JP4123649B2 - Magnetic field generator and method of assembling the same - Google Patents

Magnetic field generator and method of assembling the same Download PDF

Info

Publication number
JP4123649B2
JP4123649B2 JP22831599A JP22831599A JP4123649B2 JP 4123649 B2 JP4123649 B2 JP 4123649B2 JP 22831599 A JP22831599 A JP 22831599A JP 22831599 A JP22831599 A JP 22831599A JP 4123649 B2 JP4123649 B2 JP 4123649B2
Authority
JP
Japan
Prior art keywords
permanent magnet
magnetic field
field generator
pole piece
magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP22831599A
Other languages
Japanese (ja)
Other versions
JP2001046351A (en
Inventor
重生 橋本
雅昭 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP22831599A priority Critical patent/JP4123649B2/en
Publication of JP2001046351A publication Critical patent/JP2001046351A/en
Application granted granted Critical
Publication of JP4123649B2 publication Critical patent/JP4123649B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
この発明は磁界発生装置およびその組立方法に関し、特にたとえば永久磁石の主面に磁極片が配置されるMRI用磁界発生装置およびその組立方法に関する。
【従来の技術】
この種の磁界発生装置において磁極片を保持する方法の一例が、特許公報第2796929号に開示されている。ここでは、板状継鉄上の永久磁石の上に配置された磁極片(整磁板)を、板状継鉄から伸びる分離防止手段で保持することによって、永久磁石からの磁極片の分離防止および磁極片の位置調整を同時に行うことが提案されている。
【0002】
【発明が解決しようとする課題】
しかし、この従来技術では、永久磁石の周囲に分離防止手段を配置する必要があり、MRI装置として組み立てるときに、この部分にさらにカバーをつけることになるため、装置が大型化してしまう。
また、磁極片を永久磁石の周囲から保持するので、分離防止手段のサイズが大きくなり、部品コストが高くなる。
【0003】
さらに、この磁界発生装置を用いて得られたMRI装置をインターヴェンショナル(MRI装置によって得られる患者の撮影画像を医師が見ながら手術を行うもの)に使用する場合には、分離防止手段があるために医師が患者から離れてしまい、作業が困難になるという問題点があった。
それゆえに、この発明の主たる目的は、小型かつ低コストで作業性もよいMRI装置が得られる、磁界発生装置およびその組立方法を提供することである。
【0004】
【課題を解決するための手段】
上記目的を達成するために、請求項1に記載の磁界発生装置は、第1貫通孔を有する板状継鉄、第1貫通孔に対応する位置に形成される第2貫通孔を有しかつ板状継鉄の主面に設けられる永久磁石、永久磁石の主面に設けられる磁極片、ならびに磁極片を永久磁石の主面に固定するために第1貫通孔および第2貫通孔に挿通されて板状継鉄の主面とは反対の面から突出することなく磁極片に接続される固定部材を備え、第1貫通孔は第2貫通孔よりも径が小さい小径部を有し、小径部の径は固定部材のうち小径部および第2貫通孔に挿通される部分の径よりも大きく、固定部材と磁極片とは永久磁石の主面に対して平行に連動できるように接続されるものである。
【0005】
請求項に記載の磁界発生装置は、請求項1に記載の磁界発生装置において、永久磁石は複数の磁石ブロックを含むものである。
請求項に記載の磁界発生装置は、請求項に記載の磁界発生装置において、隣接する磁石ブロック同士は互いの側面で接着されるものである。
請求項に記載の磁界発生装置は、請求項またはに記載の磁界発生装置において、磁石ブロックは立方体状または直方体状の磁石単体を組み合わせて形成されるものである。
【0006】
求項に記載の磁界発生装置の組立方法は、板状継鉄と、板状継鉄の主面に設けられる永久磁石と、永久磁石の主面に設けられる磁極片とを含む磁界発生装置の組立方法であって、板状継鉄および永久磁石を貫通する固定部材と磁極片とを永久磁石の主面に対して平行に連動できるように接続するとともに固定部材を板状継鉄の主面とは反対の面から突出することがないように配置し、固定部材によって磁極片を永久磁石の主面に固定するものである。
【0007】
求項に記載の磁界発生装置の組立方法は、請求項に記載の磁界発生装置の組立方法において、永久磁石は複数の磁石ブロックを含むものである。
請求項に記載の磁界発生装置の組立方法は、請求項に記載の磁界発生装置の組立方法において、隣接する磁石ブロック同士を互いの側面で接着するものである。
請求項に記載の磁界発生装置の組立方法は、請求項またはに記載の磁界発生装置の組立方法において、磁石ブロックは立方体状または直方体状の磁石単体を組み合わせて形成されるものである。
【0008】
請求項1に記載の磁界発生装置では、板状継鉄および永久磁石を貫通する固定部材によって磁極片を永久磁石の主面に固定するので、従来とは異なり、さらにカバーをつける必要がなく、MRI装置を小型化できる。また、磁極片を永久磁石の周囲から保持しないので固定部材のサイズが大きくならず、部品コストを抑えることができる。さらに、この磁界発生装置を用いて得られたMRI装置をたとえばインターヴェンショナルに使用する場合、固定部材が邪魔にならず医師が患者に近づくことができ、作業性が向上する。また、磁極片を固定部材とともに動かし、永久磁石の主面における磁極片の位置を調整することによって、磁界発生装置内の磁界を調整でき、磁界の均一性を確保できる。請求項に記載の磁界発生装置の磁界発生装置の組立方法を用いた場合も同様である。
【0009】
求項に記載の磁界発生装置では、永久磁石は複数の磁石ブロックからなるので、永久磁石のうちの固定部材を挿通すべき箇所を空けて複数の磁石ブロックを配置し接続すれば、加工すれば割れ・欠けが発生しやすい焼結永久磁石を削ることなく固定部材用の貫通孔を所望の位置に容易に形成できる。請求項に記載の磁界発生装置の組立方法を用いた場合も同様である。
【0010】
請求項に記載の磁界発生装置では、隣接する磁石ブロック同士を互いの側面で接着することから、永久磁石の磁極側の凹凸を少なくでき、磁極の取付精度が向上する。請求項に記載の磁界発生装置の組立方法を用いた場合も同様である。
請求項に記載の磁界発生装置では、磁石単体を組み合わせれば様々な形状の磁石ブロックが得られ、たとえば凹部を有する磁石ブロックを構成することもできる。したがって、磁石単体を用いれば、固定部材を挿通するための貫通孔を永久磁石の所望の位置に容易に形成できる。請求項に記載の磁界発生装置の組立方法を用いた場合も同様である。
【0011】
【発明の実施の形態】
以下、図面を参照して、この発明の実施形態について説明する。
図1および図2を参照して、この発明の一実施形態のMRI用の磁界発生装置10は、空隙を形成して対向配置される一対の板状継鉄12aおよび12bを含む。板状継鉄12aおよび12bの互いに対向する表面には、それぞれ永久磁石14aおよび14bが配置され、さらにその表面に磁極片16aおよび16bが配置される。
【0012】
図2に示すように、板状継鉄12aおよび12bには、それぞれネジ24aおよび24b(後述)の太さよりも大きく空けられた貫通孔18aおよび18bが形成される。また、永久磁石14aおよび14bには、それぞれ貫通孔18aおよび18bに対応する位置に貫通孔20aおよび20bが形成される。さらに、磁極片16aおよび16bには、それぞれ貫通孔20aおよび20bに対応する位置にネジ孔22aおよび22bが形成される。
そして、磁極片固定用のネジ24aが、貫通孔18aおよび20aに挿通され、すなわち板状継鉄12aおよび永久磁石14aを貫通して、ネジ孔22aに螺入されることによって、磁極片16aが永久磁石14aの主面に固定される。同様に、磁極片固定用のネジ24bが、貫通孔18bおよび22bに挿通され、すなわち板状継鉄12bおよび永久磁石14bを貫通して、ネジ孔22bに螺入されることによって、磁極片16bが永久磁石14bの主面に固定される。
【0013】
永久磁石14aは、図3に示すように、たとえば直方体状、立方体状、断面略L字状または断面略コ字状の複数の磁石ブロック26を含む。磁石ブロック26は、たとえば非磁性体からなる突起28を中心として配置され、隣接する磁石ブロック26同士は、互いの側面を接着剤で接着される。このとき、永久磁石14aの各磁石ブロック26は、同一の磁極を上面に向けて密着して配置される。永久磁石14bについても永久磁石14aと同様に構成される。このような永久磁石14aと永久磁石14bとは、互いに異なる磁極面を対向させる。
