JPH10125941A - Chalcopyrite type solar cell - Google Patents

Chalcopyrite type solar cell

Info

Publication number
JPH10125941A
JPH10125941A JP8280651A JP28065196A JPH10125941A JP H10125941 A JPH10125941 A JP H10125941A JP 8280651 A JP8280651 A JP 8280651A JP 28065196 A JP28065196 A JP 28065196A JP H10125941 A JPH10125941 A JP H10125941A
Authority
JP
Japan
Prior art keywords
solar cell
layer
thin film
cuins
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP8280651A
Other languages
Japanese (ja)
Inventor
Takayuki Watanabe
隆行 渡辺
Hidenobu Nakazawa
秀伸 中沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP8280651A priority Critical patent/JPH10125941A/en
Publication of JPH10125941A publication Critical patent/JPH10125941A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells

Abstract

PROBLEM TO BE SOLVED: To suppress the leak current, without the precise compsn. control by placing a compd. M(INx Ga1-x )(Sy Se1-y )2 at the crystal grain boundary of Cu(Inx Ga1-x )(Sy Se1-y )2 in a photoabsorptive layer of a solar cell. SOLUTION: In a Cu(Inx Ga1-x )(Sy Se1-y )2 thin film an M(Inx Ga1-x )(Sy Se1-y )2 (0<=X, Y<1) layer exists; M is at least one of Li, Ga and K. The relative compsn. ratio at the surface side indicates Na and In are much and Cu is little while that in the film indicates Na is below the detection limit and In and Cu have the same ratio. The mixed film is etched to remove the M(Inx Ga1-x )(Sy Se1-y )2 phase. After etching the M(Inx Ga1-x )(Sy Se1-y )2 phase exists at the crystal grain boundary of the Cu(Inx Ga1-x )(Sy Se1-y )2 thin film, this reducing the leak current and improve the conversion efficiency.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、Cu(InX
1-X )(SY Se1-Y 2 (0≦X、Y≦1)で表さ
れるカルコパイライト型太陽電池に関するものである。
BACKGROUND OF THE INVENTION The present invention, Cu (In X G
The present invention relates to a chalcopyrite solar cell represented by a 1-X ) (S Y Se 1-Y ) 2 (0 ≦ X, Y ≦ 1).

【0002】[0002]

【従来の技術】Cu(In,Ga)(S,Se)2 で表
されるカルコパイライト型化合物(以後、CIS系と略
す)は直接遷移型の半導体であるために光吸収係数が大
きく、またバンドギャップが太陽光スペクトルにマッチ
していることから、薄膜太陽電池材料としての応用が期
待されている。この材料の太陽電池は、金属電極をコー
トしたガラス基板上にCIS系薄膜、半導体層、透明電
極層が積層された構成のものが主流であり、ガラス基板
を用いるために形成されたCIS系薄膜は多結晶体であ
る。CIS系薄膜を用いた太陽電池の開発は、Boei
ng社がCuInSe2 を光吸収層とした太陽電池で1
0%を超える変換効率を達成した1980年代前半から
非常に活発になり、1990年代に入ってからはEur
oCISグループが14%以上の効率を達成した(Ap
pl.Phys.Lett.62(6).1993.p
597−599)。しかし、前述したようにCIS系薄
膜は多結晶体であるために結晶粒界などに欠陥が多く存
在し、発生した光キャリアの再結合、粒界を介してのリ
ーク電流の原因となっていた。その改善策として、金属
電極側およびn型半導体側のGa量が多いダブル傾斜構
造のCu(In,Ga)Se2 太陽電池がNRELから
提案され、最近では17%を超える変換効率の太陽電池
が作製されるようになった(Prog.Photovo
lt..3.235−238(1995))。この構造
のCu(In,Ga)Se2 薄膜はバンドギャップを深
さ方向に変化させ発生した内部電界で光キャリアを加速
することにより欠陥でのトラップを起こりにくくしてい
る。ダブル傾斜構造による変換効率の向上は顕著なもの
であるが、結晶粒界の問題を根本的に解決したものでは
なく、また深さ方向の組成変化を精密にコントロールし
なければならない方法は工業的には好ましいとは言い難
い。
2. Description of the Related Art A chalcopyrite type compound (hereinafter abbreviated as CIS type) represented by Cu (In, Ga) (S, Se) 2 is a direct transition type semiconductor and therefore has a large light absorption coefficient. Since the band gap matches the solar spectrum, application as a thin film solar cell material is expected. Solar cells of this material are generally composed of a CIS-based thin film, a semiconductor layer, and a transparent electrode layer laminated on a glass substrate coated with a metal electrode, and a CIS-based thin film formed to use a glass substrate. Is a polycrystal. The development of solar cells using CIS-based thin films is described in Boei
ng is a solar cell using CuInSe 2 as a light absorbing layer.
It became very active in the early 1980s when it achieved a conversion efficiency exceeding 0%, and since the 1990s, Eur
oCIS group achieved efficiency of 14% or more (Ap
pl. Phys. Lett. 62 (6). 1993. p
597-599). However, as described above, since the CIS-based thin film is polycrystalline, there are many defects at crystal grain boundaries and the like, which causes recombination of generated photocarriers and leakage current through the grain boundaries. . As an improvement measure, NREL has proposed a Cu (In, Ga) Se 2 solar cell having a double-inclined structure having a large amount of Ga on the metal electrode side and the n-type semiconductor side. Recently, a solar cell having a conversion efficiency of more than 17% has been proposed. (Prog. Photoovo)
lt. . 3.235-238 (1995)). The Cu (In, Ga) Se 2 thin film having this structure changes the band gap in the depth direction and accelerates the optical carriers by the generated internal electric field, thereby making it difficult for traps due to defects to occur. Although the improvement of the conversion efficiency by the double-inclined structure is remarkable, it does not fundamentally solve the problem of crystal grain boundaries, and the method of precisely controlling the composition change in the depth direction is industrial. Is not preferable.

