to adjust the uniformity of the magnetic field in the measurement space 3. However, even in the first to third embodiments, after the superconducting magnet A is inserted into the magnetic shield B, the superconducting magnet is adjusted. If there is a gap in the contact portion between A and the magnetic shield B, a nonmagnetic substance (solid or liquid) to which a nonmagnetic substance or a ferromagnetic substance is added can be embedded in the gap.

【0037】本発明の第7の実施例を図13に示す。図
13は第7の実施例の縦断面図の右下の部分を示したも
のである。本実施例では、超電導磁石Aに磁場分布補正
用強磁性片13が一体のものとして固定されている。従
って、超電導磁石Aを磁気シ−ルドBに挿入する場合に
も、磁場分布補正用強磁性片13が超電導磁石Aと一体
で挿入されるので、超電導磁石Aと磁場分布補正用強磁
性片13とは組み立て時の相対的位置関係を保ったまま
磁気シ−ルドB内に挿入することができる。
FIG. 13 shows a seventh embodiment of the present invention. FIG. 13 shows the lower right part of the vertical sectional view of the seventh embodiment. In this embodiment, the magnetic field distribution correcting ferromagnetic piece 13 is fixed to the superconducting magnet A as an integral unit. Therefore, even when the superconducting magnet A is inserted into the magnetic shield B, since the magnetic field distribution correcting ferromagnetic piece 13 is inserted integrally with the superconducting magnet A, the superconducting magnet A and the magnetic field distribution correcting ferromagnetic piece 13 are inserted. Can be inserted into the magnetic shield B while maintaining the relative positional relationship at the time of assembly.

【0038】この方法を用いれば、超電導磁石Aと磁場
分布補正用強磁性片13の組み込み工数を低減できるば
かりでなく、磁場分布補正用強磁性片13を超電導磁石
Aと共に作成し、超電導磁石Aに付加し、調整すること
が工場でできるので、現地における調整は最低限のもの
となり、調整にかかる工数も低減できる。
By using this method, not only the man-hour for assembling the superconducting magnet A and the magnetic field distribution correcting ferromagnetic piece 13 can be reduced, but also the magnetic field distribution correcting ferromagnetic piece 13 is formed together with the superconducting magnet A. Can be added and adjusted at the factory, so that on-site adjustment can be minimized, and the man-hours required for adjustment can be reduced.

【0039】[0039]

【発明の効果】以上説明した如く、本発明によれば、M
RI装置用超電導磁石装置の装置納入時の組立・調整作
業工数の低減、構造単純化に伴う製造原価の低減を行う
ことができると共に、超電導磁石と磁気シ−ルドの間の
間隙を利用して磁場均一度の向上を図ったMRI装置用
超電導磁石装置を提供することができる。
As described above, according to the present invention, M
The superconducting magnet device for RI devices can be assembled and adjusted at the time of delivery, reducing the number of man-hours, reducing the manufacturing cost due to the simplification of the structure, and utilizing the gap between the superconducting magnet and the magnetic shield. It is possible to provide a superconducting magnet device for an MRI device in which the magnetic field uniformity is improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施例の計測空間における横断
面図。
FIG. 1 is a cross-sectional view of a measurement space according to a first embodiment of the present invention.

【図2】本発明の第1の実施例の構造変更例。FIG. 2 is a structural modification example of the first embodiment of the present invention.

【図3】本発明の第2の実施例の全体斜視図。FIG. 3 is an overall perspective view of a second embodiment of the present invention.

【図4】本発明の第2の実施例の正面図。FIG. 4 is a front view of a second embodiment of the present invention.

【図5】本発明の第2の実施例の超電導磁石の磁気シ−
ルド内への挿入を示す図。
FIG. 5 is a magnetic screen of a superconducting magnet according to a second embodiment of the present invention.
The figure which shows insertion in a field.

【図6】本発明の第3の実施例の全体斜視図。FIG. 6 is an overall perspective view of a third embodiment of the present invention.

【図7】本発明の第3の実施例の超電導磁石の磁気シ−
ルド内への挿入を示す図。
FIG. 7 is a diagram showing a magnetic shield of a superconducting magnet according to a third embodiment of the present invention;
The figure which shows insertion in a field.

【図8】本発明の第4の実施例の全体斜視図。FIG. 8 is an overall perspective view of a fourth embodiment of the present invention.

【図9】本発明の第4の実施例の正面図。FIG. 9 is a front view of a fourth embodiment of the present invention.

【図10】本発明の第5の実施例の全体斜視図。FIG. 10 is an overall perspective view of a fifth embodiment of the present invention.

【図11】本発明の第5の実施例の正面図。FIG. 11 is a front view of a fifth embodiment of the present invention.

