JPH10125307A - Lithium-ion secondary battery - Google Patents

Lithium-ion secondary battery

Info

Publication number
JPH10125307A
JPH10125307A JP8280457A JP28045796A JPH10125307A JP H10125307 A JPH10125307 A JP H10125307A JP 8280457 A JP8280457 A JP 8280457A JP 28045796 A JP28045796 A JP 28045796A JP H10125307 A JPH10125307 A JP H10125307A
Authority
JP
Japan
Prior art keywords
positive electrode
electrode active
active material
coupling agent
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8280457A
Other languages
Japanese (ja)
Inventor
Masahiro Aoki
正裕 青木
Takayoshi Mori
隆貴 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP8280457A priority Critical patent/JPH10125307A/en
Publication of JPH10125307A publication Critical patent/JPH10125307A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To reduce dispersion of a battery characteristic and improve a cycle life characteristic by applying the constitution that the surface of a specific positive electrode active material be covered with an organic substance containing amino acids. SOLUTION: A positive electrode active material 12 is expressed by a general formula Lix MOz , where M stands for a transition metal selected from Co, Mn, Ni, V, Fe and Cr, and (x) for a value between 0.3 and 1.2, and (z) for a value between 1.4 and 3. In addition, the surface of the positive electrode active material 12 is covered with an organic substance containing amino acids. The organic substance containing amino groups is preferably an organic compound having at least one amino group (NH2 <-> ) in a molecule, and expressed by a general formula of NH2 -R-. Also, the introduction of the organic compound to the positive electrode active material surface is achieved by use of a coupling agent, expressed by a general formula of (R-O)XYq , where (q) stands for a value of 2 or 3, Y for a hydrolytic group for a hydrophilic group and (x) represents Si, Ti, Al, and R for an organic functional group for a hydrophobic group. In this case, a functional group having an amino group is selected specifically for R.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、リチウムイオン二
次電池に関する。より詳しくは、非水電解液リチウムイ
オン二次電池の正極活物質の構成に関するものである。
The present invention relates to a lithium ion secondary battery. More specifically, the present invention relates to a configuration of a positive electrode active material of a non-aqueous electrolyte lithium ion secondary battery.

【0002】[0002]

【従来の技術】近年、電子技術の進歩により電子機器の
高性能化、ポータブル化、コードレス化が急速に進んで
いる。これにつれて、これら携帯用電子機器の供給電源
として、使用される電池についても、小型化、軽量化、
高エネルギー密度化がますます要求されている。このよ
うな状況下において、非水電解液二次電池、特にリチウ
ムイオン二次電池は、高電圧、高エネルギー密度である
ことに加え、自己放電も少なく、メモリー効果もないと
いった特長を有し、更に、高い安全性を有する電池であ
ることが知られている。
2. Description of the Related Art In recent years, with the advance of electronic technology, high performance, portable and cordless electronic devices have been rapidly advanced. Along with this, batteries used as power supplies for these portable electronic devices have also become smaller, lighter,
There is an increasing demand for higher energy density. Under such circumstances, non-aqueous electrolyte secondary batteries, especially lithium ion secondary batteries, in addition to high voltage, high energy density, also has the feature that there is little self-discharge and no memory effect, Further, it is known that the battery has high safety.

【0003】このようなリチウムイオン二次電池の正極
活物質に関しては、多くのリチウム遷移金属複合酸化物
が検討され、良好な性能が得られている。
As for such a positive electrode active material of a lithium ion secondary battery, many lithium transition metal composite oxides have been studied, and good performance has been obtained.

【0004】[0004]

【発明が解決しようとする課題】しかしながらこのよう
な正極活物質を構成するリチウム遷移金属複合酸化物
は、本質的に表面エネルギーが大きいため、正極活物質
同士の凝集が起こりやすく、この正極活物質と導電材、
バインダー、および溶媒を混合して得られる電極塗布用
のスラリーにおいて、正極活物質の分散性が低下し、ス
ラリー内で局部的に固まって分布が不均一になる。この
ため、電極組成にむらが生じ、電池特性の劣化ととも
に、製品間での特性のばらつきが大きくなり信頼性の低
下を招く恐れがある。また、この正極活物質は表面エネ
ルギーが大きいため水分の吸着が起こり、使用する前に
真空乾燥等によって吸着水の除去を行わないと電池特
性、特にサイクル特性の著しい劣化を招く。
However, since the lithium transition metal composite oxide constituting such a positive electrode active material has a substantially large surface energy, aggregation of the positive electrode active materials easily occurs. And conductive material,
In a slurry for electrode coating obtained by mixing a binder and a solvent, the dispersibility of the positive electrode active material is reduced, and the mixture is locally solidified in the slurry and the distribution becomes uneven. For this reason, there is a possibility that the electrode composition becomes uneven, the battery characteristics are deteriorated, and the characteristics of the products vary widely, resulting in a decrease in reliability. In addition, since the positive electrode active material has a large surface energy, moisture is adsorbed. If the adsorbed water is not removed by vacuum drying or the like before use, the battery characteristics, particularly the cycle characteristics, are remarkably deteriorated.

【0005】これらの問題を解決するために、リチウム
と遷移金属の複合酸化物粉末をシランカップリング剤で
処理する方法(特開平8−111243)、あるいはチ
タネートカップリング剤で処理する方法(特開平4−2
72668)が提案されている。
In order to solve these problems, a method of treating a composite oxide powder of lithium and a transition metal with a silane coupling agent (JP-A-8-111243) or a method of treating with a titanate coupling agent (JP-A-Hei. 4-2
72668) has been proposed.

【0006】しかしながら、これらの公報記載技術を用
いてもなお充分な特性改善が図られない場合があり、ま
た、これらの公報には後述の本発明の特徴とするアミノ
基によって正極活物質表面を被覆することの効用を積極
的に述べてはおらず、また、アミノ基の正極活物質表面
への導入量を客観的に規定していない。従って、これら
の公報からは前述の問題に充分対処できる技術は示唆さ
れない。
However, in some cases, even if the techniques described in these publications are not sufficiently improved, the characteristics of the positive electrode active material are not improved by amino groups which are described later. It does not positively state the effect of coating and does not objectively regulate the amount of amino groups introduced to the surface of the positive electrode active material. Therefore, these publications do not suggest a technique capable of sufficiently addressing the above-described problem.

