JPH07326372A - Solid electrolytic battery - Google Patents

Solid electrolytic battery

Info

Publication number
JPH07326372A
JPH07326372A JP11610894A JP11610894A JPH07326372A JP H07326372 A JPH07326372 A JP H07326372A JP 11610894 A JP11610894 A JP 11610894A JP 11610894 A JP11610894 A JP 11610894A JP H07326372 A JPH07326372 A JP H07326372A
Authority
JP
Japan
Prior art keywords
positive electrode
negative electrode
thickness
lithium
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11610894A
Other languages
Japanese (ja)
Inventor
Yuichi Aihara
雄一 相原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yuasa Corp
Original Assignee
Yuasa Corp
Yuasa Battery Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuasa Corp, Yuasa Battery Corp filed Critical Yuasa Corp
Priority to JP11610894A priority Critical patent/JPH07326372A/en
Publication of JPH07326372A publication Critical patent/JPH07326372A/en
Pending legal-status Critical Current

Links

Classifications

    • Y02E60/12

Abstract

PURPOSE:To provide a thin type solid electrolytic battery of large capacity and high reliability free from an internal small shortcircuit at a discharge process, at least at the end of the discharge process by keeping the thickness of an organic solid electrolytic layer equal to or more than negative electrode thickness. CONSTITUTION:Regarding a solid electrolytic battery where lithium metal or lithium alloy is laid in a negative electrode 4, and a substance storing and releasing organic metal oxide, metal sulfide or lithium is provided in a positive electrode 2, the thickness of an electrolytic layer 3 is made equal to or above the thickness of the negative electrode 4. Also, regarding the solid electrolyte of the battery, the thickness of the positive electrode 2 having a volumetric percentage between 23% and 54% as positive electrode charging density is kept at 2.6 times or more as large as negative electrode thickness. This construction is particularly useful, when the area of the negative electrode 4 is larger than the area of the opposite positive electrode 2, and also becomes useful in a battery having internal pressure lower than atmospheric pressure.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、リチウム電池の改良に
関するものである。
FIELD OF THE INVENTION The present invention relates to improvements in lithium batteries.

【0002】[0002]

【従来の技術】近年、エレクトロニクス分野の発展に伴
い電子機器が小型化されており、電池においても機器同
様に小型化が望まれている。特にリチウムを負極活物質
として用いた電池は高エネルギー密度が期待できること
から、小型・薄型化に際しては非常に適した電池であ
る。
2. Description of the Related Art In recent years, electronic devices have been miniaturized with the development of the electronics field, and batteries as well as the devices have been desired to be miniaturized. In particular, a battery using lithium as the negative electrode active material can be expected to have a high energy density, and is therefore a very suitable battery for making it small and thin.

【0003】しかしながら、現在汎用されているリチウ
ムコイン電池などにおいては漏液などの問題が存在する
ことから、必ずしも適しているとは言えない。これらの
問題を解決する方法として電解質に固体電解質を用いる
方法が挙げられる。固体電解質は常温で固体として形態
を保つため漏液に関する問題は伴わない。また、架橋形
の固体電解質を用いることで、高温側で融解することも
なく高イオン伝導を示すことからも好ましい。
However, lithium coin batteries and the like which are currently in widespread use are not always suitable because of problems such as liquid leakage. As a method of solving these problems, there is a method of using a solid electrolyte as an electrolyte. Since the solid electrolyte maintains its form as a solid at room temperature, there is no problem regarding liquid leakage. Further, it is preferable to use the crosslinked solid electrolyte because it does not melt on the high temperature side and exhibits high ionic conductivity.