【0014】
磁石ブロック26は、たとえば直方体状の複数の磁石単体30(図4参照)を固着して、所望形状に形成される。磁石単体30は、たとえば特公昭62−34242号に示されるようなR−Fe−B系の焼結磁石によって構成される。
ここで、注目すべきは、図3において斜線で示される磁石ブロック26である。磁石ブロック26は、図4に示すように、大きさの異なる2種類の磁石単体30を、一部に凹部32を形成できるように複数個組み合わせて固着したものである。このような磁石ブロック26を用いることによって、永久磁石14aに、ネジ24a用の断面角形の貫通孔20aを形成することができる。この実施の形態では、板状継鉄12a上に一面に接着された永久磁石14aに4個の貫通孔20aが形成される。なお、凹部32すなわち貫通孔20aの一辺は、ネジ24aの直径より大きく設定される。一例として、図4に示すように凹部32の断面寸法が50mm×32mmのとき、ネジ24aの直径は20mmに設定される。
永久磁石14bについても永久磁石14aと同様にして、ネジ24b用の貫通孔20bが形成されるので、重複する説明は省略する。
【0015】
上述のように、貫通孔18a、18bをネジ24a、24bの太さよりも大きく形成し、かつ、貫通孔20a、20bの一辺をネジ24a、24bの直径より大きく設定することによって、図2に矢印Aで示すように、ネジ24aを貫通孔18aおよび20a内で、ネジ24bを貫通孔18bおよび20b内で、それぞれ水平方向に動かすことができる。したがって、図5に示すように、ネジ24aに連動する磁極片16a、ネジ24bに連動する磁極片16bを、それぞれ動かすことができ、永久磁石14aの主面における磁極片16aの位置、永久磁石14bの主面における磁極片16bの位置を、それぞれ調整できる。
【0016】
ついで、図6(a)および(b)を参照して、磁極片16aについて説明する。
磁極片16aは、たとえば鉄からなる円板状のベースプレート34を含む。ベースプレート34の周縁部には、たとえば鉄からなり周縁部の磁界強度を上げるための環状突起部36がたとえばネジ38などによって接続される。また、ベースプレート34上には、渦電流の発生を防止するための珪素鋼板部40が形成され、その上には磁界調整用の調整片42が設けられる。珪素鋼板部40は、珪素鋼板を積層して構成され、調整片42はたとえば鉄片や磁石片によって構成される。
磁極片16bについても磁極片16aと同様に構成されるので、その重複する説明は省略する。
図1および図2に戻って、一対の板状継鉄12aおよび12bは、断面円形の4本の柱状継鉄44によって、所定の間隔で対向するように支持され磁気的に接続される。
【0017】
磁界発生装置10によれば、板状継鉄12aおよび永久磁石14aを貫通するネジ24aによって、磁極片16aを永久磁石14aの主面に固定し、板状継鉄12bおよび永久磁石14bを貫通するネジ24bによって、磁極片16bを永久磁石14bの主面に固定する。したがって、従来とは異なり、さらにカバーをつける必要がなく、磁界発生装置10を用いて得られるMRI装置を小型化できる。
また、磁極片16aおよび16bをそれぞれ永久磁石14aおよび14bの周囲から保持しないので、大きな固定部材を必要とせず、部品コストを抑えることができる。
【0018】
さらに、磁界発生装置10を用いて得られたMRI装置をたとえばインターヴェンショナルに使用する場合、固定部材であるネジ24a、24bが邪魔にならず医師が患者に近づくことができ、作業性が向上する。
また、必要に応じて、永久磁石14aの主面における磁極片16aの位置や、永久磁石14bの主面における磁極片16bの位置を変えることによって、磁界発生装置10内の磁界を調整でき、一対の磁極片16aおよび16b間の空間部に均一な磁界を形成できる。
【0019】
さらに、永久磁石14aは複数の磁石ブロック26からなるので、永久磁石14aのうちのネジ24aを挿通すべき箇所を空けて複数の磁石ブロック26を配置し接続すれば、永久磁石14aに孔を開けることなく、ネジ24a用の貫通孔20aを所望の位置に容易に形成できる。永久磁石14aは通常、加工が難しく孔を開けにくい焼結体からなるので、永久磁石14aを削ることなく貫通孔22aを形成できる利点は大きい。磁石単体30を用いて磁石ブロック26を形成することによって、貫通孔20aをより一層容易に形成できる。永久磁石14bについても同様の効果が得られる。
【0020】
また、隣接する磁石ブロック26同士は、互いの側面で接着されることから、永久磁石14aの磁極16a側の凹凸を少なくでき、磁極16aの取付精度が向上する。永久磁石14bについても同様の効果が得られ、磁極片16bの取付精度が向上する。
【0021】
なお、上述の実施形態では、永久磁石14a、14bにそれぞれ貫通孔20a、20bを形成した場合について述べたが、これに限定されず、ベースプレート34が図3に破線で示される位置46まで延びていれば、板状継鉄12aを貫通するが永久磁石14aを貫通しないネジをこの位置46に設けて磁極片16aすなわちベースプレート34の底面に螺入し、永久磁石14a上に磁極片16aを固定することも可能である。磁極片16b側についても同様である。
この場合、ネジが磁極片16a、16bより外側にはみ出ることがないので、MRI装置を小型化できる。また、磁極片16a、16bを固定するための部材としてネジを用いるので、部品コストを抑えることができる。さらに、MRI装置をインターヴェンショナルに使用する場合、ネジが邪魔にならず作業性が向上する。
【0022】
【発明の効果】
この発明によれば、磁極片を永久磁石上に簡易な構成で強く固定できるため、磁極片の固定に要するコストを抑えることができる。
また、磁界発生装置を用いて得られるMRI装置をインターヴェンショナルに使用する場合、医師が患者に近づくことができるため、作業がしやすくなる。
さらに、固定部材をカバーする必要がないので、MRI装置を小型化できる。
【図面の簡単な説明】
【図1】この発明の一実施形態を示す一部省略斜視図である。
【図2】図1の実施形態を示す図解図である。
【図3】永久磁石等を示す平面図である。
【図4】磁石ブロックの一例を示す斜視図である。
【図5】ネジおよび磁極片を動かした状態を示す図解図である。
【図6】(a)は磁極片を示す平面図であり、(b)は磁極片を示すB−B断面図である。
【符号の説明】
10 磁界発生装置
12a、12b 板状継鉄
14a、14b 永久磁石
16a、16b 磁極片
18a、18b、20a、20b 貫通孔
24a、24b、38 ネジ
26 磁石ブロック
30 磁石単体
44 柱状継鉄
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a magnetic field generator and an assembling method thereof, and more particularly, to an MRI magnetic field generating apparatus in which a pole piece is disposed on a main surface of a permanent magnet and an assembling method thereof.
[Prior art]
An example of a method for holding a pole piece in this type of magnetic field generator is disclosed in Japanese Patent No. 2796929. Here, the pole piece (magnetization plate) arranged on the permanent magnet on the plate-shaped yoke is held by the separation preventing means extending from the plate-shaped yoke, thereby preventing the pole piece from being separated from the permanent magnet. It has also been proposed to simultaneously adjust the position of the pole pieces.
[0002]
[Problems to be solved by the invention]
However, in this prior art, it is necessary to dispose the separation preventing means around the permanent magnet, and when the MRI apparatus is assembled, a cover is further attached to this part, so that the apparatus becomes large.
Further, since the pole piece is held from the periphery of the permanent magnet, the size of the separation preventing means is increased, and the component cost is increased.