【0003】[0003]

【発明が解決しようとする課題】本発明は、CIS系薄
膜の結晶粒界などに存在する欠陥が原因となる再結合・
リークを膜深さ方向の精密な組成制御なしに抑制が可能
なCu(In,Ga)(S,Se)2 薄膜を用いた太陽
電池を提供することを目的とする。
DISCLOSURE OF THE INVENTION The present invention is directed to a method for reducing recombination and defects caused by defects existing at crystal grain boundaries of a CIS-based thin film.
It is an object of the present invention to provide a solar cell using a Cu (In, Ga) (S, Se) 2 thin film capable of suppressing a leak without precise composition control in a film depth direction.

【0004】[0004]

【課題を解決するための手段】かかる状況下において、
本発明者らは、上記課題を解決するために鋭意検討した
結果、Cu(In,Ga)(Se,S)2 薄膜の形成時
に、Li、Na、Kのアルカリ元素を添加することによ
り形成されるM(In,Ga)(S,Se)2(ただ
し、MはLi、Na、Kのうち少なくとも1種の元素)
で表される化合物が混合して結晶粒界でのリーク電流を
低減させ、その混合薄膜を光吸収層とした太陽電池の変
換効率の向上に有効で、Cu(In,Ga)(Se,
S)2 とM(In,Ga)(S,Se)2 との混合比率
の最適範囲を特定条件下で見いだし本発明をなすに至っ
た。
In such a situation,
The present inventors have conducted intensive studies in order to solve the above-mentioned problems, and as a result, when forming a Cu (In, Ga) (Se, S) 2 thin film, the thin film is formed by adding an alkali element such as Li, Na, and K. M (In, Ga) (S, Se) 2 (where M is at least one element of Li, Na and K)
Is mixed to reduce the leakage current at the crystal grain boundary, and is effective for improving the conversion efficiency of a solar cell using the mixed thin film as a light absorbing layer. Cu (In, Ga) (Se,
The present inventors have found the optimum range of the mixing ratio of S) 2 and M (In, Ga) (S, Se) 2 under specific conditions, and have accomplished the present invention.

【0005】すなわち本発明は以下の通りである。つま
り、Cu(InX Ga1-X )(SY Se1-Y 2 (0≦
X、Y≦1)で表されるカルコパイライト型太陽電池に
おいて、該太陽電池の光吸収層中にM(InX
1-X )(SY Se1-Y 2 (ただし、MはLi、N
a、Kのうち少なくとも1種の元素)で表される化合物
を有し、前記M(InX Ga1-X )(SY Se1-Y 2
が前記Cu(InX Ga1-X )(SY Se1-Y 2 の結
晶粒界に存在していることを特徴とするカルコパライト
型太陽電池である。
That is, the present invention is as follows. That is, Cu (In x Ga 1-x ) (S Y Se 1-y ) 2 (0 ≦
In the chalcopyrite solar cell represented by X, Y ≦ 1), M (In X G) is contained in the light absorbing layer of the solar cell.
a 1-X ) (S Y Se 1-Y ) 2 (where M is Li, N
a) at least one element selected from the group consisting of a and K), wherein M (In x Ga 1 -x) (S Y Se 1 -Y ) 2
Are present at the crystal grain boundaries of Cu (In x Ga 1-x ) (S Y Se 1-y ) 2 in the chalcopyrite solar cell.

【0006】第二の発明は、請求項1記載のカルコパラ
イト型太陽電池において、前記M(InX Ga1-X
(SY Se1-Y 2 と前記Cu(InX Ga1-X )(S
Y Se 1-Y 2 のθ/2θスキャン法によるX線回折測
定で得られた(003)面のピーク強度mと、(11
2)面のピーク強度cとの比m/cが0.002以上
0.1以下であることを特徴とするカルコパライト型太
陽電池である。
[0006] A second aspect of the present invention is a calcopara according to claim 1.
In the unit-type solar cell, the M (In)XGa1-X)
(SYSe1-Y)TwoAnd Cu (In)XGa1-X) (S
YSe 1-Y)Two-Ray diffraction measurement by θ / 2θ scan method
The peak intensity m of the (003) plane obtained by
2) The ratio m / c to the peak intensity c of the surface is 0.002 or more.
Chalcopalite-type thick, characterized by being 0.1 or less
It is a positive battery.

【0007】[0007]

【発明の実施の形態】本発明を具体的に更に詳しく述べ
る。例えば、Cu(InX Ga1-X )(SY Se1-Y
2 層がCuInS2 で、M(InX Ga1-X )(SY
1-Y 2 がNaInS2 の場合について述べる。ま
ず、CuInS2 とNaInS2 の混合薄膜を形成する
方法としては、Cu、In、Na2 Sを積層した後S含
有雰囲気中で熱処理する硫化法、CuInS 2 粉末とN
aInS2 粉末を混合プレスして作製したターゲットを
用いるスパッタリング法、Cu、In、S、Na2 Sを
原料とした四源同時蒸着法などが挙げられるが、その他
にMOCVD法、スプレー法、電着法などCuInS2
とNaInS2 の混合薄膜の作製が可能であれば特に限
定されるものではない。ここでアルカリ元素の原料をN
2 Sとしたのは、金属ナトリウムに比べて化合物の方
が取り扱い上容易であるためであり、原料の形態は硫化
物の他、酸化物など特に限定はされない。
DETAILED DESCRIPTION OF THE INVENTION The present invention will be described in further detail.
You. For example, Cu (InXGa1-X) (SYSe1-Y)
TwoThe layer is CuInSTwoAnd M (InXGa1-X) (SYS
e1-Y)TwoIs NaInSTwoThe case of is described. Ma
, CuInSTwoAnd NaInSTwoTo form a mixed thin film of
As a method, Cu, In, NaTwoAfter stacking S
Sulfidation method with heat treatment in an atmosphere, CuInS TwoPowder and N
aInSTwoThe target made by mixing and pressing the powder
Sputtering method used, Cu, In, S, NaTwoS
Four-source simultaneous evaporation method used as a raw material, etc.
CuInS method such as MOCVD method, spray method, electrodeposition methodTwo
And NaInSTwoAs long as a mixed thin film of
It is not specified. Here, the raw material of the alkali element is N
aTwoS is for compounds compared to metallic sodium
Is easy to handle.
There is no particular limitation on oxides other than the product.