【0004】また、固体電解質を用いた薄形電池におい
ても電池構造によっては不都合が生じることがある。特
に集電体に薄い金属箔を用いる場合、集電体自身に柔軟
性があるために電池内部の活物質の放電あるいは充放電
に伴う体積変化による影響が反映されやすい。即ち、活
物質の体積変化に伴って、集電体の外観・形状も変化す
る。また、同現象に付随して放電時における短絡が発生
するケースが認められている。この現象は、放電に伴っ
て負極のリチウム体積が減少し、それに伴って電解質層
および正極層が放電によって体積減少した負極側位置ま
で引き込まれ、放電によってギャップの生じたリチウム
面上でストレスが電解質層に局部的にかかることによっ
て、負極と正極が接触し、微短絡が生じる。特にこの現
象はリチウムの消費ムラが生じる放電末期、あるいは高
率放電での放電途中、放電末期に生じやすい。
Further, in a thin battery using a solid electrolyte, inconvenience may occur depending on the battery structure. In particular, when a thin metal foil is used for the current collector, the current collector itself has flexibility, and therefore the influence of the volume change due to discharge or charge / discharge of the active material inside the battery is likely to be reflected. That is, as the volume of the active material changes, the appearance and shape of the current collector also change. In addition, a case in which a short circuit occurs at the time of discharge accompanying the same phenomenon is recognized. This phenomenon is because the lithium volume of the negative electrode decreases with the discharge, and the electrolyte layer and the positive electrode layer are drawn to the position of the negative electrode side where the volume decreases with the discharge, and stress is generated on the lithium surface where a gap is generated by the discharge. By applying the layer locally, the negative electrode and the positive electrode come into contact with each other, and a slight short circuit occurs. In particular, this phenomenon is likely to occur at the end of discharge where uneven consumption of lithium occurs, or during the discharge at high rate discharge, or at the end of discharge.

【0005】[0005]

【発明が解決しようとする課題】本発明は、上記従来技
術の問題点に鑑みなされたものであり、高容量であり、
かつ放電、特に放電末期における電池内部微短絡のない
信頼性の高い薄形固体電解質電池を提供することを目的
とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems of the prior art, has a high capacity,
Another object of the present invention is to provide a highly reliable thin solid electrolyte battery which does not cause a minute short circuit inside the battery at the time of discharging, especially at the end of discharging.

【0006】[0006]

【課題を解決するための手段】負極にリチウム金属ある
いはリチウム合金を配し、かつ正極に無機金属酸化物、
金属硫化物あるいは、リチウムを吸蔵・放出する物質を
配する固体電解質電池において、該電解質層の厚みが負
極厚みと同等あるいは、それ以上であること。負極にリ
チウム金属あるいはリチウム合金を配し、かつ正極に無
機金属酸化物、金属硫化物あるいは、リチウムを吸蔵・
放出する物質を配する固体電解質電池において、正極充
填密度が体積百分率で23〜54%である正極の正極厚
みが負極厚みに対して2.6倍以上であること。また、
負極面積が対向する正極面積よりも大きい場合おいて、
前記方法は特に有用である。また、電池内部が常圧以下
である電池においても上記方法が有用である。
Means for Solving the Problems Lithium metal or a lithium alloy is arranged on the negative electrode, and an inorganic metal oxide is formed on the positive electrode.
In a solid electrolyte battery in which a metal sulfide or a substance that absorbs and releases lithium is arranged, the thickness of the electrolyte layer is equal to or more than the thickness of the negative electrode. Dispose lithium metal or lithium alloy in the negative electrode, and occlude inorganic metal oxide, metal sulfide, or lithium in the positive electrode.
In the solid electrolyte battery in which the substance to be released is arranged, the positive electrode thickness of the positive electrode having a positive electrode packing density of 23 to 54% by volume is 2.6 times or more the negative electrode thickness. Also,
If the negative electrode area is larger than the facing positive electrode area,
The method is particularly useful. The above method is also useful for a battery in which the internal pressure of the battery is below atmospheric pressure.

