JPH10125330A - Thin type battery using polymeric solid electrolyte - Google Patents

Thin type battery using polymeric solid electrolyte

Info

Publication number
JPH10125330A
JPH10125330A JP8280432A JP28043296A JPH10125330A JP H10125330 A JPH10125330 A JP H10125330A JP 8280432 A JP8280432 A JP 8280432A JP 28043296 A JP28043296 A JP 28043296A JP H10125330 A JPH10125330 A JP H10125330A
Authority
JP
Japan
Prior art keywords
positive electrode
active material
electrode active
thickness
conductive auxiliary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8280432A
Other languages
Japanese (ja)
Inventor
Hiroshi Kagawa
博 香川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yuasa Corp
Original Assignee
Yuasa Corp
Yuasa Battery Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuasa Corp, Yuasa Battery Corp filed Critical Yuasa Corp
Priority to JP8280432A priority Critical patent/JPH10125330A/en
Publication of JPH10125330A publication Critical patent/JPH10125330A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PROBLEM TO BE SOLVED: To increase adhesive strength and prevent the occurrence of a short circuit across positive electrode and negative electrode components by laying a positive electrode active material, so as to occupy an area smaller than the arrangement area of a conductive assistant, and keeping the thickness of the conductive assisting agent at a value smaller than the thickness of the positive electrode material. SOLUTION: A prerequisite is established, so that a distance between the outside dimensions of a conductive assistant and a positive electrode active material is equal to or larger than 0.1mm, the conductive assisting agent has thickness equal to or less than 1/13 of the thickness of the positive electrode active material, and the conductive assisting agent has a liquid absorbing function. A conductive assisting agent 10 is screen printed on a positive electrode current collector 9 (e.g. stainless steel foil), so as to keep a peripheral part in a corrugated state and dried, thereby forming a porous layer of approximately 0.01mm thickness. The extent of the corrugation can be controlled by keeping a large screen plate mesh and increasing a wire diameter. In this case, the length of each corrugation is preferably equal to or less than approximately 1mm, from a viewpoint of a liquid collection function. Also, a positive electrode active material 11 is printed on the conductive assistant 10 over a small area at a position approximately 0.5mm away from respective ends and exposed to electron beams, thereby preparing a positive electrode. On the other hand, a polymeric solid electrolyte 13 is printed on the metallic lithium 12 of the negative electrode active material at the center of a negative electrode current collector 16. A negative electrode is thereby prepared.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ID/ICカ−ド
類、物流タグ、ハイテクエレクトロニクス機器、携帯機
器、玩具、文具、アクセサリ−などの電源に使われる薄
形電池に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thin battery used as a power source for ID / IC cards, distribution tags, high-tech electronic equipment, portable equipment, toys, stationery, accessories and the like.

【0002】[0002]

【従来の技術】従来の薄形電池として金属リチウムを用
いた場合について説明する。図3に特徴となる正極集電
体の斜視図を、図4にその断面図を示す。ステンレス箔
からなる正極集電体1の周縁域に枠状の接着材2を熱接
着し、さらに該正極集電体1の中央域に導電補助剤3を
印刷した後、さらに該導電補助剤3面積より大きい面積
で且つ該接着材2の内側領域全体に正極活物質4を配置
した。一方、ステンレス箔からなる負極集電体5の周縁
域に接着材2より外寸及び内寸共に大きい接着材6を熱
接着し、次に該負極集電体5面に負極活物質7としての
金属リチウムを圧着し、さらに該負極活物質7より大き
い面積で高分子固体電解質8をスクリ−ン印刷により配
置した。このような正極と負極を電子線により硬化した
後、加熱状態下で電池周辺域を加圧することで、各極集
電体の接着材2及び6を互いに接着し電池内を密閉し
た。図5にその断面図を示す。
2. Description of the Related Art A case in which metallic lithium is used as a conventional thin battery will be described. FIG. 3 is a perspective view of a characteristic positive electrode current collector, and FIG. 4 is a cross-sectional view thereof. A frame-shaped adhesive 2 is thermally bonded to a peripheral region of a positive electrode current collector 1 made of stainless steel foil, and a conductive auxiliary agent 3 is printed on a central region of the positive electrode current collector 1. The positive electrode active material 4 was disposed over an area larger than the area and over the entire area inside the adhesive 2. On the other hand, an adhesive 6 larger in both outer dimension and inner dimension than the adhesive 2 is thermally bonded to the peripheral region of the negative electrode current collector 5 made of stainless steel foil, and then the negative electrode active material 7 Metallic lithium was pressed, and a solid polymer electrolyte 8 was arranged by screen printing over an area larger than the negative electrode active material 7. After the positive electrode and the negative electrode were cured with an electron beam, the adhesive around the battery was pressurized in a heated state, whereby the adhesives 2 and 6 of the respective current collectors were adhered to each other to seal the inside of the battery. FIG. 5 shows a cross-sectional view thereof.