【0008】次に、上述で形成したCuInS2 とNa
InS2 の混合の状態を調べた。つまり、θ/2θスキ
ャン法によるX線回折パターンによって調べた。θ/2
θスキャン法によるX線回折測定とは、入射X線と試料
の角度がθのとき、計数管(検出器)の位置が入射X線
の延長線と2θの角度をなすようにスキャンし、X線回
折強度を2θの関数として表示する測定方法である。
Next, the CuInS 2 formed above and Na
The state of mixing of InS 2 was examined. That is, it was examined by an X-ray diffraction pattern by the θ / 2θ scanning method. θ / 2
The X-ray diffraction measurement by the θ scan method means that when the angle between the incident X-ray and the sample is θ, scanning is performed so that the position of the counter tube (detector) is at an angle of 2θ with the extension of the incident X-ray. This is a measurement method in which the line diffraction intensity is displayed as a function of 2θ.

【0009】混合薄膜のX線回折パターンを調べる前に
CuInS2 およびNaInS2 のそれぞれ単独の回折
パターンを調べた。その結果を図4、図5に示す、Cu
InS2 は(112)面、NaInS2 は(003)面
に配向していることがわかる。次にCuInS2 とNa
InS2 の混合薄膜のX線回折パターンを調べ、その結
果を図3に示す。CuInS2 の(112)ピークとN
aInS2 の(003)ピークが存在する。従って、N
aInS2 がCuInS2 に混合する形態は上述した何
れの方法で作製した混合薄膜においてもCuInS2
晶の成長中にアルカリ元素であるNaはNaInS2
(層)として偏析しCuInS2 結晶中には混入しにく
いことが分かる。更に、混合薄膜の深さ方向の組成分布
をオージェ電子分光法により評価した。その結果、表面
側の相対的組成比はNaとInが多くCuが少なかった
のに対して、膜内部になるにしたがいNaは検出限界以
下となりInとCuはほぼ同じ比になった。よって、N
aInS2 相はCuInS 2 薄膜の表面に存在している
と言える。Naの添加量を増加させるに従い、表面に存
在するNaInS2 相が増加することも明らかである。
また、混合薄膜を酸(例えば塩酸)によりエッチングす
ることによりNaInS2 相だけ選択的に除去すること
ができ、エッチング前は結晶粒間に隙間のない緻密な膜
であったのに対して、エッチング後は結晶粒の間に隙間
が見られた。よって、NaInS2 相はCuInS2
膜の結晶粒界に存在していると言える。
Before examining the X-ray diffraction pattern of a mixed thin film
CuInSTwoAnd NaInSTwoEach single diffraction
I checked the pattern. The results are shown in FIGS.
InSTwoIs (112) face, NaInSTwoIs the (003) plane
It turns out that it is orientated. Next, CuInSTwoAnd Na
InSTwoThe X-ray diffraction pattern of the mixed thin film of
The results are shown in FIG. CuInSTwo(112) peak and N
aInSTwo(003) peak exists. Therefore, N
aInSTwoIs CuInSTwoWhat is described above
CuInS is also used in the mixed thin film prepared by these methods.TwoConclusion
Na, which is an alkali element during crystal growth, is NaInSTwophase
(Layer) and segregated CuInSTwoDifficult to mix in crystals
I understand that Furthermore, the composition distribution in the depth direction of the mixed thin film
Was evaluated by Auger electron spectroscopy. As a result, the surface
The relative composition ratio on the side was high in Na and In and low in Cu
On the other hand, Na became below the detection limit as it became
Below, In and Cu had almost the same ratio. Therefore, N
aInSTwoPhase is CuInS TwoExists on the surface of the thin film
It can be said. As the amount of Na added increases,
NaInS in existenceTwoIt is also clear that the phases increase.
Also, the mixed thin film is etched with an acid (for example, hydrochloric acid).
NaInSTwoSelectively removing only phases
Pre-etching, dense film with no gap between crystal grains
However, after etching, there is no gap between the crystal grains.
It was observed. Therefore, NaInSTwoPhase is CuInSTwoThin
It can be said that it exists at the crystal grain boundary of the film.

【0010】ここでNaInS2 相の混合度合を表す指
標としてNaInS2 (003)のピーク強度;mとC
uInS2 (112)のピーク強度;cの比m/cを定
義する。m/cと太陽電池の変換効率との関係を図1に
示す。図1に見られるようにm/c=0ではほとんど効
率が得られず、その比が増加するに従い効率は顕著に向
上した。さらにその比が大きくなると徐々に効率は低下
していく傾向があり最適NaInS2 量が存在した。十
分に高い効率が得られるためにはm/cが0.002か
ら0.1の範囲であることが好ましく、0.01から
0.04であることがさらに好ましい。
Here, as an index indicating the degree of mixing of the NaInS 2 phase, the peak intensity of NaInS 2 (003);
The ratio m / c of the peak intensity; c of uInS 2 (112) is defined. FIG. 1 shows the relationship between m / c and the conversion efficiency of the solar cell. As shown in FIG. 1, almost no efficiency was obtained when m / c = 0, and the efficiency was significantly improved as the ratio increased. Further, as the ratio increases, the efficiency tends to gradually decrease, and an optimal amount of NaInS 2 exists. In order to obtain a sufficiently high efficiency, m / c is preferably in the range of 0.002 to 0.1, and more preferably 0.01 to 0.04.