[0003]
Further, when the MRI apparatus obtained by using this magnetic field generating apparatus is used for interventional (what a doctor performs an operation while viewing a patient's captured image obtained by the MRI apparatus), there is a separation preventing means. Therefore, there is a problem that the doctor is separated from the patient and the work becomes difficult.
Therefore, a main object of the present invention is to provide a magnetic field generator and an assembling method thereof that can obtain an MRI apparatus that is small in size, low in cost, and good in workability.
[0004]
[Means for Solving the Problems]
In order to achieve the above object, the magnetic field generator according to claim 1 has a plate-like yoke having a first through hole, a second through hole formed at a position corresponding to the first through hole, and A permanent magnet provided on the main surface of the plate yoke, a pole piece provided on the main surface of the permanent magnet, and a first through hole and a second through hole for fixing the pole piece to the main surface of the permanent magnet. A fixing member connected to the pole piece without protruding from the surface opposite to the main surface of the plate yoke , the first through hole has a small diameter portion having a smaller diameter than the second through hole, and has a small diameter The diameter of the portion is larger than the diameter of the portion of the fixed member inserted through the small diameter portion and the second through hole, and the fixed member and the pole piece are connected so as to be able to interlock in parallel with the main surface of the permanent magnet. Is.
[0005]
A magnetic field generator according to a second aspect is the magnetic field generator according to the first aspect, wherein the permanent magnet includes a plurality of magnet blocks.
A magnetic field generator according to a third aspect is the magnetic field generator according to the second aspect, wherein adjacent magnet blocks are bonded to each other on the side surfaces.
The magnetic field generator according to claim 4 is the magnetic field generator according to claim 2 or 3 , wherein the magnet block is formed by combining a single magnet having a cubic shape or a rectangular parallelepiped shape.
[0006]
Method of assembling a magnetic field generator according to Motomeko 5, the magnetic field generation comprising a plate yoke, a permanent magnet is provided on the main surface of the plate yoke, and a pole piece provided on a main surface of the permanent magnet A method for assembling an apparatus, wherein a fixing member penetrating a plate yoke and a permanent magnet and a pole piece are connected so as to be interlocked in parallel with the main surface of the permanent magnet, and the fixing member is connected to the plate yoke. It arrange | positions so that it may not protrude from the surface opposite to a main surface, and it fixes a magnetic pole piece to the main surface of a permanent magnet with a fixing member .
[0007]
Method of assembling a magnetic field generator according to Motomeko 6 is the method of assembling a magnetic field generator according to claim 5, the permanent magnets are those containing a plurality of magnet blocks.
Method of assembling a magnetic field generator according to claim 7, method of assembling a magnetic field generator according to claim 6, in which bonding the adjacent magnet blocks each other in each other's side.
The method for assembling the magnetic field generator according to claim 8 is the method for assembling the magnetic field generator according to claim 6 or 7 , wherein the magnet block is formed by combining a single magnet having a cubic or rectangular parallelepiped shape. .
[0008]