【0003】このような従来の薄形電池を保存試験した
結果、60℃、湿度95%、100日経過後で自己放電
率が約25%になった。試験後の電池の中には接着封口
部が開口するものもあり、接着部に問題があった。さら
に接着材をそれぞれの集電体にあらかじめ接着しておく
ことは加工工数が増える。また、各集電体が当該接着材
2、6の熱収縮により、変形し次工程での活物質配置が
難しくなり、位置精度が悪く、接着材6の上に高分子固
体電解質8が付着し前述した接着部の気密度を低下させ
る上、正極活物質4の端部が高分子固体電解質8を貫通
し、負極活物質7と接触し短絡する場合があった。
[0003] As a result of a storage test of such a conventional thin battery, the self-discharge rate was about 25% after 100 days at 60 ° C and 95% humidity. Some of the batteries after the test had an adhesive seal opening, and there was a problem with the adhesive. Further, bonding the adhesive to each current collector in advance increases the number of processing steps. In addition, each current collector is deformed due to the heat shrinkage of the adhesives 2 and 6, which makes it difficult to arrange the active material in the next step, resulting in poor positional accuracy, and the solid polymer electrolyte 8 adheres to the adhesive 6. In addition to lowering the airtightness of the above-mentioned bonded portion, the end of the positive electrode active material 4 may penetrate the polymer solid electrolyte 8 and contact with the negative electrode active material 7 to cause a short circuit.

【0004】[0004]

【発明が解決しようとする課題】本発明は上記問題点に
鑑みてなされたものであって、その目的とするところは
正極活物質中の溶液成分、例えば電解液などの接着予定
領域への広がりを防止し、薄形電池の密閉を行う接着封
口部の接着強度を高め、保存性能を向上させ、多少の位
置ずれ配置を許容でき、さらに電池内を減圧密閉した場
合の正極集電体と負極集電体、又は正極電池構成部品と
負極電池構成部品との短絡を防止する薄形電池を提供す
ることにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and has as its object to spread a solution component in a positive electrode active material, such as an electrolyte, to a region to be bonded. The positive electrode current collector and the negative electrode when the inside of the battery is depressurized and sealed are sealed. An object of the present invention is to provide a current collector or a thin battery that prevents a short circuit between a positive battery component and a negative battery component.

【0005】[0005]

【課題を解決するための手段】本発明は上記目的を達成
するもので、正極集電体面上に導電補助剤を配置し、そ
の上に正極活物質を配置する高分子固体電解質を用いた
薄形電池において、該導電補助剤の配置面積より小さい
面積で正極活物質が配置され、導電補助剤と正極活物質
の外寸距離が0.1mm以上であり、且つ導電補助剤の
厚さが正極活物質の厚さの1/13以下であること、前
記導電補助剤が吸液性であること、前記導電補助剤の少
なくとも外周部分は斑点状又は波状になっていること、
前記導電補助剤と集電体周辺域を接着シ−ルする接着封
口材との距離が0.1mm〜1.5mmであり、該薄形
電池の厚さが0.2mm〜0.6mmであることなどを
特徴とし、これにより上述の問題点を解決するものであ
る。
SUMMARY OF THE INVENTION The present invention achieves the above object and provides a thin film using a solid polymer electrolyte in which a conductive auxiliary is disposed on a positive electrode current collector surface and a positive electrode active material is disposed thereon. In the shape battery, the positive electrode active material is arranged in an area smaller than the arrangement area of the conductive auxiliary, the outer dimension distance between the conductive auxiliary and the positive electrode active material is 0.1 mm or more, and the thickness of the conductive auxiliary is Being not more than 1/13 of the thickness of the active material, that the conductive auxiliary agent is liquid-absorbing, that at least the outer peripheral portion of the conductive auxiliary agent is spotted or wavy,
The distance between the conductive auxiliary agent and the adhesive sealing material for sealing the peripheral area of the current collector is 0.1 mm to 1.5 mm, and the thickness of the thin battery is 0.2 mm to 0.6 mm. The present invention is characterized in that the above-mentioned problems are solved.