【図12】本発明の第6の実施例の縦断面図の右下の部
分を示す図。
FIG. 12 is a diagram showing a lower right part of a longitudinal sectional view of a sixth embodiment of the present invention.

【図13】本発明の第7の実施例の縦断面図の右下の部
分を示す図。
FIG. 13 is a diagram showing a lower right part of a longitudinal sectional view of a seventh embodiment of the present invention.

【図14】超電導磁石装置の従来例の全体斜視図。FIG. 14 is an overall perspective view of a conventional example of a superconducting magnet device.

【図15】超電導磁石装置の従来例の計測空間における
横断面図。
FIG. 15 is a cross-sectional view of a conventional example of a superconducting magnet device in a measurement space.

【符号の説明】[Explanation of symbols]

A 超電導磁石 B 磁気シ−ルド 1 超電導コイル 2 冷却容器 3 計測空間(均一磁場発生領域) 4 連結管 5,5A,5B 鉄板 6,6A,6B,6C 鉄ヨ−ク 7 磁場分布補正用強磁性片 8A,8B,8C,9A,9B,9C 凹凸面 9D 角形溝 10 角柱状の固形物体 11 非磁性体 12 強磁性体 13 磁場分布補正用強磁性片 Reference Signs List A superconducting magnet B magnetic shield 1 superconducting coil 2 cooling vessel 3 measurement space (uniform magnetic field generation area) 4 connecting pipe 5, 5A, 5B iron plate 6, 6A, 6B, 6C iron yoke 7 ferromagnetic for magnetic field distribution correction Pieces 8A, 8B, 8C, 9A, 9B, 9C Uneven surface 9D Square groove 10 Solid body of prismatic shape 11 Non-magnetic material 12 Ferromagnetic material 13 Ferromagnetic piece for magnetic field distribution correction

───────────────────────────────────────────────────── フロントページの続き (72)発明者 田邊 肇 兵庫県赤穂市天和651番地 三菱電機株式 会社赤穂製作所内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Hajime Tanabe 651 Tenwa, Ako City, Hyogo Prefecture Inside Ako Works, Mitsubishi Electric Corporation