【0007】本発明は、このような現状に鑑みなされた
ものであって、正極活物質表面へのアミノ基導入の効能
を積極的に示し、該アミノ基の正極活物質表面への導入
量をX線光電子分光法(XPS)を用いて客観的に規定
することにより、的確な電極組成制御を行い、電池特性
のばらつきを制御し、また良好な電池特性、特に良好な
サイクル特性を有する非水電解液二次電池を得ることを
目的とする。
The present invention has been made in view of such circumstances, and has been shown to positively demonstrate the effect of introducing an amino group onto the surface of the positive electrode active material, and to reduce the amount of the amino group introduced onto the surface of the positive electrode active material. The objective specification using X-ray photoelectron spectroscopy (XPS) enables precise control of electrode composition, control of variation in battery characteristics, and non-aqueous solution having good battery characteristics, especially good cycle characteristics. It is intended to obtain an electrolyte secondary battery.

【0008】[0008]

【課題を解決するための手段】前記目的を達成するため
本発明では、正極活物質、負極活物質、およびリチウム
塩を含む電解質からなるリチウムイオン二次電池におい
て、該正極活物質が以下の一般式LixMOz (1)た
だし、Mは、Co、Mn、Ni、V、Fe、Crから選
ばれる少なくとも1種を含む遷移金属であり、x=0.
3〜1.2、z=1.4〜3で表され、該正極活物質表
面がアミノ基を含む有機物によって被覆されていること
を特徴とするリチウムイオン二次電池を提供する。
According to the present invention, there is provided a lithium ion secondary battery comprising a positive electrode active material, a negative electrode active material, and an electrolyte containing a lithium salt. Formula Li x MO z (1) where M is a transition metal containing at least one selected from Co, Mn, Ni, V, Fe and Cr, and x = 0.
3 to 1.2, z = 1.4 to 3, and a lithium ion secondary battery characterized in that the surface of the positive electrode active material is coated with an organic substance containing an amino group.

【0009】本発明で言うアミノ基を含む有機物とは、
分子内に少なくとも1つのアミノ基(NH2−)を有す
る有機化合物を表し、以下の一般式(2) NH2−R− (2) で表される。ここでRは、例えば−Cn2n(nは整数)
で表されるアルキル鎖等を表すが、特にこのようなアル
キル鎖に限定されるものではなく、−C24−NH−C
24、や−COCHC36−等のように、NH基やCO
CH基を含むようなものを用いることもできる。またこ
のRは直鎖形でも、分岐形でもかまわない。
The organic substance containing an amino group referred to in the present invention is:
An organic compound having at least one amino group (NH 2 —) in a molecule is represented by the following general formula (2) NH 2 —R— (2) Where R is, for example, -C n H 2n (n is an integer)
Represents an alkyl chain or the like represented by the following formula, but is not particularly limited to such an alkyl chain: -C 2 H 4 -NH-C
NH or CO, such as 2 H 4 or —COCHC 3 H 6
Those containing a CH group can also be used. This R may be linear or branched.

【0010】一般式(2)で表される、アミノ基を含む
有機化合物の正極活物質表面への導入は、以下の一般式
(3)で表される各種カップリング剤によって達成され
る。 (R−O)XYq (q=2または3) (3) 式中Yは、親水基の加水分解性基を表し、具体的には、
−OCH3、−OC2H5、−i−C37、−OCOC
3、OC24OCH3、−N(CH32、Cl等の基が
挙げられる。式中Xとしては、Si、Ti、Al等が挙
げられる。式中Rは疎水基の有機官能基を表し、一般式
(2)で示されるような、分子内に少なくとも1つのア
ミノ基を有する官能基が選ばれるが、例として、NH2
36−、NH224NHC36−、NH2COCHC
36−、NH224NHC24NHC36−、等が挙
げられる。
The introduction of the organic compound containing an amino group represented by the general formula (2) onto the surface of the positive electrode active material is achieved by various coupling agents represented by the following general formula (3). (RO) XY q (q = 2 or 3) (3) In the formula, Y represents a hydrolyzable group of a hydrophilic group.
-OCH 3, -OC 2 H5, -i -C 3 H 7, -OCOC
H 3, OC 2 H 4 OCH 3, -N (CH 3) 2, groups such as Cl and the like. In the formula, X is Si, Ti, Al, or the like. Wherein R represents an organic functional group of the hydrophobic group, such as represented by the general formula (2), but the functional group is chosen to have at least one amino group in the molecule, as an example, NH 2
C 3 H 6 -, NH 2 C 2 H 4 NHC 3 H 6 -, NH 2 COCHC
3 H 6 -, NH 2 C 2 H 4 NHC 2 H 4 NHC 3 H 6 -, and the like.