【0011】NaInS2 の混合度合による効率の変化
の原因は以下の通りである。NaInS2 はCuInS
2 よりバンドギャップが大きく高抵抗であるので、Cu
InS2 の結晶粒界にNaInS2 が存在するとリーク
電流が抑制される。。しかし、高抵抗であるために、厚
くなりすぎると太陽電池直列抵抗成分が増大し変換効率
は低下してしまう。また、一般的なCIS系薄膜太陽電
池はCIS系薄膜/CdS等のn型半導体/ZnO:A
l等の透明電極の構造を有しているが、本発明において
NaInS2 層がCuInS2 層上に存在する場合には
CdS等のn型半導体を除いた構造も可能となる。なぜ
なら、CIS系薄膜層と透明電極層の間に形成されるC
dS等の半導体層(バッファ層)は一般的にそのバンド
ギャップはCIS系薄膜より大きく透明電極より小さい
ものが選択されるが、NaInS 2 のバンドギャップは
透明電極として利用されるZnO:AlやITOのそれ
と比較して同等以下でありバッファ層として適してい
る。また、バッファ層としてのもう一つの要件である高
抵抗についても満たしているからである。
NaInSTwoOf efficiency by mixing degree
The causes are as follows. NaInSTwoIs CuInS
TwoSince the band gap is larger and the resistance is higher, Cu
InSTwoNaInS at the crystal grain boundaryTwoLeak if present
The current is suppressed. . However, due to the high resistance,
If it becomes too high, the series resistance component of the solar cell will increase and the conversion efficiency will increase.
Will decrease. In addition, general CIS based thin-film solar
Pond is CIS-based thin film / n-type semiconductor such as CdS / ZnO: A
1 has a transparent electrode structure such as
NaInSTwoThe layer is CuInSTwoIf present on a layer
A structure excluding an n-type semiconductor such as CdS is also possible. why
Then, C formed between the CIS-based thin film layer and the transparent electrode layer
The semiconductor layer (buffer layer) such as dS generally has
Gap is larger than CIS based thin film and smaller than transparent electrode
Is selected, but NaInS TwoThe band gap of
ZnO: Al or ITO used as a transparent electrode
Suitable for a buffer layer
You. Another requirement for the buffer layer is high
This is because the resistance is also satisfied.

【0012】アルカリ元素としてNa以外にK、Liの
場合の混合薄膜についても検討をした結果、Naの場合
と同様な効果が得られることが明らかになり、変換効率
に関しても同様な傾向が得られた。続いて、CuInS
2 以外、つまりX≠1、Y≠1のCu(InX
1-X )(SY Se1-Y 2 の混合薄膜について述べ
る。CuInSe2 およびCu(In、Ga)Se2
用いて検討した結果、アルカリ元素添加の効果はCuI
nS 2 の場合と同様な傾向を示した。しかし、アルカリ
元素無添加(m/c=0)の場合と比較したアルカリ元
素添加による変換効率の向上はCuInS2 太陽電池よ
り小さいものであった。これらの結果より、Cu(In
X Ga1-X )(SY Se1-Y 2 (0≦X、Y<1)で
表される薄膜中のM(InX Ga1-X )(SY
1-Y 2 層の混在は有効であるが、X=Y=1のCu
InS2 薄膜において本発明は特に大きな効果が現れ
る。
[0012] In addition to Na as an alkali element, K, Li
Of the mixed thin film in the case of Na
It is clear that the same effect can be obtained as
A similar tendency was obtained for. Then, CuInS
TwoOther than, that is, Cu (In) of X ≠ 1 and Y ≠ 1XG
a1-X) (SYSe1-Y)TwoAbout the mixed thin film
You. CuInSeTwoAnd Cu (In, Ga) SeTwoTo
As a result of the examination, the effect of the addition of the alkali element was CuI
nS TwoThe same tendency as in the case of was shown. But alkali
Alkali element compared to the case without element addition (m / c = 0)
Conversion efficiency is improved by adding CuInSTwoIt's a solar cell
It was smaller. From these results, Cu (In
XGa1-X) (SYSe1-Y)Two(0 ≦ X, Y <1)
M (In) in the thin film representedXGa1-X) (SYS
e1-Y)TwoMixing layers is effective, but Cu = X = 1
InSTwoThe invention is particularly effective in thin films
You.

【0013】[0013]

【実施例1】以下に、この発明の実施例を具体的に説明
する。まず、下部電極であるMo層をスパッタリングに
より形成したSiO2 層付ソーダライムガラス基板上
に、まずInの薄い層をArガス雰囲気中のスパッタリ
ング法により堆積し、次にNa2 S層を抵抗加熱蒸着法
により堆積し、その後Cu層およびIn−S層をそれぞ
れArガス雰囲気中およびH2 S/Arガス雰囲気中で
のスパッタリング法により積層した。積層する際、基板
は加熱しなかった。スパッタリングはCuおよびInの
金属ターゲットを用いて、8mTorrのスパッタガス
圧で実施した。また、H2 S/ArガスのH2 S濃度は
7.5at.%として行った。次にこの積層膜を5a
t.%のH2 S/Arガス雰囲気中(大気圧)において
550℃、2時間の熱処理した。熱処理後の膜のX線回
折測定を行ったところNaInS2 とCuInS2 の混
合膜であり、NaInS2 (003)とCuInS
2 (112)のピーク強度比は0.015であった。X
線回折は(株)リガク製:RU−200Bにより以下の
条件で測定した。 《測定条件》 ターゲット : Cu(波長 1.5405Å) 加速電圧 : 40 〔kV〕 X線管電流 : 110 〔mA〕 サンプリング幅 : 0.02〔°〕 スキャン速度 : 4 〔°/min〕 この混合薄膜を前述したように塩酸によりエッチングし
たところ、NaInS 2 相だけ選択的に除去され、同様
にCuInS2 薄膜の結晶粒間に隙間が見られNaIn
2 相がCuInS2 薄膜の結晶粒界に存在していたと
確認できた。
[Embodiment 1] An embodiment of the present invention will be specifically described below.
I do. First, the lower electrode Mo layer is used for sputtering.
Formed SiOTwoOn soda lime glass substrate with layer
First, a thin layer of In was sputtered in an Ar gas atmosphere.
Deposited by the plating method and then NaTwoS layer is deposited by resistance heating
And then deposit the Cu layer and the In-S layer respectively.
In an Ar gas atmosphere and HTwoIn S / Ar gas atmosphere
Were laminated by the sputtering method described above. When laminating,
Did not heat. Sputtering of Cu and In
8mTorr sputter gas using metal target
Performed under pressure. Also, HTwoH of S / Ar gasTwoS concentration
7.5 at. %. Next, this laminated film is
t. % HTwoIn an S / Ar gas atmosphere (atmospheric pressure)
Heat treatment was performed at 550 ° C. for 2 hours. X-ray rotation of film after heat treatment
When the fold measurement was performed, NaInSTwoAnd CuInSTwoBlend of
NaInSTwo(003) and CuInS
TwoThe peak intensity ratio of (112) was 0.015. X
The line diffraction is as follows by RU-200B manufactured by Rigaku Corporation.
It was measured under the conditions. << Measurement conditions >> Target: Cu (wavelength: 1.5405Å) Acceleration voltage: 40 [kV] X-ray tube current: 110 [mA] Sampling width: 0.02 [°] Scanning speed: 4 [° / min] Is etched with hydrochloric acid as described above.
Then, NaInS TwoOnly phases are selectively removed, as well
CuInSTwoThere are gaps between the crystal grains of the thin film and NaIn
STwoPhase is CuInSTwoThat it existed at the grain boundaries of the thin film
It could be confirmed.