【0006】[0006]

【発明の実施の形態】本発明は請求項1、2により、正
極活物質をメタルマスク方式で印刷する場合、正極集電
体面上でのすべりによる印刷できない欠損部分が生じな
い。さらに請求項3により、正極活物質中から染みだし
た電解液成分が導電補助剤に吸収され、導電補助剤より
外側に染みださないため、接着部分を汚染せずシ−ル性
が高まり、寿命が向上する。正極活物質と導電補助剤と
の外寸距離が0.1mmより小さければ電解液成分を吸
収することができず接着シ−ル予定域にまで電解液成分
が付着し、接着強度を低下させ寿命を悪くする。また、
大きすぎると電池容量を一定とする場合、正極活物質の
厚さが厚くなり電子線による正極活物質中の高分子モノ
マ−を硬化させることができず電解液成分の保持性が悪
くなり、逆に染みだし量を多くすることになり接着性を
悪くすることになる。好ましい外寸距離は0.1mm〜
1.5mmである。しかしながら最大の外寸距離は電池
の大きさ、容量に関連するため、本発明では限定しない
が、導電補助剤の厚さを正極活物質の厚さの1/13以
下とすることで、電解液成分の保持性と高分子モノマ−
の硬化性を高めることから接着強度を強め、その範囲外
では接着強度が約35〜50g/mm幅であるのに対し
て、その範囲内では約55〜115g/mm幅と強くな
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS According to the first and second aspects of the present invention, when a positive electrode active material is printed by a metal mask method, a defective portion that cannot be printed due to slip on the positive electrode current collector surface does not occur. According to the third aspect of the present invention, the electrolyte component that has permeated out of the positive electrode active material is absorbed by the conductive auxiliary and does not permeate out of the conductive auxiliary, so that the adhesive portion is not contaminated and the sealing property is improved. The life is improved. If the outer dimension distance between the positive electrode active material and the conductive auxiliary agent is smaller than 0.1 mm, the electrolyte component cannot be absorbed and the electrolyte component adheres to the intended area of the adhesive seal, lowering the adhesive strength and shortening the service life. Make you worse. Also,
If the battery capacity is too large when the battery capacity is constant, the thickness of the positive electrode active material becomes large, the polymer monomer in the positive electrode active material cannot be cured by the electron beam, and the retention of the electrolyte component deteriorates. In this case, the amount of bleeding is increased, and the adhesiveness is deteriorated. Preferred outer dimension distance is 0.1 mm or more
1.5 mm. However, since the maximum external distance is related to the size and capacity of the battery, it is not limited in the present invention, but by setting the thickness of the conductive auxiliary agent to be not more than 1/13 of the thickness of the positive electrode active material, Component Retention and Polymer Monomer
The adhesive strength is increased by increasing the curability of the resin, and the adhesive strength is about 35 to 50 g / mm width outside the range, whereas it is about 55 to 115 g / mm width within the range.

【0007】請求項4により、導電補助剤の外周長さが
長く、凹み部分で表面張力が作用し吸液量以上の電解液
成分などを引きつけておくことができ、接着予定域への
染み出しを防止できる。
According to the fourth aspect, the outer peripheral length of the conductive auxiliary agent is long, and the surface tension acts on the recessed portion, so that the electrolyte component or the like having a liquid absorption amount or more can be attracted, and seepage into the bonding expected area. Can be prevented.