In the magnetic field generator according to claim 1, since the pole piece is fixed to the main surface of the permanent magnet by the fixing member that penetrates the plate yoke and the permanent magnet, unlike the conventional case, there is no need to attach a cover, The MRI apparatus can be reduced in size. Further, since the pole piece is not held from the periphery of the permanent magnet, the size of the fixing member is not increased, and the component cost can be suppressed. Furthermore, when the MRI apparatus obtained by using this magnetic field generator is used, for example, in an interventional manner, the fixing member does not get in the way and the doctor can approach the patient, and the workability is improved. Further, by moving the magnetic pole piece together with the fixing member and adjusting the position of the magnetic pole piece on the main surface of the permanent magnet, the magnetic field in the magnetic field generator can be adjusted, and the uniformity of the magnetic field can be ensured. The same applies to the case of using the magnetic field generator assembling method of the magnetic field generator according to claim 5 .
[0009]
In the magnetic field generator according to Motomeko 2, since the permanent magnet is composed of a plurality of magnet blocks, if at a portion to be inserted into the fixing member of the permanent magnet and disposing a plurality of magnet blocks connections, processing By doing so, the through hole for the fixing member can be easily formed at a desired position without scraping the sintered permanent magnet that is likely to be cracked or chipped. The same applies to the case of using the method for assembling the magnetic field generator according to claim 6 .
[0010]
The magnetic field generator according to claim 3, since bonding the adjacent magnet blocks each other in each other's side, can reduce the unevenness of the pole piece side of the permanent magnets, thereby improving the mounting accuracy of the pole pieces. The same applies when the magnetic field generator assembling method according to claim 7 is used.
In the magnetic field generation apparatus according to the fourth aspect , a magnet block having various shapes can be obtained by combining magnets alone, and for example, a magnet block having a recess can be formed. Therefore, if a single magnet is used, a through hole for inserting the fixing member can be easily formed at a desired position of the permanent magnet. The same applies when the magnetic field generator assembling method according to claim 8 is used.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
Referring to FIGS. 1 and 2, an MRI magnetic field generator 10 according to an embodiment of the present invention includes a pair of plate yokes 12 a and 12 b that are opposed to each other so as to form a gap. Permanent magnets 14a and 14b are disposed on the surfaces of the plate yokes 12a and 12b facing each other, and pole pieces 16a and 16b are disposed on the surfaces.
[0012]
As shown in FIG. 2, through-holes 18a and 18b are formed in the plate yokes 12a and 12b. The through holes 18a and 18b are larger than the thicknesses of screws 24a and 24b (described later). Further, through holes 20a and 20b are formed in the permanent magnets 14a and 14b at positions corresponding to the through holes 18a and 18b, respectively. Further, screw holes 22a and 22b are formed in the magnetic pole pieces 16a and 16b at positions corresponding to the through holes 20a and 20b, respectively.
The pole piece fixing screw 24a is inserted into the through holes 18a and 20a, that is, penetrates the plate yoke 12a and the permanent magnet 14a, and is screwed into the screw hole 22a. It is fixed to the main surface of the permanent magnet 14a. Similarly, the pole piece fixing screw 24b is inserted into the through holes 18b and 22b, that is, penetrates the plate yoke 12b and the permanent magnet 14b and is screwed into the screw hole 22b. Is fixed to the main surface of the permanent magnet 14b.
[0013]
As shown in FIG. 3, the permanent magnet 14 a includes a plurality of magnet blocks 26 having, for example, a rectangular parallelepiped shape, a cubic shape, a substantially L-shaped cross section, or a substantially U-shaped cross section. The magnet block 26 is disposed around a projection 28 made of, for example, a nonmagnetic material, and adjacent magnet blocks 26 are bonded to each other with an adhesive. At this time, each magnet block 26 of the permanent magnet 14a is disposed in close contact with the same magnetic pole facing the upper surface. The permanent magnet 14b is configured similarly to the permanent magnet 14a. Such permanent magnet 14a and permanent magnet 14b oppose different magnetic pole faces.