【0014】このNaInS2 とCuInS2 の混合膜
の上にCdS層とITO(酸化インジウム・スズ)層を
それぞれ溶液成長法、RFスパッタリング法により積層
して太陽電池を作製した。本実施例により作製された太
陽電池の断面図を図2に示す。各層の膜厚はMo層
(2)が1μm、NaInS2 /CuInS2 混合層
(3)が2μm、CdS層(4)が80nm、ITO層
(5)が0.8μmである。
A CdS layer and an ITO (indium tin oxide) layer were laminated on the mixed film of NaInS 2 and CuInS 2 by a solution growth method and an RF sputtering method, respectively, to produce a solar cell. FIG. 2 shows a cross-sectional view of a solar cell manufactured according to this example. The thickness of each layer is 1 μm for the Mo layer (2), 2 μm for the NaInS 2 / CuInS 2 mixed layer (3), 80 nm for the CdS layer (4), and 0.8 μm for the ITO layer (5).

【0015】この構造の太陽電池のdarkI−V特性
を評価したところ、−0.5(V)の電圧印加時に逆方
向電流は1.7×10-6A/cm2 であった。また、こ
の電池の変換効率はAM1.5で9.2%であった。ま
た、NaInS2 (003)とCuInS2 (112)
のピーク強度比が0.15であること以外は上述と同様
にCuInS2 膜を光吸収層とした太陽電池を作製し
た。
When the dark IV characteristic of the solar cell having this structure was evaluated, the reverse current was 1.7 × 10 −6 A / cm 2 when a voltage of −0.5 (V) was applied. The conversion efficiency of this battery was 9.2% at AM1.5. NaInS 2 (003) and CuInS 2 (112)
A solar cell using a CuInS 2 film as a light absorbing layer was produced in the same manner as described above except that the peak intensity ratio was 0.15.

【0016】この構造の太陽電池のリーク電流をdar
kI−V特性で評価したところ、−0.5(V)の電圧
印加時に逆方向電流は2.0×10-7A/cm2 であっ
た。ここで逆方向電流は飽和電流とリーク電流の和とし
て計測されている(以下、同様)。また、この素子の変
換効率はAM1.5で4.2%であった。上述の特性と
比較して短絡電流および曲線因子の低下し、特に曲線因
子の低下が顕著であったことから太陽電池の直列抵抗分
が増大したことがわかる。
The leakage current of the solar cell having this structure is dar
When evaluated by the kI-V characteristic, the reverse current was 2.0 × 10 −7 A / cm 2 when a voltage of −0.5 (V) was applied. Here, the reverse current is measured as the sum of the saturation current and the leak current (the same applies hereinafter). The conversion efficiency of this device was 4.2% at AM1.5. Compared with the above-mentioned characteristics, the short-circuit current and the fill factor were reduced, and particularly the fill factor was remarkable, indicating that the series resistance of the solar cell was increased.

【0017】[0017]

【比較例1】Na2 S層を積層しないこと以外は実施例
1と同様にCuInS2 膜を光吸収層とした太陽電池を
作製した。この構造の太陽電池のdarkI−V特性を
評価したところ、−0.5(V)の電圧印加時に逆方向
電流は6.1×10-5A/cm2 であった。また、この
太陽電池の変換効率はAM1.5で1.5%であった。
Comparative Example 1 A solar cell using a CuInS 2 film as a light absorbing layer was produced in the same manner as in Example 1 except that no Na 2 S layer was laminated. When the darkIV characteristics of the solar cell having this structure were evaluated, the reverse current was 6.1 × 10 −5 A / cm 2 when a voltage of −0.5 (V) was applied. The conversion efficiency of this solar cell was 1.5% at AM1.5.

【0018】[0018]

【実施例2】Na2 Sの替わりにK2 Sを用いたこと以
外は実施例1と同様にしてKInS 2 とCuInS2
混合膜を作製した。熱処理後の膜のX線回折測定による
KInS2 (003)とCuInS2 (112)のピー
ク強度比は0.015であった。X線回折は実施例1と
同条件で測定した。このKInS2 とCuInS2 の混
合膜の上に実施例1と同様の製法でCdS層とITO層
を積層して太陽電池を作製した。
Embodiment 2 NaTwoK instead of STwoAfter using S
Outside is the same as in the first embodiment. TwoAnd CuInSTwoof
A mixed film was prepared. X-ray diffraction measurement of the film after heat treatment
KInSTwo(003) and CuInSTwo(112) pea
The strength ratio was 0.015. X-ray diffraction was the same as in Example 1.
The measurement was performed under the same conditions. This KInSTwoAnd CuInSTwoBlend of
A CdS layer and an ITO layer were formed on the composite film in the same manner as in Example 1.
Were laminated to produce a solar cell.

【0019】この太陽電池のdarkI−V特性を評価
したところ、−0.5(V)の電圧印加時に逆方向電流
は0.9×10-6A/cm2 であった。また、この太陽
電池の変換効率はAM1.5で9.2%であった。
When the dark IV characteristic of this solar cell was evaluated, the reverse current was 0.9 × 10 −6 A / cm 2 when a voltage of −0.5 (V) was applied. The conversion efficiency of this solar cell was 9.2% at AM1.5.

【0020】[0020]

【実施例3】CuInS2 とNaInS2 の粉末混合タ
ーゲットを用いてスパッタ成膜を行った。ターゲットの
作製は以下の手順で行った。Cu2 S粉末とIn2 3
粉末、Na2 S粉末とIn2 3 粉末をそれぞれ混合し
た後、Ar雰囲気中850℃で4時間焼成することによ
りCuInS2 粉末、NaInS2 粉末を合成した。そ
れらの合成粉末を混合した後プレスしてターゲットを作
製した。
Embodiment 3 Sputter film formation was performed using a powder mixture target of CuInS 2 and NaInS 2 . The target was produced in the following procedure. Cu 2 S powder and In 2 S 3
After mixing the powder, the Na 2 S powder and the In 2 S 3 powder, respectively, the mixture was calcined at 850 ° C. for 4 hours in an Ar atmosphere to synthesize a CuInS 2 powder and a NaInS 2 powder. After mixing these synthetic powders, pressing was performed to produce a target.