【0008】請求項5については、導電補助剤と集電体
周辺域を接着シ−ルする接着封口材との距離を0.1m
m〜1.5mmとし、薄形電池の厚さを0.2mm〜
0.6mmとすることで、正極活物質中の電解液成分な
どの染みだしを防止するとともに、接着材と電池要素
(活物質、高分子固体電解質など)との空間での内部短
絡を防止できる。即ち、電池内部を減圧密閉した場合、
集電体が1気圧で押しつけられ、内側に向けて変形する
時に集電体面同士又は活物質が内部接触するのを防止で
きる。
According to a fifth aspect of the present invention, the distance between the conductive auxiliary agent and the adhesive sealing material for sealing the peripheral area of the current collector is 0.1 m.
m to 1.5 mm, and the thickness of the thin battery is 0.2 mm to
By setting the thickness to 0.6 mm, it is possible to prevent the exudation of the electrolyte component in the positive electrode active material and to prevent the internal short circuit in the space between the adhesive and the battery element (active material, polymer solid electrolyte, etc.). . That is, when the inside of the battery is sealed under reduced pressure,
When the current collector is pressed at 1 atm and is deformed inward, it is possible to prevent the current collector surfaces from contacting each other or the active material.

【0009】[0009]

【実施例】以下、本発明の実施例を図面に基づいて説明
する。図1に本発明に係わる正極集電体の生産加工状態
図を示す。正極集電体9(ステンレス箔、ニッケルメッ
キステンレス箔、アルミニウム箔など)の上に、外周部
分が波状になるように導電補助剤10(例えばカ−ボン
などの電導性物質と有機バインダ−、溶剤などの混合
物)をスクリ−ン印刷し、乾燥した後に約0.01mm
の厚さの多孔質になるようにした。このときの外寸は2
5.1mm×18.1mmとした。波状の程度はスクリ
−ン版のメッシュを大きく、線径を太くすることで制御
できる。波状の波長は約1mm以下が捕液性の点で好ま
しい。1mm以上だと波状部の谷にあたる部分の集電体
面上に広がった電解液成分を吸収できずに拡散すること
になる。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a production processing diagram of a positive electrode current collector according to the present invention. On a positive electrode current collector 9 (stainless steel foil, nickel-plated stainless steel foil, aluminum foil, or the like), a conductive auxiliary agent 10 (for example, a conductive material such as carbon, an organic binder, or a solvent) so that the outer peripheral portion becomes wavy. About 0.01 mm after screen printing and drying.
To be porous. The outer dimensions at this time are 2
The size was 5.1 mm × 18.1 mm. The degree of the wavy shape can be controlled by enlarging the mesh of the screen plate and increasing the wire diameter. The wave-like wavelength is preferably about 1 mm or less from the viewpoint of liquid-trapping property. If it is 1 mm or more, the electrolyte solution component spread on the current collector surface in the portion corresponding to the valley of the wavy portion cannot be absorbed and diffuses.

【0010】次に、該導電補助剤10面上に約0.5m
mそれぞれの端から離れた小さめの面積(外寸は24.
1mm×17.1mm)で厚さ約0.210mmで正極
活物質11(例えば二酸化マンガンを主成分とし、電導
剤、高分子固体電解質を混合したもの。)を印刷し、電
子線照射により該正極活物質11を硬化させ正極を作製
した。別工程で負極集電体16の中央部に負極活物質と
しての金属リチウム12(他にリチウムアルミ合金、カ
−ボンなどがある。)を配置した上に高分子固体電解質
13を印刷し負極を作製した。このような正極と負極の
周辺域同士を接着予定域15に示す斜線域で枠状の接着
封口材14(例えば変性ポリプロピレンなどで、内寸を
26.7mm×19.7mmとした。)で熱圧着し、封
口した。図2にその断面図を示す。
Next, about 0.5 m is placed on the conductive auxiliary agent 10 surface.
m Smaller area away from each end (external dimensions are 24.
A positive electrode active material 11 (for example, a mixture of manganese dioxide as a main component, a conductive agent and a polymer solid electrolyte) having a size of about 1 mm × 17.1 mm and a thickness of about 0.210 mm is printed, and the positive electrode is irradiated with an electron beam. The active material 11 was cured to produce a positive electrode. In a separate step, a negative electrode active material is disposed in the center of the negative electrode current collector 16 with metallic lithium 12 (there are other lithium aluminum alloys, carbon, and the like), and a polymer solid electrolyte 13 is printed thereon to form a negative electrode. Produced. The peripheral area of such a positive electrode and a negative electrode is heated by a frame-shaped adhesive sealing material 14 (for example, modified polypropylene or the like, the inner size of which is 26.7 mm × 19.7 mm) in a hatched area shown as an area 15 to be bonded. It was crimped and sealed. FIG. 2 shows a cross-sectional view thereof.