【0007】[0007]

【作用】リチウム金属あるいはリチウム合金を配し、か
つ正極に無機金属酸化物、金属硫化物あるいは、リチウ
ムを吸蔵・放出する物質を配する固体電解質電池におい
て、該電解質層の厚みが負極厚みと同等あるいは、それ
以上であることによって、放電に伴う負極に配されたリ
チウム金属あるいはリチウム合金の消費、特に局部的な
消費が生じたにしても、負極厚み以上の厚みを電解質層
が有すれば、リチウムの消費ムラに伴うギャップで応力
を受けたにしても短絡に至ることはない。即ち、負極以
上の厚みの固体電解質層を配することによって放電に伴
う負極に配されたリチウム金属あるいはリチウム合金の
消費、特に局部的な消費が生じたにしても、前記の様な
リチウム表面ギャップによって、電解質にストレスが局
部的にかかり、それによって生じる電解質の機械的な破
損、短絡に至ることはない。
[Function] In a solid electrolyte battery in which a lithium metal or a lithium alloy is arranged and an inorganic metal oxide, a metal sulfide, or a substance that absorbs and releases lithium is arranged in the positive electrode, the thickness of the electrolyte layer is equal to the negative electrode thickness. Alternatively, by being more than that, even if the consumption of lithium metal or lithium alloy arranged in the negative electrode due to discharge, particularly local consumption occurs, if the electrolyte layer has a thickness equal to or greater than the negative electrode thickness, Even if stress is applied to the gap due to uneven consumption of lithium, no short circuit will occur. That is, by disposing a solid electrolyte layer having a thickness greater than that of the negative electrode, even if local consumption of the lithium metal or lithium alloy disposed in the negative electrode is caused due to discharge, particularly when the lithium surface gap as described above is consumed. Therefore, stress is locally applied to the electrolyte, which does not lead to mechanical damage or short circuit of the electrolyte.

【0008】また、負極面積が対向する正極面積よりも
大きい場合には特に正極より面積がはみ出した部分が放
電に利用されない場合がある。このような場合において
は、放電に利用され負極活物質が消費された部分に電解
質層および正極層が物理的変位によって配された状態に
なる。この状態での正極と対向していない負極活物質が
存在する部分と物理的変位によって負極とほぼ同一平面
まで移動した電解質・正極とのエッジ部に応力がかか
り、電解質の機械的な破損、短絡に至ることがある。し
かしながら、この様な場合において前記リチウム金属あ
るいはリチウム合金を配し、かつ正極に無機金属酸化
物、金属硫化物あるいは、リチウムを吸蔵・放出する物
質を配する固体電解質電池において、該電解質層の厚み
が負極厚みと同等あるいは、それ以上であることによっ
て、放電に伴う短絡を防ぐことが可能である。
Further, when the area of the negative electrode is larger than the area of the positive electrode facing each other, there are cases in which the part protruding out of the area of the positive electrode is not used for discharging. In such a case, the electrolyte layer and the positive electrode layer are disposed by physical displacement in the portion where the negative electrode active material is consumed for discharging and the negative electrode active material is consumed. In this state, the part where the negative electrode active material that does not face the positive electrode and the edge part of the electrolyte / positive electrode that has moved to almost the same plane as the negative electrode due to physical displacement are stressed, and mechanical damage or short circuit of the electrolyte occurs. May lead to. However, in such a case, in the solid electrolyte battery in which the lithium metal or lithium alloy is arranged, and the positive electrode is arranged with an inorganic metal oxide, a metal sulfide, or a substance that absorbs and releases lithium, the thickness of the electrolyte layer Is equal to or more than the thickness of the negative electrode, it is possible to prevent a short circuit due to discharge.