【0011】カップリング剤としては具体的に、γ−ア
ミノプロピルトリエトキシシラン、γ−アミノプロピル
トリエトキシチタネート、γ−アミノプロピルジエトキ
シアルミネート、γ−アミノプロピルトリメトキシシラ
ン、γ−アミノプロピルトリメトキシチタネート、γ−
アミノプロピルジメトキシアルミネート、N−β−(ア
ミノエチル)−γ−アミノプロピルトリエトキシシラ
ン、N−β−(アミノエチル)−γ−アミノプロピルト
リエトキチタネート、N−β−(アミノエチル)−γ−
アミノプロピルジエトキシアルミネート、N−β−(ア
ミノエチル)−γ−アミノプロピルトリメトキシシラ
ン、N−β−(アミノエチル)−γ−アミノプロピルト
リメトキシチタネート、N−β−(アミノエチル)−γ
−アミノプロピルジメトキシアルミネート、N−β−
(アミノエチル)−β−アミノエチルトリイソプロポキ
シシラン、N−β−(アミノエチル)−β−アミノエチ
ルトリイソプロポキシチタネート、(アミノエチル)−
β−アミノエチルジイソプロポキシアルミネート、等が
挙げられるが、好ましくは、γ−アミノプロピルトリエ
トキシチタネート、γ−アミノプロピルトリメトキシチ
タネート、N−β−(アミノエチル)−γ−アミノプロ
ピルトリエトキシチタネート、N−β−(アミノエチ
ル)−γ−アミノプロピルトリメトキシチタネート、N
−β−(アミノエチル)−β−アミノエチルトリイソプ
ロポキシチタネート等のチタネートカップリング剤が挙
げられる。
Specific examples of the coupling agent include γ-aminopropyltriethoxysilane, γ-aminopropyltriethoxytitanate, γ-aminopropyldiethoxyaluminate, γ-aminopropyltrimethoxysilane, γ-aminopropyltriethoxysilane. Methoxy titanate, γ-
Aminopropyl dimethoxyaluminate, N-β- (aminoethyl) -γ-aminopropyltriethoxysilane, N-β- (aminoethyl) -γ-aminopropyltriethoxytitanate, N-β- (aminoethyl) -γ −
Aminopropyldiethoxyaluminate, N-β- (aminoethyl) -γ-aminopropyltrimethoxysilane, N-β- (aminoethyl) -γ-aminopropyltrimethoxytitanate, N-β- (aminoethyl)- γ
-Aminopropyldimethoxyaluminate, N-β-
(Aminoethyl) -β-aminoethyltriisopropoxysilane, N-β- (aminoethyl) -β-aminoethyltriisopropoxytitanate, (aminoethyl)-
β-aminoethyldiisopropoxyaluminate, etc., preferably γ-aminopropyltriethoxytitanate, γ-aminopropyltrimethoxytitanate, N-β- (aminoethyl) -γ-aminopropyltriethoxy Titanate, N-β- (aminoethyl) -γ-aminopropyltrimethoxytitanate, N
And titanate coupling agents such as -β- (aminoethyl) -β-aminoethyltriisopropoxytitanate.

【0012】使用するカップリング剤の量は、以下のよ
うに最終的な処理後の状態で規定される。即ち、X線光
電子分光法(XPS)を用いて、正極活物質表面に導入
されたアミノ基の量を規定する。このカップリング剤処
理条件は如何なるものでも良く、最終的なアミノ基導入
量のみが規定の対象となる。具体的には、該正極活物質
表面に導入されているアミノ基の導入量が、X線光電子
分光法(XPS)を用いて得られる、窒素(N)の感度
補正されたピーク面積強度(IN)と前記一般式(1)
中の金属元素(M)の感度補正されたピーク面積強度
(IM)の比IN/IMが0.01〜10.0、好ましく
は0.1〜5.0の値で規定される。比IN/IMは、用
いるカップリング剤の、前記一般式(3)におけるR基
の長さや、カップリング剤の導入量によって変化する値
であり、R基の長さが長すぎるとカップリング剤自体が
扱い難くなり作業上問題が生じ、導入量が小さすぎると
効果があまり期待できず、逆に導入量が大きすぎるとス
ラリー性状が変化し、塗布し難くなる。したがって、カ
ップリング剤の導入量は前記範囲内であることが望まし
い。
[0012] The amount of coupling agent used is defined in the state after the final treatment as follows. That is, the amount of amino groups introduced on the surface of the positive electrode active material is defined using X-ray photoelectron spectroscopy (XPS). This coupling agent treatment condition may be any condition, and only the final amino group introduction amount is subject to regulation. Specifically, the amount of amino group introduced on the surface of the positive electrode active material is determined by the sensitivity-corrected peak area intensity (I) of nitrogen (N) obtained by using X-ray photoelectron spectroscopy (XPS). N ) and the general formula (1)
The ratio I N / I M sensitivity corrected peak area intensity of the metal element in (M) (I M) is 0.01 to 10.0, is preferably defined by the value of 0.1 to 5.0 . The ratio IN / IM is a value that varies depending on the length of the R group in the general formula (3) and the amount of the coupling agent introduced in the coupling agent to be used. The ring agent itself becomes difficult to handle, causing a problem in work. If the amount is too small, the effect cannot be expected so much. Conversely, if the amount is too large, the slurry properties change and the coating becomes difficult. Therefore, the amount of the coupling agent introduced is desirably within the above range.

【0013】上記正極活物質としては、リチウムをドー
プ・脱ドープする事が可能なリチウム含有遷移金属酸化
物が用いられる。例えば、そのようなリチウム含有遷移
金属酸化物としては、リチウム含有マンガン酸化物(L
iMn24等)、リチウム含有コバルト酸化物(LiCo
2等)、リチウム含有ニッケル酸化物(LiNiO
2等)の他、リチウム含有鉄酸化物、リチウム含有クロ
ム酸化物、リチウム含有バナジウム酸化物等、また、こ
れら遷移金属よりなる群から選ばれた少なくとも2種の
遷移金属を含有するリチウム含有遷移金属複合酸化物
(LiNixCo1-x2等、0<x<1)が例示され
る。また、リチウム以外のアルカリ金属(周期律表の第
IA、第IIAの元素)、半金属のAl、Ga、In、
Ge、Sn、Pb、Sb、Bi等を混合しても良い。混
合量は0〜10モル%が好ましい。
As the positive electrode active material, a lithium-containing transition metal oxide which can be doped and dedoped with lithium is used. For example, as such a lithium-containing transition metal oxide, a lithium-containing manganese oxide (L
iMn 2 O 4 ), lithium-containing cobalt oxide (LiCo)
O 2 and the like), lithium-containing nickel oxide (LiNiO
2 ) as well as lithium-containing iron oxides, lithium-containing chromium oxides, lithium-containing vanadium oxides, and lithium-containing transition metals containing at least two transition metals selected from the group consisting of these transition metals. A composite oxide (0 <x <1 such as LiNi x Co 1-x O 2 ) is exemplified. Alkali metals other than lithium (elements IA and IIA of the periodic table), metalloids Al, Ga, In,
Ge, Sn, Pb, Sb, Bi and the like may be mixed. The mixing amount is preferably 0 to 10 mol%.