【0011】この図2の断面図に示す電池50セルにつ
いて破壊試験、保存試験及び放電試験を行った。接着部
のT字引っ張り強度は約75〜110g/mm幅で、平
均は約90g/mm幅であった。また、接着封口材の内
寸は熱変形により内側に伸びて約26.1mm×19.
1mm±0.15mmであった。しかしながら伸びた部
分にも電解液成分などは付着していなかった。保存試験
として60℃、湿度95%、120日経過後、放電試験
として20℃、0.3mAで終止電圧が2.0Vになる
まで放電した結果、電池容量は約33.7mAh±0.
8mAhとなり、保存前の平均電池容量約37.4mA
hに対して平均で約10%の減少にとどまった。また内
部短絡による電圧低下を示す電池は皆無であった。
A destruction test, a storage test, and a discharge test were performed on 50 cells shown in the sectional view of FIG. The T-shaped tensile strength of the bonded portion was about 75 to 110 g / mm width, and the average was about 90 g / mm width. Further, the inner size of the adhesive sealing material extends inward due to thermal deformation and is about 26.1 mm × 19.
It was 1 mm ± 0.15 mm. However, the electrolyte component and the like did not adhere to the extended portion. After 120 days at 60 ° C. and 95% humidity as a storage test, the battery was discharged at 20 ° C. and 0.3 mA until the final voltage reached 2.0 V as a discharge test. As a result, the battery capacity was about 33.7 mAh ± 0.
8 mAh, about 37.4 mA average battery capacity before storage
On average, the reduction was only about 10% with respect to h. There was no battery showing a voltage drop due to an internal short circuit.

【0012】[0012]

【発明の効果】上述したごとく、本発明は次に記載する
効果を奏する。 (1)正極活物質中の電解液成分の染みだしと広がりを
抑制できた。 (2)染みだした電解液成分を吸収し捕液し所定域以外
への広がりを防止することから接着予定面が汚染され
ず、接着強度が増加、安定し、電池寿命が向上した。 (3)自己放電率が従来の半分以下となった。 (4)内部短絡を防止できた。 (5)接着封口材の配置及び接着域が汚染されないた
め、電池の信頼性が向上した。
As described above, the present invention has the following effects. (1) The exudation and spread of the electrolyte component in the positive electrode active material could be suppressed. (2) Since the exuded electrolyte component is absorbed and trapped to prevent spreading to a region other than the predetermined region, the surface to be bonded is not contaminated, and the bonding strength is increased and stabilized, and the battery life is improved. (3) The self-discharge rate is less than half of the conventional one. (4) Internal short circuit was prevented. (5) Since the arrangement of the adhesive sealing material and the adhesive area are not contaminated, the reliability of the battery is improved.

【0013】なお、本発明においては上記実施例に限定
されるものではなく、また多孔度、組成も限定されるも
のではない。導電補助剤は特に周縁部では電導性、非電
導性を問わないが、非電導性の方が電池内部短絡の危険
性を防止できる点で望ましい。しかし少なくとも正極活
物質と接触する面では電導性を有している必要がある。
またアンダ−コ−ト剤が正極活物質の外寸より少し離れ
て防波堤(例えば二重の枠のような形状でもよい。)の
ようになっていても良い。
It should be noted that the present invention is not limited to the above-described embodiment, and the porosity and composition are not limited. The conductive auxiliary agent may be conductive or non-conductive particularly at the peripheral portion, but non-conductive is preferable in that the risk of a short circuit inside the battery can be prevented. However, at least the surface in contact with the positive electrode active material needs to have electrical conductivity.
Further, the undercoat agent may be slightly separated from the outer dimension of the positive electrode active material to form a breakwater (for example, a shape like a double frame).