【0021】CuInS2 とNaInS2 の混合膜の形
成は以下のように実施した。まず作製したプレスターゲ
ットを用いたスパッタリング法により、Moをコートし
たSiO2 付ソーダライムガラス上に基板温度250℃
で混合薄膜を形成した。次に、この薄膜を5at.%の
2 S/Arガス雰囲気中(大気圧)において550
℃、2時間の熱処理した。熱処理後の膜のX線回折測定
を行ったところNaInS2 とCuInS2 の混合膜で
あり、NaInS2 (003)とCuInS2 (11
2)のピーク強度比は0.025であった。X線回折は
実施例1と同条件で測定した。このNaInS2 とCu
InS2 の混合膜の上に実施例1と同様の製法でCdS
層とITO層を積層して太陽電池を作製した。
The formation of a mixed film of CuInS 2 and NaInS 2 was performed as follows. First, a substrate temperature of 250 ° C. was placed on Mo-coated soda lime glass coated with Mo by a sputtering method using the prepared press target.
To form a mixed thin film. Next, this thin film was coated at 5 at. % In a H 2 S / Ar gas atmosphere (atmospheric pressure).
C. for 2 hours. When the X-ray diffraction measurement of the film after the heat treatment was performed, it was a mixed film of NaInS 2 and CuInS 2 , and NaInS 2 (003) and CuInS 2 (11
The peak intensity ratio in 2) was 0.025. X-ray diffraction was measured under the same conditions as in Example 1. This NaInS 2 and Cu
CdS was formed on the InS 2 mixed film by the same manufacturing method as in Example 1.
The solar cell was manufactured by laminating the layers and the ITO layer.

【0022】この太陽電池のdarkI−V特性を評価
したところ、−0.5(V)の電圧印加時に逆方向電流
は0.6×10-6A/cm2 であった。また、この電池
の変換効率はAM1.5で8.0%であった。
When the dark IV characteristic of this solar cell was evaluated, the reverse current was 0.6 × 10 −6 A / cm 2 when a voltage of −0.5 (V) was applied. The conversion efficiency of this battery was 8.0% at AM1.5.

【0023】[0023]

【実施例4】まず、SiO2 層付ソーダライムガラス基
板上に下部電極であるMo層をスパッタリングにより形
成し、次にNa2 Se層を抵抗加熱蒸着法により堆積
し、その後Cu層およびIn層をArガス雰囲気中での
スパッタリング法により順次積層した。スパッタリング
はCuおよびInの金属ターゲットを用いて、8mTo
rrのスパッタガス圧で実施した。次にこの積層膜を真
空中で500℃に保持しながらSe蒸気を照射してセレ
ン化を行った。セレン化後の膜のX線回折測定を行った
ところNaInSe2 とCuInSe2 の混合膜であ
り、NaInSe2(003)とCuInSe2 (11
2)のピーク強度比は0.018であった。X線回折は
実施例1と同条件で測定した。このNaInSe2 とC
uInSe2の混合膜の上に実施例1と同様の製法でC
dS層とITO層を積層して太陽電池を作製した。
Embodiment 4 First, a Mo layer as a lower electrode is formed on a soda lime glass substrate with a SiO 2 layer by sputtering, and then a Na 2 Se layer is deposited by a resistance heating evaporation method, and thereafter, a Cu layer and an In layer are deposited. Were sequentially laminated by a sputtering method in an Ar gas atmosphere. Sputtering is performed using a metal target of Cu and In at 8 mTo.
This was performed at a sputtering gas pressure of rr. Next, selenization was performed by irradiating Se vapor while maintaining the laminated film at 500 ° C. in a vacuum. When the film after selenization was subjected to X-ray diffraction measurement, it was a mixed film of NaInSe 2 and CuInSe 2 , and NaInSe 2 (003) and CuInSe 2 (11
The peak intensity ratio in 2) was 0.018. X-ray diffraction was measured under the same conditions as in Example 1. This NaInSe 2 and C
On the mixed film of uInSe 2 , C was produced in the same manner as in Example 1.
A solar cell was manufactured by laminating the dS layer and the ITO layer.

【0024】この太陽電池のdarkI−V特性を評価
したところ、−0.5(V)の電圧印加時に逆方向電流
は2.1×10-6A/cm2 であった。また、この電池
の変換効率はAM1.5で7.8%であった。
When the dark IV characteristic of this solar cell was evaluated, the reverse current was 2.1 × 10 −6 A / cm 2 when a voltage of −0.5 (V) was applied. The conversion efficiency of this battery was 7.8% at AM1.5.

【0025】[0025]

【実施例5】まず、SiO2 層付ソーダライムガラス基
板上に下部電極であるMo層をスパッタリングにより形
成し、次に真空蒸着装置内でNa2 2 層を堆積した後
Cu、In、Seを蒸発源とした三源同時蒸着法により
CuInSe2 層を堆積した。基板温度はNa2 2
堆積時には200℃に保持しておき、その温度でCu、
In、Seの蒸着を開始し、その後500℃まで昇温し
保持した。Na2 2堆積の際高温にしておくと再蒸発
してしまい、それを防ぐために温度プロファイルを工夫
した。この膜のX線回折測定を行ったところNaInS
2 とCuInSe2 の混合膜であり、NaInSe2
(003)とCuInSe2 (112)のピーク強度比
は0.012であった。X線回折は実施例1と同条件で
測定した。このNaInSe2 とCuInSe2 の混合
膜の上に実施例1と同様の製法でCdS層とITO層を
積層して太陽電池を作製した。
Embodiment 5 First, a Mo layer as a lower electrode is formed on a soda lime glass substrate provided with an SiO 2 layer by sputtering, and then a Na 2 O 2 layer is deposited in a vacuum evaporation apparatus, followed by Cu, In, and Se. A CuInSe 2 layer was deposited by a three-source simultaneous evaporation method using as an evaporation source. The substrate temperature is kept at 200 ° C. during the deposition of the Na 2 O 2 layer, and Cu,
The deposition of In and Se was started, and then the temperature was raised to 500 ° C. and held. If the temperature was kept high during the deposition of Na 2 O 2 , re-evaporation occurred, and a temperature profile was devised to prevent this. X-ray diffraction measurement of this film revealed that NaInS
e 2 and a mixed film of CuInSe 2 , and NaInSe 2
The peak intensity ratio between (003) and CuInSe 2 (112) was 0.012. X-ray diffraction was measured under the same conditions as in Example 1. On this mixed film of NaInSe 2 and CuInSe 2 , a CdS layer and an ITO layer were laminated in the same manner as in Example 1 to produce a solar cell.