【0009】また、負極にリチウム金属あるいはリチウ
ム合金、あるいはリチウムを吸蔵・放出する物質を配
し、かつ正極に無機金属酸化物、金属硫化物あるいは、
リチウムを吸蔵・放出する物質を配する固体電解質電池
において、正極充填密度が体積百分率で23〜54%で
ある正極の正極厚みが負極厚みに対して2.6倍以上で
あることにより、従来の問題が解決可能となる。充填密
度23%以下であると放電特性が著しく悪くなり、ま
た、電池の体積密度当りのエネルギー密度が低くなるた
め好ましくない。本来、充填密度は高い方が好ましいの
だが、充填密度54%以上になると正極の形成が難しく
なるため、現状、電池特性ともに適していない。また、
正極の正極厚みが負極厚みに対して2.6倍以上である
ことは、実験データから得た結果であるが問題解決に至
る理由としては、負極に対して正極厚みが充分である場
合は、単位体積当りの放電電流がゆるやかになるため、
負極側リチウムの消費が一様になされるためであると考
えられる。また、逆に、2.6倍未満である場合、負極
のリチウム消費が局部的になされるため、電流密度の集
中する部分とそうでない部分でのギャップが生じること
になる。このギャップによって、電解質にストレスが局
部的にかかり、ひいては電解質の機械的な破損、短絡に
至るものと考えられる。
Further, a lithium metal or a lithium alloy, or a substance that absorbs and releases lithium is arranged in the negative electrode, and an inorganic metal oxide, a metal sulfide, or
In a solid electrolyte battery in which a substance that occludes / desorbs lithium is arranged, the positive electrode having a positive electrode packing density of 23 to 54% by volume has a positive electrode thickness of 2.6 times or more the negative electrode thickness. The problem can be solved. When the packing density is 23% or less, the discharge characteristics are remarkably deteriorated, and the energy density per volume density of the battery is lowered, which is not preferable. Originally, it is preferable that the packing density is high, but if the packing density is 54% or more, it becomes difficult to form a positive electrode. Therefore, at present, the battery characteristics are not suitable. Also,
The fact that the positive electrode thickness of the positive electrode is 2.6 times or more the negative electrode thickness is the result obtained from the experimental data. The reason for solving the problem is that when the positive electrode thickness is sufficient for the negative electrode, Since the discharge current per unit volume becomes gentle,
It is considered that this is because the consumption of lithium on the negative electrode side is made uniform. On the other hand, when it is less than 2.6 times, lithium consumption of the negative electrode is locally performed, so that a gap occurs between a portion where the current density is concentrated and a portion where the current density is not concentrated. It is considered that the gap locally applies stress to the electrolyte, which eventually leads to mechanical damage and short circuit of the electrolyte.

【0010】また、負極面積が正極面積よりも大きい場
合は、放電後において放電に関わらなかった残存リチウ
ムが存在しやすく、この様な場合においては、本発明に
よって問題は解決できる。また、電池内部が常圧以下で
ある電池においては特に放電に伴う電極活物質の体積変
化に伴う内部構成物質の物理的変位を受けやすい。電池
内部を常圧以下にする方法については電池をシールする
際加熱雰囲気を利用しシール後電池内を減圧状態にする
ことによって前記効果と併せて短絡問題が解消される。
また電池内部を常圧以下にする方法についてはこれに限
定されない。
When the area of the negative electrode is larger than the area of the positive electrode, residual lithium that is not involved in the discharge is likely to exist after the discharge. In such a case, the present invention can solve the problem. In addition, in a battery in which the internal pressure of the battery is below normal pressure, physical displacement of the internal constituents is particularly likely to occur due to the volume change of the electrode active material due to discharge. Regarding the method of reducing the internal pressure of the battery to normal pressure or less, a heating atmosphere is used at the time of sealing the battery and the internal pressure of the battery is reduced after the sealing.
Further, the method of making the inside of the battery below atmospheric pressure is not limited to this.

【0011】[0011]

【実施例】以下、本発明の詳細について、実施例により
説明するが、本発明はこれに限定されるものではない。
EXAMPLES Details of the present invention will be described below with reference to examples, but the present invention is not limited thereto.

【0012】(実施例)下記の手順にしたがって、本発
明の実施例1のシート状電池を作製した。 a)電池の正極活物質の第一成分として二酸化マンガン
を、そしてエチレンオキシドのジアクリル酸エステル
(分子量:4000)とポリエチレングリコールのモノ
アクリル酸エステル(分子量:400)を7:3に混合
した有機化合物とを混合したものを複合正極として使用
した。
(Example) A sheet-like battery of Example 1 of the present invention was manufactured according to the following procedure. a) Manganese dioxide as the first component of the positive electrode active material of the battery, and an organic compound obtained by mixing a diacrylic acid ester of ethylene oxide (molecular weight: 4000) and a monoacrylic acid ester of polyethylene glycol (molecular weight: 400) at 7: 3. Was used as a composite positive electrode.