[0014]
The magnet block 26 is formed in a desired shape by fixing a plurality of magnets 30 (see FIG. 4) having a rectangular parallelepiped shape, for example. The magnet 30 is composed of, for example, an R—Fe—B based sintered magnet as disclosed in Japanese Patent Publication No. 62-34242.
Here, what should be noted is the magnet block 26 shown by hatching in FIG. As shown in FIG. 4, the magnet block 26 is a unit in which two types of magnets 30 having different sizes are combined and fixed so that a recess 32 can be formed in part. By using such a magnet block 26, a through hole 20a having a square cross section for the screw 24a can be formed in the permanent magnet 14a. In this embodiment, four through-holes 20a are formed in the permanent magnet 14a bonded on one surface on the plate yoke 12a. The recess 32, that is, one side of the through hole 20a is set larger than the diameter of the screw 24a. As an example, as shown in FIG. 4, when the cross-sectional dimension of the recess 32 is 50 mm × 32 mm, the diameter of the screw 24a is set to 20 mm.
Since the through hole 20b for the screw 24b is formed on the permanent magnet 14b in the same manner as the permanent magnet 14a, a duplicate description is omitted.
[0015]
As described above, the through holes 18a and 18b are formed larger than the thickness of the screws 24a and 24b, and one side of the through holes 20a and 20b is set larger than the diameter of the screws 24a and 24b. As indicated by A, the screw 24a can be moved horizontally in the through holes 18a and 20a, and the screw 24b can be moved in the horizontal direction in the through holes 18b and 20b, respectively. Therefore, as shown in FIG. 5, the magnetic pole piece 16a interlocked with the screw 24a and the magnetic pole piece 16b interlocked with the screw 24b can be moved, respectively, and the position of the magnetic pole piece 16a on the main surface of the permanent magnet 14a, the permanent magnet 14b. The position of the pole piece 16b on the main surface can be adjusted.
[0016]
Next, the pole piece 16a will be described with reference to FIGS. 6 (a) and 6 (b).
The pole piece 16a includes a disk-shaped base plate 34 made of, for example, iron. An annular projection 36 made of, for example, iron and for increasing the magnetic field strength of the periphery is connected to the periphery of the base plate 34 by, for example, a screw 38. A silicon steel plate portion 40 for preventing the generation of eddy current is formed on the base plate 34, and an adjustment piece 42 for adjusting the magnetic field is provided thereon. Silicon steel plate portion 40 is configured by laminating silicon steel plates, and adjustment piece 42 is configured by, for example, an iron piece or a magnet piece.
Since the magnetic pole piece 16b is also configured in the same manner as the magnetic pole piece 16a, its overlapping description is omitted.
Referring back to FIGS. 1 and 2, the pair of plate yokes 12a and 12b are supported and magnetically connected to each other by four columnar yokes 44 having a circular cross section so as to face each other at a predetermined interval.
[0017]
According to the magnetic field generator 10, the magnetic pole piece 16a is fixed to the main surface of the permanent magnet 14a by the screw 24a penetrating the plate yoke 12a and the permanent magnet 14a, and penetrates the plate yoke 12b and the permanent magnet 14b. The pole piece 16b is fixed to the main surface of the permanent magnet 14b by the screw 24b. Therefore, unlike the conventional case, it is not necessary to attach a cover, and the MRI apparatus obtained by using the magnetic field generator 10 can be downsized.
Further, since the magnetic pole pieces 16a and 16b are not held from the periphery of the permanent magnets 14a and 14b, respectively, a large fixing member is not required, and the component cost can be suppressed.
[0018]