【0026】この太陽電池のdarkI−V特性を評価
したところ、−0.5(V)の電圧印加時に逆方向電流
は0.7×10-6A/cm2 であった。また、この電池
の変換効率はAM1.5で11.3%であった。
When the dark IV characteristic of this solar cell was evaluated, the reverse current was 0.7 × 10 −6 A / cm 2 when a voltage of −0.5 (V) was applied. The conversion efficiency of this battery was 11.3% at AM1.5.

【0027】[0027]

【比較例2】Na2 2 層を堆積しないこと以外は実施
例5と同様にCuInSe2 膜を光吸収層とした太陽電
池を作製した。この太陽電池のdarkI−V特性を評
価したところ、−0.5(V)の電圧印加時に逆方向電
流は9.0×10-6A/cm2 であった。また、この電
池の変換効率はAM1.5で7.0%であった。
Comparative Example 2 A solar cell using a CuInSe 2 film as a light absorbing layer was produced in the same manner as in Example 5, except that no Na 2 O 2 layer was deposited. When the darkIV characteristics of this solar cell were evaluated, the reverse current was 9.0 × 10 −6 A / cm 2 when a voltage of −0.5 (V) was applied. The conversion efficiency of this battery was 7.0% at AM1.5.

【0028】[0028]

【発明の効果】本発明によれば、Cu(InX
1-X )(SY Se1-Y 2 (0≦X、Y≦1)で表さ
れる半導体薄膜を光吸収層とした太陽電池において、光
吸収層の深さ方向の組成分布を精密に制御することな
く、素子の逆方向のリーク電流を低減することができ高
い変換効率の実現が可能となる。
According to the present invention, Cu (In X G
In a solar cell in which a semiconductor thin film represented by a 1-X ) (S Y Se 1-Y ) 2 (0 ≦ X, Y ≦ 1) is used as a light absorbing layer, the composition distribution in the depth direction of the light absorbing layer is Without precise control, leakage current in the element in the reverse direction can be reduced, and high conversion efficiency can be realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】変換効率とm/c強度比の関係を示す。FIG. 1 shows the relationship between conversion efficiency and m / c intensity ratio.

【図2】本発明によるCuInS2 とNaInS2 の混
合薄膜を用いた太陽電池の一例の断面図。
FIG. 2 is a cross-sectional view of an example of a solar cell using a mixed thin film of CuInS 2 and NaInS 2 according to the present invention.

【図3】本発明によるCuInS2 とNaInS2 の混
合薄膜のXRDパターン。
FIG. 3 is an XRD pattern of a mixed thin film of CuInS 2 and NaInS 2 according to the present invention.

【図4】CuInS2 薄膜のXRDパターン。FIG. 4 is an XRD pattern of a CuInS 2 thin film.

【図5】NaInS2 薄膜のXRDパターン。FIG. 5 is an XRD pattern of a NaInS 2 thin film.

【符号の説明】[Explanation of symbols]

1.ガラス基板 2.下部金属電極層(Mo) 3.CuInS2 とNaInS2 の混合薄膜 4.n型半導体層(CdS) 5.透明電極層(ITO)1. Glass substrate 2. 2. Lower metal electrode layer (Mo) 3. Mixed thin film of CuInS 2 and NaInS 2 4. n-type semiconductor layer (CdS) Transparent electrode layer (ITO)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 Cu(InX Ga1-X )(SY
1-Y 2 (0≦X、Y≦1)で表されるカルコパイラ
イト型太陽電池において、該太陽電池の光吸収層中にM
(InX Ga1-X )(SY Se1-Y 2 (ただし、Mは
Li、Na、Kのうち少なくとも1種の元素)で表され
る化合物を有し、前記M(InX Ga1-X )(SY Se
1-Y 2 が前記Cu(InX Ga1-X )(SY
1-Y 2 の結晶粒界に存在していることを特徴とする
カルコパライト型太陽電池。
1. The method according to claim 1, wherein Cu (In x Ga 1 -x ) (S Y S
e 1-Y ) 2 (0 ≦ X, Y ≦ 1) In a chalcopyrite solar cell, M is contained in a light absorbing layer of the solar cell.
(In X Ga 1-X) (S Y Se 1-Y) 2 ( However, M is Li, Na, at least one element of K) has a compound represented by the M (In X Ga 1-X ) (S Y Se
1-Y ) 2 is Cu (In x Ga 1-x ) (S Y S
chalcopyrite solar cell characterized by being present in e 1-Y) 2 of the grain boundary.
【請求項2】 請求項1記載のカルコパライト型太陽電
池において、前記M(InX Ga1-X )(SY
1-Y 2 と前記Cu(InX Ga1-X )(SY Se
1-Y 2 のθ/2θスキャン法によるX線回折測定で得
られた(003)面のピーク強度mと、(112)面の
ピーク強度cとの比m/cが0.002以上0.1以下
であることを特徴とするカルコパライト型太陽電池。
2. The chalcopyrite solar cell according to claim 1, wherein the M (In x Ga 1 -x) (S Y S
e 1-Y ) 2 and the above-mentioned Cu (In x Ga 1-x ) (S Y Se
1-Y) and the peak intensity m of the obtained (003) plane in X-ray diffraction measurement using 2 theta / 2 [Theta] scan method, (112) the ratio m / c and the peak intensity c of surfaces 0.002 more 0 0.1 or less, chalcopyrite solar cell.
JP8280651A 1996-10-23 1996-10-23 Chalcopyrite type solar cell Withdrawn JPH10125941A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8280651A JPH10125941A (en) 1996-10-23 1996-10-23 Chalcopyrite type solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8280651A JPH10125941A (en) 1996-10-23 1996-10-23 Chalcopyrite type solar cell