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係わる正極の作製状態を示す平面図で
ある。
FIG. 1 is a plan view showing a state of manufacturing a positive electrode according to the present invention.

【図2】本発明に係わる薄形電池を示す断面図である。FIG. 2 is a cross-sectional view showing a thin battery according to the present invention.

【図3】従来の薄形電池の正極集電体を示す平面図であ
る。
FIG. 3 is a plan view showing a positive electrode current collector of a conventional thin battery.

【図4】従来の薄形電池の正極集電体を示す断面図であ
る。
FIG. 4 is a cross-sectional view showing a positive electrode current collector of a conventional thin battery.

【図5】従来の薄形電池の断面図である。FIG. 5 is a cross-sectional view of a conventional thin battery.

【符号の説明】[Explanation of symbols]

1、9 正極集電体 2、6 接着材 14 接着封口材 3、10 導電補助剤 4、11 正極活物質 5、16 負極集電体 7、12 負極活物質 8、13 高分子固体電解質 15 接着予定域 1, 9 Positive electrode current collector 2, 6 Adhesive material 14 Adhesive sealing material 3, 10 Conductive auxiliary agent 4, 11 Positive electrode active material 5, 16 Negative current collector 7, 12 Negative electrode active material 8, 13 Polymer solid electrolyte 15 Adhesion Planned area

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 正極集電体面上に導電補助剤を配置し、
その上に正極活物質を配置する高分子固体電解質を用い
た薄形電池において、該導電補助剤の配置面積より小さ
い面積で正極活物質が配置され、且つ導電補助剤の厚さ
が正極活物質の厚さより小さいことを特徴とする高分子
固体電解質を用いた薄形電池。
Claims: 1. A conductive auxiliary is disposed on a positive electrode current collector surface,
In a thin battery using a solid polymer electrolyte in which a positive electrode active material is disposed thereon, the positive electrode active material is disposed in an area smaller than an area where the conductive auxiliary is disposed, and the thickness of the conductive auxiliary is reduced. A thin battery using a polymer solid electrolyte, characterized in that the thickness is smaller than the thickness of the battery.
【請求項2】 正極集電体面上に導電補助剤を配置し、
その上に正極活物質を配置する高分子固体電解質を用い
た薄形電池において、該導電補助剤の配置面積より小さ
い面積で正極活物質が配置され、導電補助剤と正極活物
質の外寸距離が0.1mm以上であり、且つ導電補助剤
の厚さが正極活物質の厚さの1/13以下であることを
特徴とする高分子固体電解質を用いた薄形電池。
2. A conductive auxiliary agent is disposed on the positive electrode current collector surface,
In a thin battery using a polymer solid electrolyte in which a positive electrode active material is disposed thereon, the positive electrode active material is disposed in an area smaller than the conductive auxiliary agent, and the external distance between the conductive auxiliary and the positive electrode active material is reduced. Is 0.1 mm or more, and the thickness of the conductive auxiliary agent is 1/13 or less of the thickness of the positive electrode active material.
【請求項3】 前記導電補助剤が、吸液性を有する請求
項1又は2記載の高分子固体電解質を用いた薄形電池。
3. The thin battery using the solid polymer electrolyte according to claim 1, wherein the conductive auxiliary has a liquid absorbing property.
【請求項4】 前記導電補助剤の少なくとも外周部分
が、斑点状又は波状に形成されている請求項1又は2記
載の高分子固体電解質を用いた薄形電池。
4. The thin battery using the polymer solid electrolyte according to claim 1, wherein at least the outer peripheral portion of the conductive auxiliary agent is formed in a spot-like or wavy shape.
【請求項5】 前記導電補助剤と集電体周辺域を接着シ
−ルする接着封口材との距離が、0.1mm〜1.5m
mであり、該薄形電池の厚さが0.2mm〜0.6mm
である請求項1又は2記載の高分子固体電解質を用いた
薄形電池。
5. The distance between the conductive auxiliary agent and an adhesive sealing material for sealing the peripheral area of the current collector is 0.1 mm to 1.5 m.
m, and the thickness of the thin battery is 0.2 mm to 0.6 mm.
A thin battery using the solid polymer electrolyte according to claim 1.
JP8280432A 1996-10-23 1996-10-23 Thin type battery using polymeric solid electrolyte Pending JPH10125330A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8280432A JPH10125330A (en) 1996-10-23 1996-10-23 Thin type battery using polymeric solid electrolyte