Further, when the MRI apparatus obtained using the magnetic field generator 10 is used, for example, in an interventional manner, the screws 24a and 24b, which are fixing members, do not get in the way and the doctor can approach the patient, improving workability. To do.
Further, if necessary, the magnetic field in the magnetic field generator 10 can be adjusted by changing the position of the magnetic pole piece 16a on the main surface of the permanent magnet 14a or the position of the magnetic pole piece 16b on the main surface of the permanent magnet 14b. A uniform magnetic field can be formed in the space between the magnetic pole pieces 16a and 16b.
[0019]
Further, since the permanent magnet 14a is composed of a plurality of magnet blocks 26, a hole is made in the permanent magnet 14a if the plurality of magnet blocks 26 are arranged and connected with a portion through which the screw 24a of the permanent magnet 14a is to be inserted. Without this, the through hole 20a for the screw 24a can be easily formed at a desired position. Since the permanent magnet 14a is usually made of a sintered body that is difficult to process and difficult to open a hole, the advantage that the through hole 22a can be formed without cutting the permanent magnet 14a is great. By forming the magnet block 26 using the single magnet 30, the through hole 20a can be formed more easily. The same effect can be obtained for the permanent magnet 14b.
[0020]
Further, since the adjacent magnet blocks 26 are bonded to each other on the side surfaces, the unevenness on the side of the magnetic pole piece 16a of the permanent magnet 14a can be reduced, and the mounting accuracy of the magnetic pole piece 16a is improved. The same effect is obtained for the permanent magnet 14b, and the mounting accuracy of the pole piece 16b is improved.
[0021]
In the above-described embodiment, the case where the through holes 20a and 20b are formed in the permanent magnets 14a and 14b, respectively, has been described. However, the present invention is not limited to this, and the base plate 34 extends to a position 46 indicated by a broken line in FIG. Then, a screw that passes through the plate yoke 12a but does not pass through the permanent magnet 14a is provided at this position 46 and screwed into the bottom surface of the pole piece 16a, that is, the base plate 34, and the pole piece 16a is fixed on the permanent magnet 14a. It is also possible. The same applies to the pole piece 16b side.
In this case, since the screw does not protrude outside the magnetic pole pieces 16a and 16b, the MRI apparatus can be miniaturized. Moreover, since a screw is used as a member for fixing the magnetic pole pieces 16a and 16b, component costs can be reduced. Further, when the MRI apparatus is used in an interventional manner, the screws do not get in the way and workability is improved.
[0022]
【The invention's effect】
According to the present invention, since the pole piece can be strongly fixed on the permanent magnet with a simple configuration, the cost required for fixing the pole piece can be suppressed.
In addition, when an MRI apparatus obtained using a magnetic field generation apparatus is used in an interventional manner, a doctor can approach the patient, so that the operation is facilitated.
Furthermore, since it is not necessary to cover the fixing member, the MRI apparatus can be reduced in size.
[Brief description of the drawings]
FIG. 1 is a partially omitted perspective view showing an embodiment of the present invention.
FIG. 2 is an illustrative view showing the embodiment of FIG. 1;
FIG. 3 is a plan view showing a permanent magnet and the like.
FIG. 4 is a perspective view showing an example of a magnet block.
FIG. 5 is an illustrative view showing a state in which a screw and a pole piece are moved.
6A is a plan view showing a magnetic pole piece, and FIG. 6B is a cross-sectional view taken along line BB showing the magnetic pole piece.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Magnetic field generator 12a, 12b Plate-shaped yoke 14a, 14b Permanent magnet 16a, 16b Magnetic pole piece 18a, 18b, 20a, 20b Through-hole 24a, 24b, 38 Screw 26 Magnet block 30 Magnet unit 44 Column-shaped yoke