【0014】一方、負極材料としては、リチウムをドー
プ・脱ドープする事が可能な炭素材料が用いられる。例
えば、そのような炭素材料としては、熱分解炭素類、コ
ークス類(ピッチコークス、ニードルコークス、石油コ
ークス等)、黒鉛類、ガラス状炭素類、有機高分子化合
物焼成体(フラン樹脂等を適当な温度で焼成し炭化した
もの)、炭素繊維、活性炭等が使用可能である。特に、
(002)面の間隔が3.70以上、真密度1.70g
/cc未満であり、且つ空気気流中における示差熱分析
で700℃以上に発熱ピークを有しない炭素材料が好適
である。
On the other hand, as the negative electrode material, a carbon material capable of doping and undoping lithium is used. For example, as such carbon materials, pyrolytic carbons, cokes (pitch coke, needle coke, petroleum coke, etc.), graphites, glassy carbons, organic polymer compound fired bodies (furan resin, etc.) are suitable. Fired at a temperature and carbonized), carbon fiber, activated carbon and the like can be used. Especially,
(002) spacing of planes is 3.70 or more, true density 1.70 g
/ Cc, and a carbon material that does not have an exothermic peak at 700 ° C. or higher in differential thermal analysis in an air stream.

【0015】また、電解液としては、リチウム塩を支持
電解質とし、これを非水溶媒に溶解させた非水電解液が
用いられる。
As the electrolyte, a non-aqueous electrolyte obtained by dissolving a lithium salt as a supporting electrolyte in a non-aqueous solvent is used.

【0016】非水溶媒としては、特に限定されないが、
プロピレンカーボネート、エチレンカーボネート、1,
2−ジメトキシエタン、γ−ブチルラクトン、テトラヒ
ドロフラン、ジメチルカーボネート、ジエチルカーボネ
ート、メチルエチルカーボネート、ジプロピルカーボネ
ート等の単独もしくは2種類以上を混合した混合溶媒が
使用される。
The non-aqueous solvent is not particularly limited.
Propylene carbonate, ethylene carbonate, 1,
A mixed solvent of 2-dimethoxyethane, γ-butyl lactone, tetrahydrofuran, dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, dipropyl carbonate, or a mixture of two or more thereof is used.

【0017】電解質としては、リチウム電池で一般に使
用されるものが使用可能であり、例えば、LiCl
4、LiAsF6、LiPF6、LiBF4、LiCl、
LiBr、CH3SO3Li、CF3SO3Li等が単独
で、もしくは2種類以上を混合して用いられる。
As the electrolyte, those commonly used in lithium batteries can be used.
O 4 , LiAsF 6 , LiPF 6 , LiBF 4 , LiCl,
LiBr, CH 3 SO 3 Li, CF 3 SO 3 Li, etc. are used alone or in combination of two or more.

【0018】また、非水電解液の代わりに固体電解質を
用いても良い。
Further, a solid electrolyte may be used instead of the non-aqueous electrolyte.

【0019】このように正極活物質表面へのアミノ基の
導入によって、この正極活物質表面の表面エネルギーは
減少し、正極活物質同士の凝集が抑制される。このた
め、スラリーにおける正極活物質の分散性が向上し、結
果的に電極の組成がより均質になり、電池特性の固体
差、ばらつきが抑えられる。また、最表面へのアミノ基
の導入によって、正極活物質表面への水分の吸着が抑制
でき、更にこのアミノ基が電解液中の不純物である酸成
分をトラップするため、該不純物による正極活物質表面
の分解反応を抑制できる。これにより、総合的に電池特
性の向上が図られ、特にサイクル特性の改善が達成でき
る。
As described above, by introducing an amino group to the surface of the positive electrode active material, the surface energy of the surface of the positive electrode active material is reduced, and aggregation of the positive electrode active materials is suppressed. For this reason, the dispersibility of the positive electrode active material in the slurry is improved, and as a result, the composition of the electrode becomes more homogeneous, and the difference and dispersion of the battery characteristics are suppressed. Also, by introducing an amino group to the outermost surface, adsorption of moisture on the surface of the positive electrode active material can be suppressed, and since this amino group traps an acid component which is an impurity in the electrolytic solution, the positive electrode active material due to the impurity is trapped. The decomposition reaction on the surface can be suppressed. Thereby, the battery characteristics are comprehensively improved, and particularly, the cycle characteristics can be improved.

【0020】[0020]

【実施例】図1(A)(B)(C)は本発明の実施例に
係るコイン形リチウムイオン二次電池の構成説明図であ
る。円盤状筐体からなるコインセイル1は、(A)図に
示すように、上面の負極端子2に集電体(図示しない)
を介して接合された負極活物質からなる負極3と、セパ
レータ4を介してこの負極3に対向して配置された正極
活物質12からなる正極5と、集電体を介してこの正極
5が接合された正極端子6とにより構成される。負極端
子2および正極端子6間には電解液7が充填され、この
電解液が含浸あるいは多孔性膜の孔内に保持されて、起
電反応時に正負極間でイオン移動を行う。コインセル周
縁の負極端子2および正極端子6間は、ガスケット8で
シールされる。
1 (A), 1 (B) and 1 (C) are explanatory views of the configuration of a coin-type lithium ion secondary battery according to an embodiment of the present invention. As shown in FIG. 1A, a coin sail 1 composed of a disc-shaped housing is provided with a current collector (not shown) on a negative electrode terminal 2 on the upper surface.
A negative electrode 3 composed of a negative electrode active material joined via a positive electrode, a positive electrode 5 composed of a positive electrode active material 12 disposed opposite to the negative electrode 3 with a separator 4 interposed therebetween, and this positive electrode 5 with a current collector interposed therebetween And a positive electrode terminal 6 joined thereto. An electrolytic solution 7 is filled between the negative electrode terminal 2 and the positive electrode terminal 6, and the electrolytic solution is impregnated or held in the pores of the porous film to perform ion transfer between the positive and negative electrodes during the electromotive reaction. The gasket 8 seals between the negative electrode terminal 2 and the positive electrode terminal 6 around the coin cell.

【0021】(B)図は正極部分の構成を示す模式図で
ある。正極活物質12は、導電材であるカーボン粉末お
よび結着剤のバインダーを含む正極合剤9として、正極
端子6上に接合したアルミ箔等からなる集電体10上に
設けたものである。この正極合剤9は、一旦NMP等の
溶媒中に溶解させ、この溶液(スラリー)を集電体10
上に塗布した後加熱し、溶媒を揮発させて固体化したも
のである。
FIG. 2B is a schematic view showing the structure of the positive electrode portion. The positive electrode active material 12 is provided on a current collector 10 made of aluminum foil or the like bonded to the positive electrode terminal 6 as a positive electrode mixture 9 containing carbon powder as a conductive material and a binder binder. This positive electrode mixture 9 is once dissolved in a solvent such as NMP, and this solution (slurry) is
After being applied on top, it is heated to evaporate the solvent and solidify.