Publications (1)

Publication Number Publication Date
JPH10125941A true JPH10125941A (en) 1998-05-15

Family

ID=17628034

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8280651A Withdrawn JPH10125941A (en) 1996-10-23 1996-10-23 Chalcopyrite type solar cell

Country Status (1)

Country Link
JP (1) JPH10125941A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001148489A (en) * 1999-09-07 2001-05-29 Shinko Electric Ind Co Ltd Manufacturing method for compound semiconductor solar battery
JP2003282908A (en) * 2002-03-25 2003-10-03 Honda Motor Co Ltd Method and device for manufacturing light absorbing layer
JP2006167652A (en) * 2004-12-17 2006-06-29 Tokyo Univ Of Science Black photocatalyst for forming hydrogen absorbing all visible light
JP2010141307A (en) * 2008-11-11 2010-06-24 Kyocera Corp Method for manufacturing thin-film solar cell
WO2013018689A1 (en) * 2011-07-29 2013-02-07 京セラ株式会社 Photoelectric conversion device
US8415557B2 (en) 2009-03-09 2013-04-09 Fujifilm Corporation Photoelectric conversion device and solar cell using the photoelectric conversion device
CN105474371A (en) * 2013-06-27 2016-04-06 法国圣戈班玻璃厂 Layer system for thin-layer solar cells with a sodium-indium sulphide buffer layer
JP2016541124A (en) * 2013-12-23 2016-12-28 バンブ・デザイン・アンド・リサーチ・インスティテュート・フォー・グラス・インダストリー Layer system for thin film solar cells

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001148489A (en) * 1999-09-07 2001-05-29 Shinko Electric Ind Co Ltd Manufacturing method for compound semiconductor solar battery
JP2003282908A (en) * 2002-03-25 2003-10-03 Honda Motor Co Ltd Method and device for manufacturing light absorbing layer
JP2006167652A (en) * 2004-12-17 2006-06-29 Tokyo Univ Of Science Black photocatalyst for forming hydrogen absorbing all visible light
JP4608693B2 (en) * 2004-12-17 2011-01-12 学校法人東京理科大学 Black photocatalyst for hydrogen production with total absorption of visible light
JP2010141307A (en) * 2008-11-11 2010-06-24 Kyocera Corp Method for manufacturing thin-film solar cell
US8415557B2 (en) 2009-03-09 2013-04-09 Fujifilm Corporation Photoelectric conversion device and solar cell using the photoelectric conversion device
WO2013018689A1 (en) * 2011-07-29 2013-02-07 京セラ株式会社 Photoelectric conversion device
CN105474371A (en) * 2013-06-27 2016-04-06 法国圣戈班玻璃厂 Layer system for thin-layer solar cells with a sodium-indium sulphide buffer layer
JP2016524340A (en) * 2013-06-27 2016-08-12 サン−ゴバン グラス フランス Layer system for thin film solar cells with sodium indium sulfide buffer layer
JP2016541124A (en) * 2013-12-23 2016-12-28 バンブ・デザイン・アンド・リサーチ・インスティテュート・フォー・グラス・インダストリー Layer system for thin film solar cells
CN106716646A (en) * 2013-12-23 2017-05-24 蚌埠玻璃工业设计研究院 Layer system for thin-film solar cells

Similar Documents

Publication Publication Date Title
Tanaka et al. Preparation of Cu2ZnSnS4 thin films by sulfurizing sol–gel deposited precursors
Islam et al. Thickness study of Al: ZnO film for application as a window layer in Cu (In1− xGax) Se2 thin film solar cell
TWI510664B (en) Chalcogenide-based materials and improved methods of making such materials
Lin et al. Characteristics of Cu2ZnSn (SxSe1− x) 4 thin-film solar cells prepared by sputtering deposition using single quaternary Cu2ZnSnS4 target followed by selenization/sulfurization treatment
Akcay et al. Development of a CZTS solar cell with CdS buffer layer deposited by RF magnetron sputtering
KR20100136790A (en) Solar cell and method of fabricating the same
US20100248417A1 (en) Method for producing chalcopyrite-type solar cell
WO2011040645A1 (en) Photoelectric conversion device, method for producing the same, and solar battery
Islam et al. Tailoring of the structural and optoelectronic properties of zinc-tin-oxide thin films via oxygenation process for solar cell application
JPH10125941A (en) Chalcopyrite type solar cell
JP2001044464A (en) METHOD OF FORMING Ib-IIIb-VIb2 COMPOUND SEMICONDUCTOR LAYER AND MANUFACTURE OF THIN-FILM SOLAR CELL
Zhai et al. Smooth and highly-crystalline Ag-doped CIGS films sputtered from quaternary ceramic targets
WO2011108033A1 (en) Compound thin film solar cell and method for manufacturing same
US8841160B2 (en) Methods for producing chalcopyrite compound thin films for solar cells using multi-stage paste coating
Watanabe et al. Improved efficiency of CuInS2-based solar cells without potassium cyanide process
Nadarajah et al. Sputtered cadmium sulfide (CdS) buffer layer for kesterite and chalcogenide thin film solar cell (TFSC) Applications
Li et al. Properties of the Cu (In, Ga) Se2 absorbers deposited by electron-beam evaporation method for solar cells
Zweigart et al. CuInSe 2 film growth using precursors deposited at low temperature
Tanaka et al. Characterization of Cu (InxGa1− x) 2Se3. 5 thin films prepared by rf sputtering
Tanaka et al. Preparation of Cu (In, Ga) 2 Se 3.5 thin films by radio frequency sputtering from stoichiometric Cu (In, Ga) Se 2 and Na 2 Se mixture target
KR20150048728A (en) Compound solar cell and method for manufacturing same
JP3520683B2 (en) Compound semiconductor thin film, method for manufacturing the same, and solar cell
JP5710369B2 (en) Photoelectric conversion element and solar cell
Schmidt et al. MoSe 2 formation during fabrication of Cu (In, Ga) Se 2 solar cell absorbers by using stacked elemental layer precursor and selenization at high temperatures
KR20120105682A (en) Quaternary zinc oxide thin film and method for manufacturing the same and electronic device comprising the same

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20040106