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 超電導特性を有する物質から構成され、
有限の領域において上下方向に向かう均一磁場を発生さ
せる磁場発生源と、該磁場発生源を収納し超電導特性を
示す温度にまで冷却し保持する冷却手段と、該冷却手段
を支持する支持手段とを備えた超電導磁石と、該超電導
磁石の周囲を包囲するように上下に配置された板状強磁
性体と、該板状強磁性体を磁気的に接続しかつ支持する
複数個の柱状強磁性体とによって形成される磁気シ−ル
ドとを組み合せた超電導磁石装置において、前記磁気シ
−ルドを組み立てた後に、その内部に前記超電導磁石の
組立構造体を挿入し組み込むことを可能にしたことを特
徴とする超電導磁石装置。
1. A superconducting material, comprising:
A magnetic field source for generating a uniform magnetic field directed in a vertical direction in a finite area, cooling means for housing the magnetic field source, cooling and holding the temperature to a temperature showing superconducting characteristics, and supporting means for supporting the cooling means. A superconducting magnet provided, plate-like ferromagnetic members arranged vertically so as to surround the superconducting magnet, and a plurality of columnar ferromagnetic members magnetically connecting and supporting the plate-like ferromagnetic material And a magnetic shield formed by combining the magnetic shield with the magnetic shield, wherein after assembling the magnetic shield, it is possible to insert and assemble the superconducting magnet assembly into the magnetic shield. Superconducting magnet device.
【請求項2】 請求項1記載の超電導磁石装置におい
て、前記超電導磁石の組立構造体を前記磁気シ−ルド内
に挿入するときの前記超電導磁石の組立構造体の挿入軌
跡と重ならないように、前記柱状強磁性体が配置されて
いることを特徴とする超電導磁石装置。
2. A superconducting magnet device according to claim 1, wherein said superconducting magnet assembly structure is inserted into said magnetic shield so as not to overlap an insertion locus of said superconducting magnet assembly structure. A superconducting magnet device, wherein the columnar ferromagnetic material is arranged.
【請求項3】 請求項1記載の超電導磁石装置におい
て、前記柱状強磁性体のうちの少なくとも2個の柱状強
磁性体の間の間隙が、前記超電導磁石の組立構造体を前
記磁気シ−ルド内部に挿入できる寸法以上であることを
特徴とする超電導磁石装置。
3. The superconducting magnet device according to claim 1, wherein a gap between at least two of the columnar ferromagnetic members is formed by the magnetic shield of the superconducting magnet assembly structure. A superconducting magnet device characterized in that it is larger than a dimension that can be inserted inside.
【請求項4】 請求項1乃至3記載の超電導磁石装置に
おいて、前記超電導磁石の挿入方向における前記超電導
磁石と前記磁気シ−ルドとの接触面に、前記超電導磁石
を前記磁気シ−ルド内に挿入するためのガイド手段を設
けたことを特徴とする超電導磁石装置。
4. The superconducting magnet device according to claim 1, wherein said superconducting magnet is provided inside said magnetic shield at a contact surface between said superconducting magnet and said magnetic shield in the insertion direction of said superconducting magnet. A superconducting magnet device comprising a guide means for insertion.
【請求項5】 請求項4記載の超電導磁石装置におい
て、前記ガイド手段が前記超電導磁石と前記磁気シ−ル
ドとの接触面に前記超電導磁石の挿入方向と平行に設け
られた、互いに他の接触面と嵌合する凹凸面であること
を特徴とする超電導磁石装置。
5. The superconducting magnet device according to claim 4, wherein said guide means is provided on a contact surface between said superconducting magnet and said magnetic shield in parallel with the direction of insertion of said superconducting magnet, and the other contacting means. A superconducting magnet device, characterized in that the surface is an uneven surface fitted with the surface.
【請求項6】 請求項4記載の超電導磁石装置におい
て、前記ガイド手段が前記超電導磁石と前記磁気シ−ル
ドとの接触面の一方の面または両方の面に前記超電導磁
石の挿入方向と平行に設けられた1個以上の溝であるこ
とを特徴とする超電導磁石装置。
6. A superconducting magnet device according to claim 4, wherein said guide means is provided on one or both of the contact surfaces between said superconducting magnet and said magnetic shield in parallel with the direction of insertion of said superconducting magnet. A superconducting magnet device comprising at least one groove provided.
【請求項7】 請求項6記載の超電導磁石装置におい
て、前記超電導磁石を前記磁気シ−ルド内に挿入した後
に、前記溝に強磁性体を内包する固形または液状物体を
埋設したことを特徴とする超電導磁石装置。
7. The superconducting magnet device according to claim 6, wherein a solid or liquid body containing a ferromagnetic material is embedded in the groove after inserting the superconducting magnet into the magnetic shield. Superconducting magnet device.
【請求項8】 請求項1乃至7記載の超電導磁石装置に
おいて、前記超電導磁石と前記磁気シ−ルドとの接触部
に1個以上の間隙部を設け、該間隙部に強磁性体を内包
する固形または液状物体を配したことを特徴とする超電
導磁石装置。
8. The superconducting magnet device according to claim 1, wherein at least one gap is provided at a contact portion between the superconducting magnet and the magnetic shield, and the gap includes a ferromagnetic material. A superconducting magnet device comprising a solid or liquid object.
【請求項9】 請求項1乃至8記載の超電導磁石装置に
おいて、前記超電導磁石の前記磁気シ−ルドに接する部
分に磁場分布補正用の強磁性片を付加して前記超電導磁
石と一体とし、該強磁性片を付加した超電導磁石を前記
磁気シ−ルド内に挿入することを特徴とする超電導磁石
装置。
9. The superconducting magnet device according to claim 1, wherein a ferromagnetic piece for correcting a magnetic field distribution is added to a portion of said superconducting magnet in contact with said magnetic shield to be integrated with said superconducting magnet. A superconducting magnet device, wherein a superconducting magnet to which a ferromagnetic piece is added is inserted into the magnetic shield.
【請求項10】 請求項1乃至9記載の超電導磁石装置
を静磁場発生装置として用いた磁気共鳴イメ−ジング装
置。
10. A magnetic resonance imaging apparatus using the superconducting magnet apparatus according to claim 1 as a static magnetic field generator.
JP8303966A 1996-10-30 1996-10-30 Superconducting magnetic device Pending JPH10127602A (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP8303966A JPH10127602A (en) 1996-10-30 1996-10-30 Superconducting magnetic device
US09/101,048 US6437672B1 (en) 1996-10-30 1997-10-29 Superconducting magnetic device
DE69739151T DE69739151D1 (en) 1996-10-30 1997-10-29 Open superconducting magnet device
EP05028764A EP1647831B1 (en) 1996-10-30 1997-10-29 Open superconducting magnet apparatus
DE69738995T DE69738995D1 (en) 1996-10-30 1997-10-29 SUPERCONDUCTIVE MAGNETIC FIELD ENGINEERING EQUIPMENT
PCT/JP1997/003934 WO1998019317A1 (en) 1996-10-30 1997-10-29 Superconducting magnetic device
EP97909678A EP0883143B1 (en) 1996-10-30 1997-10-29 Superconducting magnetic-field generating device
US10/191,466 US6781492B2 (en) 1996-10-30 2002-07-10 Superconducting magnetic apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8303966A JPH10127602A (en) 1996-10-30 1996-10-30 Superconducting magnetic device