【0022】正極活物質12の各粒子は、(C)図に示
すように、有機皮膜11で覆われている。この有機皮膜
11は、アミノ基を含む有機材料のカップリング剤を正
極活物質12の表面で化学反応させて一部結合させるこ
とにより正極活物質各粒子表面に導入したものである。
Each particle of the positive electrode active material 12 is covered with an organic film 11 as shown in FIG. The organic film 11 is introduced into the surface of each particle of the positive electrode active material by chemically reacting a coupling agent of an organic material containing an amino group on the surface of the positive electrode active material 12 and partially bonding the same.

【0023】以下、各構成材料の具体例についてさらに
説明する。
Hereinafter, specific examples of each constituent material will be further described.

【0024】(実施例1)正極活物質にLiCoO
2を、カップリング剤として、N−β−(アミノエチ
ル)−β−アミノエチルトリイソプロポキシチタネート
カップリング剤(味の素社製、プレンアクトKR44)
を用いた例を述べる。まず所定量のメチルエチルケトン
を溶媒として、N−β−(アミノエチル)−β−アミノ
エチルトリイソプロポキシチタネートカップリング剤の
1wt%溶液を調整し、この溶液にLiCoO2 の粉末
を投入して、室温で10分ほど攪拌した。その後数時間
ほど静置し、LiCoO2 を沈殿させた後、上澄みのメ
チルエチルケトンを除去した。
Example 1 LiCoO was used as a positive electrode active material.
2 as a coupling agent, N-β- (aminoethyl) -β-aminoethyltriisopropoxy titanate coupling agent (Plenact KR44, manufactured by Ajinomoto Co.)
An example using is described. First, a 1 wt% solution of N-β- (aminoethyl) -β-aminoethyl triisopropoxy titanate coupling agent was prepared using a predetermined amount of methyl ethyl ketone as a solvent, and LiCoO 2 powder was added to this solution, For about 10 minutes. Thereafter, the mixture was allowed to stand for several hours to precipitate LiCoO 2 , and then the methyl ethyl ketone in the supernatant was removed.

【0025】これに純粋なメチルエチルケトンを適量加
え、10分ほど攪拌した後数時間放置してLiCoO2
を沈殿させ、上澄みのメチルエチルケトンを除去するリ
ンス工程を施し、未反応のN−β−(アミノエチル)−
β−アミノエチルトリイソプロポキシチタネートカップ
リング剤を除去した。こうして得られたカップリング処
理済みLiCoO2 粉末をオーブン内で数時間乾燥して
メチルエチルケトンを完全に除去し、最終的なカップリ
ング処理済みLiCoO2粉末を得た。こうして得られ
た処理済みLiCoO2 粉末をX線光電子分光法(XP
S)を用いて、比IN/ICoを求めたところ、その値は
0.572であった。
An appropriate amount of pure methyl ethyl ketone was added thereto, and the mixture was stirred for about 10 minutes and then left for several hours to give LiCoO 2
Is subjected to a rinsing step of removing methyl ethyl ketone in the supernatant, and unreacted N-β- (aminoethyl)-
The β-aminoethyl triisopropoxy titanate coupling agent was removed. The thus-coupled LiCoO 2 powder thus obtained was dried in an oven for several hours to completely remove methyl ethyl ketone, thereby obtaining a final coupled LiCoO 2 powder. The treated LiCoO 2 powder thus obtained was subjected to X-ray photoelectron spectroscopy (XP
The ratio I N / I Co was determined using S), and the value was 0.572.

【0026】この処理済みLiCoO2を正極活物質と
し、金属リチウムを負極活物質とし、電解質にLiPF
6を用いた1M−プロピレンカーボネート/1,2−ジ
メチルカーボネート混合非水溶液を電解液としてコイン
形電池を作製した。このコイン形電池を10個作製し、
充電時の上限電圧は4.2V、放電時の終止電圧は3.
0Vとし、電流密度0.5mA/cm2の定電流で充放
電容量を測定した。結果を正極活物質1gあたりの容量
に換算し、10個の平均値とその標準偏差の比R=(標
準偏差/平均値)×100(%)を求めたところ、第1
回目の充電に対しては0.04(%)、第1回目の放電
に対してはR=0.08(%)であった。
The treated LiCoO 2 is used as a positive electrode active material, metallic lithium is used as a negative electrode active material, and LiPF is used as an electrolyte.
A coin-type battery was prepared using 1M-propylene carbonate / 1,2-dimethyl carbonate mixed non-aqueous solution using No. 6 as an electrolyte. Produce 10 coin-shaped batteries,
The upper limit voltage during charging is 4.2 V, and the final voltage during discharging is 3.
The charge / discharge capacity was measured at a constant current of 0.5 mA / cm 2 at 0 V. The results were converted to the capacity per 1 g of the positive electrode active material, and the ratio R = (standard deviation / average value) × 100 (%) of the average value of 10 samples and the standard deviation thereof was determined.
0.04 (%) for the first charge and R = 0.08 (%) for the first discharge.

【0027】また、充放電サイクル特性を調べるため
に、処理済みLiCoO2を正極活物質とし、難黒鉛化
炭素を負極活物質とし、電解質にLiPF6を用いた1
M−プロピレンカーボネート/1,2−ジメチルカーボ
ネート混合非水溶液を電解液としてコイン形電池を作製
した。充電時の上限電圧は4.2V、放電時の終止電圧
は3.0Vとし、電流密度0.5mA/cm2の定電流
で充放電を行った。この結果得られたサイクル特性を図
2に示す。横軸はサイクル数、縦軸は放電容量の最大値
に対する各サイクルの放電容量の割合(放電容量維持
率)を表す。1サイクル目の放電容量を100(%)と
すると、200サイクル目の放電容量維持率は90.0
(%)であった。
Further, in order to examine the charge / discharge cycle characteristics, treated LiCoO 2 was used as a positive electrode active material, non-graphitizable carbon was used as a negative electrode active material, and LiPF 6 was used as an electrolyte.
A coin-type battery was manufactured using an M-propylene carbonate / 1,2-dimethyl carbonate mixed non-aqueous solution as an electrolytic solution. The upper limit voltage at the time of charging was 4.2 V, the final voltage at the time of discharging was 3.0 V, and charging and discharging were performed at a constant current of a current density of 0.5 mA / cm 2 . FIG. 2 shows the cycle characteristics obtained as a result. The horizontal axis represents the number of cycles, and the vertical axis represents the ratio of the discharge capacity of each cycle to the maximum value of the discharge capacity (discharge capacity maintenance ratio). Assuming that the discharge capacity at the first cycle is 100 (%), the discharge capacity maintenance rate at the 200th cycle is 90.0%.
(%)Met.