【0013】この複合正極の作製方法は以下の通りであ
る。すなわち二酸化マンガンとケッチェンブラックを1
0:1の重量比率で混合したものに、上記有機化合物1
0重量部に、過塩素酸リチウム1重量部、アゾビスイソ
ブチロニトリル0.05重量部、エチレンカーボネート
10重量部およびプロピオンカーボネート10重量部を
混合させたものを、乾燥不活性ガス雰囲気中、10:3
の重量比率で混合した。これらの混合物を、ステンレス
箔からなる正極集電板の表面に導電性カーボン被膜を形
成した集電体の上にキャストした。その後、不活性ガス
雰囲気中、100℃で1時間放置することにより硬化さ
せた。
The method for producing this composite positive electrode is as follows. That is, 1 manganese dioxide and Ketjen Black
The above organic compound 1 was added to the mixture in a weight ratio of 0: 1.
0 parts by weight, 1 part by weight of lithium perchlorate, 0.05 parts by weight of azobisisobutyronitrile, 10 parts by weight of ethylene carbonate and 10 parts by weight of propionate carbonate were mixed in a dry inert gas atmosphere, 10: 3
Were mixed in a weight ratio of. These mixtures were cast on a current collector having a conductive carbon film formed on the surface of a positive electrode current collector plate made of stainless steel foil. Then, it was hardened by leaving it for 1 hour at 100 ° C. in an inert gas atmosphere.

【0014】b)電池の負極活物質としてリチウム金属
を用い、これをステンレス箔からなる負極集電板に圧着
した。その後、上記リチウム金属上に電解質層を形成さ
せるべく、上記有機化合物30重量部と過塩素酸リチウ
ム6重量部、ベンジルジメチルケタール0.05重量
部、エチレンカーボネート32重量部およびプロピオン
カーボネート32重量部を混合したものを上記リチウム
金属上にキャストし、不活性ガス雰囲気中、紫外線照射
することにより硬化させた。
B) Lithium metal was used as the negative electrode active material of the battery, and this was pressed onto a negative electrode current collector plate made of stainless steel foil. Then, in order to form an electrolyte layer on the lithium metal, 30 parts by weight of the organic compound, 6 parts by weight of lithium perchlorate, 0.05 parts by weight of benzyl dimethyl ketal, 32 parts by weight of ethylene carbonate and 32 parts by weight of propion carbonate are added. The mixture was cast on the above-mentioned lithium metal and cured by irradiation with ultraviolet rays in an inert gas atmosphere.

【0015】c)同様にa)で得られた正極上に電解質
層を形成させた後、b)で作製した集電体/リチウム/
電解質と、張り合わせて封口部を真空シーラーで熱融着
させ薄形電池を作製した。尚、作製した電池の各電極材
料の厚みは、正極が135ミクロンであり、負極である
金属リチウムの厚みは50ミクロン、電解質層の厚みは
55ミクロンとした。正極の充填密度は体積百分率で3
0%であった。
C) Similarly, after forming an electrolyte layer on the positive electrode obtained in a), the current collector prepared in b) / lithium /
A thin battery was produced by laminating the sealing portion with an electrolyte by means of a vacuum sealer. The thickness of each electrode material of the manufactured battery was 135 microns for the positive electrode, the thickness of metallic lithium as the negative electrode was 50 microns, and the thickness of the electrolyte layer was 55 microns. The packing density of the positive electrode is 3 in volume percent.
It was 0%.

【0016】図1は、本発明の実施例1のシート状電池
の断面図である。図中1は、ステンレス箔からなる正極
集電板で、2は複合正極であり、3は固体電解質層であ
る。4は、負極である金属リチウムであり、5は、ステ
ンレス箔からなる負極集電板で、外装も兼ねている。6
は、変性ポリエチレンからなる封口材である。
FIG. 1 is a sectional view of a sheet-shaped battery of Example 1 of the present invention. In the figure, 1 is a positive electrode current collector made of stainless steel foil, 2 is a composite positive electrode, and 3 is a solid electrolyte layer. Reference numeral 4 is metallic lithium that is a negative electrode, and 5 is a negative electrode current collector plate made of stainless steel foil, which also serves as an exterior. 6
Is a sealing material made of modified polyethylene.