Claims (8)

第1貫通孔を有する板状継鉄、
前記第1貫通孔に対応する位置に形成される第2貫通孔を有しかつ前記板状継鉄の主面に設けられる永久磁石、
前記永久磁石の主面に設けられる磁極片、ならびに
前記磁極片を前記永久磁石の主面に固定するために前記第1貫通孔および前記第2貫通孔に挿通されて前記板状継鉄の主面とは反対の面から突出することなく前記磁極片に接続される固定部材を備え
前記第1貫通孔は前記第2貫通孔よりも径が小さい小径部を有し、前記小径部の径は前記固定部材のうち前記小径部および前記第2貫通孔に挿通される部分の径よりも大きく、前記固定部材と前記磁極片とは前記永久磁石の主面に対して平行に連動できるように接続される、磁界発生装置。
A plate-shaped yoke having a first through hole;
A permanent magnet having a second through hole formed at a position corresponding to the first through hole and provided on the main surface of the plate yoke;
A pole piece provided on the main surface of the permanent magnet, and a main piece of the plate-like yoke inserted through the first through hole and the second through hole to fix the pole piece to the main surface of the permanent magnet. A fixing member connected to the pole piece without protruding from a surface opposite to the surface ;
The first through-hole has a small-diameter portion having a smaller diameter than the second through-hole, and the diameter of the small-diameter portion is larger than the diameter of the portion inserted into the small-diameter portion and the second through-hole in the fixing member. And the fixing member and the pole piece are connected so as to be able to interlock in parallel with the main surface of the permanent magnet .
前記永久磁石は複数の磁石ブロックを含む、請求項1に記載の磁界発生装置。The magnetic field generator according to claim 1, wherein the permanent magnet includes a plurality of magnet blocks. 隣接する前記磁石ブロック同士は互いの側面で接着される、請求項に記載の磁界発生装置。The magnetic field generator according to claim 2 , wherein the adjacent magnet blocks are bonded to each other on the side surfaces. 前記磁石ブロックは立方体状または直方体状の磁石単体を組み合わせて形成される、請求項またはに記載の磁界発生装置。The magnet block is formed by combining a magnet single cubical or rectangular parallelepiped shape, the magnetic field generator according to claim 2 or 3. 板状継鉄と、前記板状継鉄の主面に設けられる永久磁石と、前記永久磁石の主面に設けられる磁極片とを含む磁界発生装置の組立方法であって、
前記板状継鉄および前記永久磁石を貫通する固定部材と前記磁極片とを前記永久磁石の主面に対して平行に連動できるように接続するとともに前記固定部材を前記板状継鉄の主面とは反対の面から突出することがないように配置し、前記固定部材によって前記磁極片を前記永久磁石の主面に固定する、磁界発生装置の組立方法。
A method of assembling a magnetic field generator, comprising a plate yoke, a permanent magnet provided on the main surface of the plate yoke, and a pole piece provided on the main surface of the permanent magnet,
The fixing member penetrating the plate yoke and the permanent magnet and the magnetic pole piece are connected so as to be interlocked in parallel with the main surface of the permanent magnet, and the fixing member is connected to the main surface of the plate yoke. An assembly method for a magnetic field generator, wherein the magnetic pole piece is arranged so as not to protrude from the opposite surface to the main surface of the permanent magnet by the fixing member .
前記永久磁石は複数の磁石ブロックを含む、請求項に記載の磁界発生装置の組立方法。The method for assembling the magnetic field generator according to claim 5 , wherein the permanent magnet includes a plurality of magnet blocks. 隣接する前記磁石ブロック同士を互いの側面で接着する、請求項に記載の磁界発生装置の組立方法。The method of assembling a magnetic field generator according to claim 6 , wherein the adjacent magnet blocks are bonded to each other on their side surfaces. 前記磁石ブロックは立方体状または直方体状の磁石単体を組み合わせて形成される、請求項またはに記載の磁界発生装置の組立方法。The method of assembling a magnetic field generator according to claim 6 or 7 , wherein the magnet block is formed by combining cubic or rectangular parallelepiped magnets.
JP22831599A 1999-08-12 1999-08-12 Magnetic field generator and method of assembling the same Expired - Lifetime JP4123649B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22831599A JP4123649B2 (en) 1999-08-12 1999-08-12 Magnetic field generator and method of assembling the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22831599A JP4123649B2 (en) 1999-08-12 1999-08-12 Magnetic field generator and method of assembling the same