【0028】(実施例2)カップリング剤として、N−
β−(アミノエチル)−γ−アミノプロピルトリメトキ
シシランカップリング剤(日本ユニカー社製A−120
0)を用いた以外は、実施例1と同じ条件でLiCoO
2粉末を表面処理した。X線光電子分光法(XPS)を
用いて、比IN/ICoを求めたところ、その値は1.12
5であった。 この処理済みLiCoO2を正極活物質
とした以外は、実施例1と同じ条件で充放電容量を測定
した。その結果得られた平均値に対する標準偏差の比、
R=(標準偏差/平均値)×100(%)は、第1回目
の充電に対してはR=0.09(%)、第1回目の放電
に対してはR=0.15(%)であった。
(Example 2) As a coupling agent, N-
β- (aminoethyl) -γ-aminopropyltrimethoxysilane coupling agent (A-120 manufactured by Nippon Unicar Co., Ltd.)
0) under the same conditions as in Example 1 except that LiCoO
Two powders were surface treated. When the ratio I N / I Co was determined using X-ray photoelectron spectroscopy (XPS), the value was 1.12.
It was 5. The charge / discharge capacity was measured under the same conditions as in Example 1 except that this treated LiCoO 2 was used as the positive electrode active material. The ratio of the standard deviation to the resulting average,
R = (standard deviation / average value) × 100 (%) indicates that R = 0.09 (%) for the first charge and R = 0.15 (%) for the first discharge. )Met.

【0029】また、この処理済みLiCoO2を正極活
物質とした以外は、実施例1と同じ条件で充放電サイク
ル特性を調べた。この結果得られたサイクル特性を図2
に示す。1サイクル目の放電容量を100(%)とする
と、200サイクル目の放電容量維持率は88.9
(%)であった。
The charge-discharge cycle characteristics were examined under the same conditions as in Example 1 except that this treated LiCoO 2 was used as the positive electrode active material. FIG. 2 shows the cycle characteristics obtained as a result.
Shown in Assuming that the discharge capacity at the first cycle is 100 (%), the discharge capacity retention rate at the 200th cycle is 88.9.
(%)Met.

【0030】(比較例1)実施例1においてカップリン
グ剤処理を行わないLiCoO2を正極活物質に用いた
以外は、実施例1と同じ条件で電池を作製した。実施例
1の場合と同様にRを求めると、第1回目の充電に対し
ては、R=0.48(%)、第1回目の放電に対して
は、R=0.66(%)であった。また、充放電サイク
ル試験結果を図2に示す。1サイクル目の放電容量を1
00(%)とすると、200サイクル目の放電容量維持
率は87.4(%)であった。
Comparative Example 1 A battery was manufactured under the same conditions as in Example 1 except that LiCoO 2 not subjected to the treatment with the coupling agent was used as the positive electrode active material. When R is obtained in the same manner as in the first embodiment, R = 0.48 (%) for the first charge, and R = 0.66 (%) for the first discharge. Met. FIG. 2 shows the results of the charge / discharge cycle test. Set the discharge capacity at the first cycle to 1
Assuming 00 (%), the discharge capacity maintenance ratio at the 200th cycle was 87.4 (%).

【0031】(比較例2)カップリング剤として、ヘプ
タデカネートトリイソプロポキシチタネートカップリン
グ剤(味の素社製、プレンアクトKR TTS)を用い
た以外は、実施例1と同じ条件でLiCoO2粉末を表
面処理した。
Comparative Example 2 A LiCoO 2 powder was coated on the surface under the same conditions as in Example 1 except that a heptadecanoate triisopropoxy titanate coupling agent (manufactured by Ajinomoto Co., Prenact KR TTS) was used as a coupling agent. Processed.

【0032】この処理済みLiCoO2を正極活物質と
した以外は、実施例1と同じ条件で充放電容量を測定し
た。その結果得られた比、R=(標準偏差/平均値)×
100(%)は、第1回目の充電に対しては、R=0.
25(%)、第1回目の放電に対してはR=0.32
(%)であった。
The charge / discharge capacity was measured under the same conditions as in Example 1 except that this treated LiCoO 2 was used as the positive electrode active material. The resulting ratio, R = (standard deviation / mean) ×
100 (%) is R = 0.
25 (%), R = 0.32 for the first discharge
(%)Met.

【0033】また、この処理済みLiCoO2を正極活
物質とした以外は、実施例1と同じ条件で充放電サイク
ル特性を調べた。この結果得られたサイクル特性を図2
に示す。1サイクル目の放電容量を100(%)とする
と、200サイクル目の放電容量維持率は88.1
(%)であった。
The charge / discharge cycle characteristics were examined under the same conditions as in Example 1 except that this treated LiCoO 2 was used as the positive electrode active material. FIG. 2 shows the cycle characteristics obtained as a result.
Shown in Assuming that the discharge capacity at the first cycle is 100 (%), the discharge capacity retention rate at the 200th cycle is 88.1.
(%)Met.

【0034】以上の結果を以下の表1にまとめて示す。The above results are summarized in Table 1 below.

【0035】[0035]

【表1】 [Table 1]

【0036】表1から分かるように、実施例1、2とも
に、比較例よりも充放電の標準偏差の比Rが格段に小さ
く、容量特性のばらつきが小さくなる。
As can be seen from Table 1, in both Examples 1 and 2, the ratio R of the standard deviation of charge and discharge is much smaller than in the comparative example, and the variation in the capacitance characteristics is smaller.

【0037】また、図2にも示すように、実施例1、2
ともに、放電回数を増加した場合の容量低下が比較例に
比べ小さく抑えられ、安定した容量特性が保たれている
ことが分かる。
Further, as shown in FIG.
In both cases, it can be seen that the decrease in capacity when the number of discharges is increased is suppressed to be smaller than that in the comparative example, and that stable capacity characteristics are maintained.