【0017】(比較例)実施例と同様に薄形電池の作製
を行った。ただし、作製した電池の各電極材料の厚み
は、正極が125ミクロンであり、負極である金属リチ
ウムの厚みは50ミクロン、電解質層の厚みは40ミク
ロンとした。
Comparative Example A thin battery was prepared in the same manner as in the example. However, the thickness of each electrode material of the prepared battery was 125 microns for the positive electrode, the thickness of metallic lithium as the negative electrode was 50 microns, and the thickness of the electrolyte layer was 40 microns.

【0018】実施例、比較例のシート状電池の電極面積
は、作製工程によって種々変更することが可能である
が、本実施例および比較例では、その正極面積を25c
2 、負極面積を30.25cm2 としたものを作製し
た。
The electrode area of the sheet-shaped batteries of Examples and Comparative Examples can be variously changed by the manufacturing process, but in this Example and Comparative Example, the positive electrode area is 25c.
m 2 and a negative electrode area of 30.25 cm 2 were produced.

【0019】この薄形電池を用いて、20℃で5mA定
電流放電を行った。なお、放電終止電圧2.0V、ま
た、試験前後の電池オープン電圧を調べるため休止時間
を放電前に1時間、放電後に5時間設けた。図4は実施
例よび比較例の放電曲線である。図4からわかるよう
に、本発明の薄形電池は、放電後開回路になったと同時
に正常な電圧回復を示したが、比較例の薄形電池は開回
路になっても電池電圧が0V付近まで低下した。これ
は、放電末期に電池内部で微短絡が生じたためであると
考えられる。
Using this thin battery, a constant current discharge of 5 mA was carried out at 20 ° C. In addition, in order to check the discharge end voltage of 2.0 V and the battery open voltage before and after the test, a dwell time was set for 1 hour before the discharge and 5 hours after the discharge. FIG. 4 shows discharge curves of Examples and Comparative Examples. As can be seen from FIG. 4, the thin battery of the present invention showed a normal voltage recovery at the same time when the thin battery of the present invention became an open circuit after discharge. Fell to. It is considered that this is because a slight short circuit occurred inside the battery at the end of discharge.

【0020】また、同電池を試験後に解体したところ、
負極集電体上にリチウムがなくなっている部分に電解質
が接触しており、特に正極のエッジ部においては、電解
質層が正極の圧迫によって切断され、正極とリチウムと
が接触していた。また、同部分において、抵抗測定を行
ったところ導通が確認された。図2は放電後における比
較例の薄形電池の断面図、図3は放電後における実施例
の薄形電池の断面図でる。即ち、正極が正極と対向する
リチウムの放電消費に伴って、リチウムのなくなった部
分へと引き込まれ、また、正極の体積膨張も加わり、電
解質に応力がかかり、特に正極端部において電解質層の
破損を招き、負極に残存していたリチウムと接触をおこ
し短絡に至ったと考えられる。
When the battery was disassembled after the test,
The electrolyte was in contact with the portion of the negative electrode current collector on which lithium was lost, and in particular, at the edge portion of the positive electrode, the electrolyte layer was cut by the pressure of the positive electrode, and the positive electrode and lithium were in contact with each other. Further, when the resistance was measured at the same portion, conduction was confirmed. FIG. 2 is a cross-sectional view of the thin battery of the comparative example after discharging, and FIG. 3 is a cross-sectional view of the thin battery of the example after discharging. That is, as the positive electrode is discharged to the opposite side of the positive electrode from the lithium, the positive electrode is drawn into the part where the lithium is removed, and the positive electrode is also expanded in volume, and stress is applied to the electrolyte. It is conceivable that this caused contact with the lithium remaining in the negative electrode, resulting in a short circuit.