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8280432A JPH10125330A (en) 1996-10-23 1996-10-23 Thin type battery using polymeric solid electrolyte

Publications (1)

Publication Number Publication Date
JPH10125330A true JPH10125330A (en) 1998-05-15

Family

ID=17624980

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8280432A Pending JPH10125330A (en) 1996-10-23 1996-10-23 Thin type battery using polymeric solid electrolyte

Country Status (1)

Country Link
JP (1) JPH10125330A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9425459B2 (en) 2011-12-15 2016-08-23 Samsung Electronics Co., Ltd. Electrode for solid-state batteries and method of preparing the electrode, solid-state battery containing the electrode, and bonding film used for preparing the electrode
CN107215086A (en) * 2017-06-02 2017-09-29 京东方科技集团股份有限公司 A kind of printing screen plate and printing process
US10741842B2 (en) 2012-12-07 2020-08-11 Samsung Electronics Co., Ltd. Solid-state battery
CN113178561A (en) * 2021-03-23 2021-07-27 中山大学 Negative electrode material modified by reactive two-dimensional molecular brush SEI film, and preparation method and application thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9425459B2 (en) 2011-12-15 2016-08-23 Samsung Electronics Co., Ltd. Electrode for solid-state batteries and method of preparing the electrode, solid-state battery containing the electrode, and bonding film used for preparing the electrode
US10741842B2 (en) 2012-12-07 2020-08-11 Samsung Electronics Co., Ltd. Solid-state battery
CN107215086A (en) * 2017-06-02 2017-09-29 京东方科技集团股份有限公司 A kind of printing screen plate and printing process
CN113178561A (en) * 2021-03-23 2021-07-27 中山大学 Negative electrode material modified by reactive two-dimensional molecular brush SEI film, and preparation method and application thereof

Similar Documents

Publication Publication Date Title
US6752842B2 (en) Manufacture of flexible thin layer electrochemical cell
US4098965A (en) Flat batteries and method of making the same
US6551745B2 (en) Thin lithium battery with slurry cathode
TW201507238A (en) Electric core for thin film battery
JP3007876B2 (en) Flexible primary battery
JP2001068156A (en) Stacked polymer electrolyte battery
JPH05225989A (en) Manufacture of thin type battery
US20050181275A1 (en) Open electrochemical cell, battery and functional device
US6623891B2 (en) Polymer electrolyte battery of high mechanical strength and high heat resistance, and method for producing the polymer electrolyte battery
KR20010030541A (en) Solid electrolyte cell
JP2001015152A (en) Fully solid layer built cell
JPH09134726A (en) Collector of electrochemical element, and manufacture of electrochemical element and collector of electrochemical element
JPH10125330A (en) Thin type battery using polymeric solid electrolyte
WO1999048162A1 (en) Lithium ion battery and method of manufacture thereof
JP2003100350A (en) Cell and its making method
JPH04188568A (en) Thin-form lead-acid battery and manufacture thereof
JP2010067537A (en) Method of manufacturing nonaqueous electrolyte secondary battery
JP2001283915A (en) Manufacturing method of battery
JP2000353500A (en) Battery device
KR100898069B1 (en) Electorde assembly for lithium ion cell and pouched-type battery applying the same
JP4035739B2 (en) Thin battery using polymer solid electrolyte and method for producing the same
JPH07296821A (en) Thin battery and its manufacture
JPH05121056A (en) Thin type battery
JPH01140553A (en) Flat electrochemical device
JPH07326372A (en) Solid electrolytic battery

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041203

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050413