Publications (1)

Publication Number Publication Date
JPH10127602A true JPH10127602A (en) 1998-05-19

Family

ID=17927431

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8303966A Pending JPH10127602A (en) 1996-10-30 1996-10-30 Superconducting magnetic device

Country Status (1)

Country Link
JP (1) JPH10127602A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002209869A (en) * 2001-01-15 2002-07-30 Mitsubishi Electric Corp Superconducting magnet device and its production method
WO2004002306A1 (en) * 2002-07-01 2004-01-08 Hitachi Medical Corporation Magnetic resonance imaging device
US6707359B2 (en) 2001-05-17 2004-03-16 Mitsubishi Denki Kabushiki Kaisha Superconductive magnet device
US6861933B1 (en) 2001-05-17 2005-03-01 Mitsubishi Denki Kabushiki Kaisha Superconductive magnet device
EP1707353A2 (en) 2005-03-29 2006-10-04 Fuji Photo Film Co., Ltd. Planographic printing plate precursor having an image-recording layer containing and infrared ray absorbent, a polymerization initiator, a polymerizable compound, and a thiol compound
JP2016039917A (en) * 2010-02-24 2016-03-24 ビューレイ・インコーポレイテッドViewRay Incorporated Split magnetic resonance imaging system
EP3051349A1 (en) 2003-07-29 2016-08-03 FUJIFILM Corporation Alkali-soluble polymer and polymerizable composition thereof

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002209869A (en) * 2001-01-15 2002-07-30 Mitsubishi Electric Corp Superconducting magnet device and its production method
US6707359B2 (en) 2001-05-17 2004-03-16 Mitsubishi Denki Kabushiki Kaisha Superconductive magnet device
US6847279B2 (en) 2001-05-17 2005-01-25 Mitsubishi Denki Kabushiki Kaisha Superconductive magnet device
US6861933B1 (en) 2001-05-17 2005-03-01 Mitsubishi Denki Kabushiki Kaisha Superconductive magnet device
WO2004002306A1 (en) * 2002-07-01 2004-01-08 Hitachi Medical Corporation Magnetic resonance imaging device
EP3051349A1 (en) 2003-07-29 2016-08-03 FUJIFILM Corporation Alkali-soluble polymer and polymerizable composition thereof
EP1707353A2 (en) 2005-03-29 2006-10-04 Fuji Photo Film Co., Ltd. Planographic printing plate precursor having an image-recording layer containing and infrared ray absorbent, a polymerization initiator, a polymerizable compound, and a thiol compound
JP2016039917A (en) * 2010-02-24 2016-03-24 ビューレイ・インコーポレイテッドViewRay Incorporated Split magnetic resonance imaging system
US9423477B2 (en) 2010-02-24 2016-08-23 Viewray Technologies, Inc. Split magnetic resonance imaging system
US10571536B2 (en) 2010-02-24 2020-02-25 Viewray Technologies, Inc. Split magnetic resonance imaging system

Similar Documents

Publication Publication Date Title
JP4826929B2 (en) Magnetic field generator
WO1998019317A1 (en) Superconducting magnetic device
US6707359B2 (en) Superconductive magnet device
JP2000139874A (en) Magnetic field generator for mri
EP0965305B1 (en) Mri magnetic field generator
JPH10127602A (en) Superconducting magnetic device
US20040100261A1 (en) Cold mass support structure and helium vessel of actively shielded high field open MRI magnets
EP1214906A1 (en) Open-type magnet device for mri
US7898257B2 (en) Open yoke magnet assembly
JPH01187904A (en) Electromagnet
EP0936290B1 (en) Superconducting magnet device for crystal pulling device
JP2004159984A (en) Static magnetic field forming device and magnetic resonance imaging apparatus
JP4123649B2 (en) Magnetic field generator and method of assembling the same
JP4921935B2 (en) Electromagnet apparatus and magnetic resonance imaging apparatus
US11320504B2 (en) Open-type magnetic resonance imaging apparatus
JPH119572A (en) Magnetic resonance imaging apparatus
JP4003485B2 (en) Magnetic field generator and NMR apparatus using the same
JP2002102205A (en) Magnetic resonace imaging apparatus
US20190115131A1 (en) Apparatus and method for magnetic field compression
JP2002052004A (en) Magnetic resonance imaging apparatus
JP4651236B2 (en) Magnetic resonance imaging system
EP2133886A1 (en) Eight-fold dipole magnet array for generating a uniform magnetic field
JPH01109799A (en) Magnetic shielding device
JP2005185318A (en) Magnetic device, and magnetic resonance imaging device
JP2006326177A (en) Superconductive magnet device for mri