【0038】[0038]

【発明の効果】以上説明したように、本発明によって得
られるリチウムイオン二次電池においては、正極活物質
の電極における分散性が向上し、電極組成がより均質に
なるため、充放電容量のばらつき、即ち固体差が小さ
く、かつ、サイクル寿命に優れた特性が実現される。
As described above, in the lithium ion secondary battery obtained according to the present invention, the dispersibility of the positive electrode active material in the electrode is improved, and the electrode composition becomes more homogeneous. That is, characteristics with a small difference between solids and excellent cycle life are realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の実施例に係るコイン形リチウムイオ
ン二次電池の構成説明図。
FIG. 1 is a structural explanatory view of a coin-type lithium ion secondary battery according to an embodiment of the present invention.

【図2】 実施例と比較例のサイクル数に対する放電容
量維持率のグラフ。
FIG. 2 is a graph of a discharge capacity retention ratio with respect to the number of cycles in Examples and Comparative Examples.

【符号の説明】[Explanation of symbols]

1:コインセル、2:負極端子、3:負極、4:セパレ
ータ、5:正極、6:正極端子、7:電解液、8:ガス
ケット、9:正極合剤、10:集電体、11:有機被
膜、12:正極活物質。
1: coin cell, 2: negative electrode terminal, 3: negative electrode, 4: separator, 5: positive electrode, 6: positive electrode terminal, 7: electrolytic solution, 8: gasket, 9: positive electrode mixture, 10: current collector, 11: organic Coating, 12: positive electrode active material.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 正極活物質、負極活物質、およびリチウ
ム塩を含む電解質からなるリチウムイオン二次電池にお
いて、該正極活物質が以下の一般式(1) LixMOz (1) ただし、Mは、Co、Mn、Ni、V、Fe、Crから
選ばれる少なくとも1種を含む遷移金属であり、x=
0.3〜1.2、z=1.4〜3で表され、 該正極活物質表面がアミノ基を含む有機物によって被覆
されていることを特徴とするリチウムイオン二次電池。
1. A lithium ion secondary battery comprising a positive electrode active material, a negative electrode active material, and an electrolyte containing a lithium salt, wherein the positive electrode active material is represented by the following general formula (1): Li x MO z (1) Is a transition metal containing at least one selected from Co, Mn, Ni, V, Fe and Cr, and x =
A lithium ion secondary battery represented by 0.3 to 1.2 and z = 1.4 to 3, wherein the surface of the positive electrode active material is coated with an organic material containing an amino group.
【請求項2】 前記アミノ基を含む有機物が、シランカ
ップリング剤、チタネートカップリング剤、またはアル
ミネートカップリング剤を用いて導入されたものである
ことを特徴とする請求項1に記載のリチウムイオン二次
電池。
2. The lithium according to claim 1, wherein the organic substance containing an amino group is introduced using a silane coupling agent, a titanate coupling agent, or an aluminate coupling agent. Ion secondary battery.
【請求項3】 前記カップリング剤は、少なくとも一つ
のアミノ基を分子内に持つカップリング剤であることを
特徴とする請求項2に記載のリチウムイオン二次電池。
3. The lithium ion secondary battery according to claim 2, wherein the coupling agent is a coupling agent having at least one amino group in a molecule.
【請求項4】 前記正極活物質表面に導入されているア
ミノ基の導入量は、X線光電子分光法において、窒素
(N)の感度補正されたピーク面積強度(IN )と前記
一般式(1)中の金属元素(M)の感度補正されたピー
ク面積強度(IM )の比IN /IM が0.01〜10.
0であることを特徴とする請求項1、2または3に記載
のリチウムイオン二次電池。
4. The amount of amino group introduced on the surface of the positive electrode active material is determined by the sensitivity-corrected peak area intensity (I N ) of nitrogen ( N ) and the general formula (X) in X-ray photoelectron spectroscopy. 1) The ratio I N / I M of the peak area intensity (I M ) of the metal element (M) in which sensitivity is corrected is 0.01 to 10.
4. The lithium ion secondary battery according to claim 1, wherein the value is 0.
【請求項5】 前記電解質は、リチウム塩を支持電解質
とし、これを非水溶媒に溶解させた非水電解液であるこ
とを特徴とする請求項1、2、3または4に記載のリチ
ウムイオン二次電池。
5. The lithium ion according to claim 1, wherein the electrolyte is a non-aqueous electrolyte obtained by dissolving a lithium salt as a supporting electrolyte in a non-aqueous solvent. Rechargeable battery.
JP8280457A 1996-10-23 1996-10-23 Lithium-ion secondary battery Pending JPH10125307A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8280457A JPH10125307A (en) 1996-10-23 1996-10-23 Lithium-ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8280457A JPH10125307A (en) 1996-10-23 1996-10-23 Lithium-ion secondary battery

Publications (1)

Publication Number Publication Date
JPH10125307A true JPH10125307A (en) 1998-05-15

Family

ID=17625336

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8280457A Pending JPH10125307A (en) 1996-10-23 1996-10-23 Lithium-ion secondary battery

Country Status (1)

Country Link
JP (1) JPH10125307A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000264636A (en) * 1999-03-17 2000-09-26 Toda Kogyo Corp Lithium manganese spinel oxide particle powder and its production
KR20010044231A (en) * 2001-01-18 2001-06-05 선양국 A method of preparing a layered cathode active material by a sol-gel method for Lithium Secondary batteries
JP2002319405A (en) * 2001-04-23 2002-10-31 Toyota Motor Corp Lithium secondary battery
WO2006009284A1 (en) * 2004-07-20 2006-01-26 Hitachi, Ltd. Electrode for polymer electrolyte secondary battery and polymer electrolyte secondary battery
JP2007173026A (en) * 2005-12-22 2007-07-05 Samsung Sdi Co Ltd Lithium secondary battery and method of manufacturing lithium secondary battery
JP2007242303A (en) * 2006-03-06 2007-09-20 Matsushita Electric Ind Co Ltd Lithium ion secondary battery
EP2476157A1 (en) * 2009-09-08 2012-07-18 Li-tec Battery GmbH Additive for electrolytes in electrochemical cells
US9257697B2 (en) 2010-02-24 2016-02-09 Hitachi Maxell, Ltd. Positive electrode material, manufacturing method thereof, positive electrode for non-aqueous rechargeable battery, and non-aqueous rechargeable battery
JP2016146322A (en) * 2014-12-31 2016-08-12 財團法人工業技術研究院Industrial Technology Research Institute Battery electrode paste composition
CN108376784A (en) * 2018-03-08 2018-08-07 西北工业大学 Improve the method for tertiary cathode material hygroscopicity and pulp gel phenomenon
CN111900330A (en) * 2020-07-27 2020-11-06 珠海冠宇电池股份有限公司 Positive plate and application thereof
CN114497532A (en) * 2022-01-27 2022-05-13 蜂巢能源科技(马鞍山)有限公司 Cobalt-free positive electrode material and modification method and application thereof
WO2022198657A1 (en) * 2021-03-26 2022-09-29 宁德新能源科技有限公司 Positive electrode lithium supplementing material, and positive electrode plate and electrochemical device including same