【0021】[0021]

【発明の効果】以上の説明から明かなように、負極にリ
チウム金属あるいはリチウム合金、あるいはリチウムを
吸蔵・放出する物質を配し、かつ正極に無機金属酸化
物、金属硫化物あるいは、リチウムを吸蔵・放出する物
質を配する固体電解質電池において、正極厚みが負極厚
みに対して2.6倍以上であること。また、該電解質層
の厚みが負極厚みと同等あるいは、それ以上であること
によって高容量であり、かつ放電、特に放電末期におけ
る電池内部微短絡のない信頼性の高い薄形固体電解質電
池を提供することが可能である。これらのことから、電
池の性能を向上させることができるという効果を奏す
る。
As is apparent from the above description, the negative electrode is provided with lithium metal or a lithium alloy, or a substance that absorbs and releases lithium, and the positive electrode absorbs an inorganic metal oxide, a metal sulfide, or lithium. -In the solid electrolyte battery in which the substance to be released is arranged, the thickness of the positive electrode is 2.6 times or more the thickness of the negative electrode. Further, a thin solid electrolyte battery having a high capacity and having a high capacity by having the thickness of the electrolyte layer equal to or more than the thickness of the negative electrode and free from micro short circuit inside the battery at the end of discharge, in particular, is provided. It is possible. From these things, there is an effect that the performance of the battery can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の薄形電池の断面図である。FIG. 1 is a cross-sectional view of a thin battery of the present invention.

【図2】放電後における比較例の薄形電池の断面図であ
る。
FIG. 2 is a cross-sectional view of a thin battery of a comparative example after discharging.

【図3】放電後における実施例の薄形電池の断面図であ
る。
FIG. 3 is a cross-sectional view of a thin battery of an example after discharging.

【図4】実施例、比較例の薄形電池の放電曲線を示した
グラフである。
FIG. 4 is a graph showing discharge curves of thin batteries of Examples and Comparative Examples.

【符号の説明】[Explanation of symbols]

1 正極集電体 2 複合正極 3 電解質 4 金属リチウム 5 負極集電体 6 封口材 1 Positive Electrode Current Collector 2 Composite Positive Electrode 3 Electrolyte 4 Metal Lithium 5 Negative Electrode Current Collector 6 Sealing Material

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 負極にリチウム金属あるいはリチウム合
金を配し、かつ正極に無機金属酸化物、金属硫化物ある
いは、リチウムを吸蔵・放出する物質を配する固体電解
質電池において、電解質層として有機固体電解質層を用
い、該電解質層の厚みが負極厚みと同等あるいはそれ以
上であることを特徴とする固体電解質電池。
1. A solid electrolyte battery in which lithium metal or lithium alloy is arranged in the negative electrode, and an inorganic metal oxide, a metal sulfide, or a substance which occludes / releases lithium is arranged in the positive electrode, and an organic solid electrolyte as an electrolyte layer. A solid electrolyte battery using a layer, wherein the thickness of the electrolyte layer is equal to or more than the thickness of the negative electrode.
【請求項2】 負極にリチウム金属あるいはリチウム合
金を配し、かつ正極に無機金属酸化物、金属硫化物ある
いは、リチウムを吸蔵・放出する物質を配する固体電解
質電池において、正極充填密度が体積百分率で23〜5
4%である正極の正極厚みが、負極厚みに対して2.6
倍以上であることを特徴とする固体電解質電池。
2. A solid electrolyte battery in which lithium metal or lithium alloy is arranged in the negative electrode, and an inorganic metal oxide, a metal sulfide, or a substance which absorbs and releases lithium is arranged in the positive electrode, and the positive electrode packing density is a volume percentage. 23 ~ 5
The positive electrode thickness of the positive electrode which is 4% is 2.6 with respect to the negative electrode thickness.
Solid electrolyte battery characterized by being more than double.
【請求項3】 負極面積が、対向する正極面積よりも大
きいことを特徴とする請求項1又は2記載の固体電解質
電池。
3. The solid electrolyte battery according to claim 1, wherein the negative electrode area is larger than the facing positive electrode area.
【請求項4】 前記固体電解質電池内が、少なくとも常
圧以下であることを特徴とする前記請求項1内至3記載
の固体電解質電池。
4. The solid electrolyte battery according to claim 1, wherein the inside of the solid electrolyte battery is at least atmospheric pressure or less.
JP11610894A 1994-05-30 1994-05-30 Solid electrolytic battery Pending JPH07326372A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11610894A JPH07326372A (en) 1994-05-30 1994-05-30 Solid electrolytic battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11610894A JPH07326372A (en) 1994-05-30 1994-05-30 Solid electrolytic battery