Publications (2)

Publication Number Publication Date
JP2001046351A JP2001046351A (en) 2001-02-20
JP4123649B2 true JP4123649B2 (en) 2008-07-23

Family

ID=16874527

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22831599A Expired - Lifetime JP4123649B2 (en) 1999-08-12 1999-08-12 Magnetic field generator and method of assembling the same

Country Status (1)

Country Link
JP (1) JP4123649B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6844801B2 (en) * 2003-03-21 2005-01-18 Ge Medical Systems Global Technology Company, Llc Methods and apparatus for adjusting center magnetic field of a magnetic field generator for MRI
US7733090B2 (en) * 2004-07-01 2010-06-08 Hitachi Metals, Ltd. Magnetic field generator
WO2006038261A1 (en) 2004-09-30 2006-04-13 Neomax Co., Ltd. Magnetic field generator for mri
JP4630261B2 (en) * 2006-11-20 2011-02-09 株式会社日立製作所 Magnet apparatus and magnetic resonance imaging apparatus
ITMI20071227A1 (en) * 2007-06-19 2008-12-20 Milano Politecnico FIXING DEVICE FOR OVERLAPPED ELEMENTS.
CN102333482B (en) 2009-02-27 2014-05-28 日立金属株式会社 Magnetic field generator
WO2016076433A1 (en) * 2014-11-14 2016-05-19 新日鐵住金株式会社 Oxide superconducting bulk magnet
CN209389906U (en) * 2018-12-30 2019-09-13 瑞声科技(新加坡)有限公司 Linear vibration electric motor

Also Published As

Publication number Publication date
JP2001046351A (en) 2001-02-20

Similar Documents

Publication Publication Date Title
US6845166B2 (en) Plane driving type electroacoustic transducer
JP3192372B2 (en) Thin electromagnetic transducer
KR100362042B1 (en) Magnetic field generating device for mri
JP2007104626A (en) Electrokinetic electro-acoustic converter and electronic device
WO1999026451A1 (en) Thin electromagnetic transducer
JP2008245475A (en) Movable coil type linear motor
JP4123649B2 (en) Magnetic field generator and method of assembling the same
US8712092B2 (en) Magnetic circuit and speaker using same
US8345897B2 (en) Electromagnetic conversion unit
EP2239960A1 (en) Magnetic circuit and acoustic equipment
JPS6292757A (en) Voice coil motor
JP2007288601A (en) Electromagnetic transducer
JP2002153438A (en) Method for assembling magnetic circuit for mri
JP4783683B2 (en) Electrodynamic electroacoustic transducer and electronic equipment
JP2649436B2 (en) Magnetic field generator for MRI
JP2007165741A (en) Permanent magnet unit and magnetic field generator provided therewith
JP2001352737A (en) Linear motor
WO2012100379A1 (en) Magnetic-variation type electrical permanent-magnetic chuck
JP4087878B2 (en) Electrodynamic electroacoustic transducer and electronic equipment
JP2003168604A (en) Magnetic field generating device
JPH03966Y2 (en)
JP2000126152A (en) Mri apparatus
JP2004065714A (en) Magnetic field generating device for magnetic resonance imaging
JPH09247794A (en) Magnetic circuit for speaker
JPH0422637Y2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060112

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070611

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080313

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080415

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080428

R150 Certificate of patent or registration of utility model

Ref document number: 4123649

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110516

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120516

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130516

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130516

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140516

Year of fee payment: 6

EXPY Cancellation because of completion of term