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000264636A (en) * 1999-03-17 2000-09-26 Toda Kogyo Corp Lithium manganese spinel oxide particle powder and its production
KR20010044231A (en) * 2001-01-18 2001-06-05 선양국 A method of preparing a layered cathode active material by a sol-gel method for Lithium Secondary batteries
JP2002319405A (en) * 2001-04-23 2002-10-31 Toyota Motor Corp Lithium secondary battery
WO2006009284A1 (en) * 2004-07-20 2006-01-26 Hitachi, Ltd. Electrode for polymer electrolyte secondary battery and polymer electrolyte secondary battery
JPWO2006009284A1 (en) * 2004-07-20 2008-05-01 株式会社日立製作所 Electrode for polymer electrolyte secondary battery and polymer electrolyte secondary battery
JP4821609B2 (en) * 2004-07-20 2011-11-24 日油株式会社 Electrode for polymer electrolyte secondary battery and polymer electrolyte secondary battery
JP2007173026A (en) * 2005-12-22 2007-07-05 Samsung Sdi Co Ltd Lithium secondary battery and method of manufacturing lithium secondary battery
JP2007242303A (en) * 2006-03-06 2007-09-20 Matsushita Electric Ind Co Ltd Lithium ion secondary battery
EP2476157A1 (en) * 2009-09-08 2012-07-18 Li-tec Battery GmbH Additive for electrolytes in electrochemical cells
EP2476157B1 (en) * 2009-09-08 2013-10-09 Li-tec Battery GmbH Additive for electrolytes in electrochemical cells
US9257697B2 (en) 2010-02-24 2016-02-09 Hitachi Maxell, Ltd. Positive electrode material, manufacturing method thereof, positive electrode for non-aqueous rechargeable battery, and non-aqueous rechargeable battery
JP2016146322A (en) * 2014-12-31 2016-08-12 財團法人工業技術研究院Industrial Technology Research Institute Battery electrode paste composition
CN108376784A (en) * 2018-03-08 2018-08-07 西北工业大学 Improve the method for tertiary cathode material hygroscopicity and pulp gel phenomenon
CN108376784B (en) * 2018-03-08 2020-12-04 西北工业大学 Method for improving moisture absorption of ternary cathode material and slurry gelation phenomenon
CN111900330A (en) * 2020-07-27 2020-11-06 珠海冠宇电池股份有限公司 Positive plate and application thereof
WO2022198657A1 (en) * 2021-03-26 2022-09-29 宁德新能源科技有限公司 Positive electrode lithium supplementing material, and positive electrode plate and electrochemical device including same
CN114497532A (en) * 2022-01-27 2022-05-13 蜂巢能源科技(马鞍山)有限公司 Cobalt-free positive electrode material and modification method and application thereof

Similar Documents

Publication Publication Date Title
EP1946403B1 (en) Method of using an electrochemical cell
EP2267824B1 (en) Negative electrode for lithium-ion secondary battery and manufacturing process for the same
KR101038637B1 (en) Negative Active Material, Negative Electrode Using the Same, Non-Aqueous Electrolyte Battery Using the Same, and Manufacturing Method for Negative Active Material
US5571638A (en) Lithium secondary battery
KR101463114B1 (en) Anode active material, method of preparing the same, and anode and lithium battery containing the material
JP6869425B2 (en) Positive electrode active material for lithium secondary battery, this manufacturing method, positive electrode for lithium secondary battery including this, and lithium secondary battery
JP5572298B2 (en) Cathode active material, method for producing the same, cathode employing the same, and lithium battery
JP5611453B2 (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery using the negative electrode
KR20090066019A (en) Anode comprising surface treated anode active material and lithium battery using the same
US20020037451A1 (en) Carbon substrate, anode for lithium ion rechargeable battery and lithium ion rechargeable battery
JP2003012311A (en) Production method of polymer coated carbon material, negative-electrode material and lithium ion secondary battery
EP3683191B1 (en) Method for manufacturing positive electrode active material for secondary battery
JP7009016B2 (en) Positive electrode active material for lithium secondary battery, this manufacturing method, positive electrode for lithium secondary battery including this, and lithium secondary battery
JPH10125307A (en) Lithium-ion secondary battery
WO2012160762A1 (en) Electrode for lithium-ion rechargeable batteries, method for producing same, and lithium-ion rechargeable battery using same
JP3820748B2 (en) Electrolyte for lithium secondary battery and lithium secondary battery using the same
JP2001043847A (en) Battery with surface-reformed electrode and its manufacture
JP7460257B2 (en) Manufacturing method of positive electrode active material
KR101551407B1 (en) Negative electrode active material for rechargeable lithium battery, method for preparing the same, negative electrode including the same, and rechargeable lithium battery including the negative electrode
KR20030047655A (en) Method of preparing lithium secondary battery and lithium secondary battery prepared by same
JPH0950809A (en) Lithium secondary battery
JPH09199112A (en) Nonaqueous electrolyte secondary cell
KR100788257B1 (en) Lithium secondary battery comprising electrode composition for high voltage
JPH11279785A (en) Composite carbon material for electrode, its production and nonaqueous electrolytic solution secondary cell using that
KR101796248B1 (en) Cathode active material for lithium secondary battery and method of preparing the same