Publications (1)

Publication Number Publication Date
JPH07326372A true JPH07326372A (en) 1995-12-12

Family

ID=14678898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11610894A Pending JPH07326372A (en) 1994-05-30 1994-05-30 Solid electrolytic battery

Country Status (1)

Country Link
JP (1) JPH07326372A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8704002B2 (en) 2003-06-23 2014-04-22 Grünenthal GmbH Process for the dehydration of substituted 4-dimethylamino-2-aryl-butan-2-ol compounds and process for the preparation of substituted dimethyl-(3-aryl-butyl)-amine compounds by heterogeneous catalysis
US8791300B2 (en) 2005-11-02 2014-07-29 Gruenenthal Gmbh Process for preparing a substituted dimethyl-(3-arylbutyl)amine compound by homogeneous catalysis
US8877974B2 (en) 2006-07-24 2014-11-04 Grünenthal GmbH Process for the preparation of (1R,2R)-3-(3-dimethylamino-1-ethyl-2-methylpropy1)-phenol

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8704002B2 (en) 2003-06-23 2014-04-22 Grünenthal GmbH Process for the dehydration of substituted 4-dimethylamino-2-aryl-butan-2-ol compounds and process for the preparation of substituted dimethyl-(3-aryl-butyl)-amine compounds by heterogeneous catalysis
US8791300B2 (en) 2005-11-02 2014-07-29 Gruenenthal Gmbh Process for preparing a substituted dimethyl-(3-arylbutyl)amine compound by homogeneous catalysis
US8877974B2 (en) 2006-07-24 2014-11-04 Grünenthal GmbH Process for the preparation of (1R,2R)-3-(3-dimethylamino-1-ethyl-2-methylpropy1)-phenol
US11739049B2 (en) 2006-07-24 2023-08-29 Grünenthal GmbH Process for the preparation of (1R,2R)-3-(3-dimethylamino-1-ethyl-2-methyl-propyl)-phenol

Similar Documents

Publication Publication Date Title
JP4565810B2 (en) Laminated battery
TW396651B (en) Non-aqueous thin battery
US6617074B1 (en) Lithium ion polymer secondary battery and gelatinous polymer electrolyte for sheet battery
TW488103B (en) Solid electrolyte cell
JP3198828B2 (en) Manufacturing method of all solid lithium secondary battery
JP3822445B2 (en) Electrochemical devices
JP2002063938A (en) Secondary battery and its manufacturing method
JP2000195494A (en) Non-aqueous electrolyte secondary battery
EP2315300B1 (en) Solid electrolyte cell
JP2000311661A (en) Manufacture of battery
JP3821434B2 (en) Battery electrode group and non-aqueous electrolyte secondary battery using the same
JP2001266941A (en) Manufacturing method of gel electrolyte battery
EP0558755B1 (en) Lithium secondary battery
JPH07326383A (en) Polymeric sold electrolyte battery and manufacture thereof
JP2000285903A (en) Thin battery
WO2002043167A1 (en) Thin secondary battery
JP4433506B2 (en) battery
JP2004213938A (en) Lithium secondary battery and its manufacturing method
JP2000133216A (en) Nonaqueous electrolyte battery and manufacture of same
JPH10261386A (en) Battery case and battery
JP4449214B2 (en) Non-aqueous electrolyte battery
JPH09306503A (en) Lithium secondary battery
JPH07326372A (en) Solid electrolytic battery
JPH0554910A (en) Manufacture of nonaqueous secondary battery
JP2000021387A (en) Sheet type battery